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Fa(t,T,U):

Basic interest rates

. price attime t € [0, T] of a default-free zero coupon bond with

maturity 7 € [0, T*] (B(T,T)=1)

. instantaneous forward rate

B(1,T) = exp (— I f(t,u)du)

. default-free forward Libor rate for the interval T to T + § as of

timet < T (§-forward Libor rate)
B(t, T
LT = 3 (5% 1)
forward price process for the two maturities T < U
Fa(t,T,U) == 547}

0)
B(t,T)
B(t, T +9)

Introduction
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The driving process

L= (L",...,L%is a d-dimensional time-inhomogeneous Lévy process,
i.e. L has independent increments and the law of L; is given by the
characteristic function

Elexp(i{u, Lt))] = exp /Otes(iu) ds with

0u(2) = (2,05) + 3 (2,052) + / (e 1 (2.0 ) Fo(ax).

where by € R?, ¢ is a symmetric nonnegative-definite d x d-matrix, and
F; is a Lévy measure.

-
Integrability: / <\bs| + || cs]| +/ \x\st(dx)> ds < oo
0 {IxI<1}

/ / exp(u, X)Fs(dx)ds < oo for u e [~(1 + )M, (1 + £)M]°
0 {Ix|>1}

Lévy term
structures



Description in terms of modern
stochastic analysis

Lévy term
structures

L = (L;) is a special semimartingale with canonical representation

t
L,:/ bsds+/ 1/2<:|Ws+// x(ut — v)(ds, dx)
0 0 R

and characteristics
t t
At :/ bsds, Ci :/ cs ds, v(ds,dx) = Fs(dx)ds
0 0

W = (W) is a standard d-dimensional Brownian motion,
u* the random measure of jumps of L and v is the compensator of .t

L is also called a process with independent increments and absolutely
continuous characteristics (PIIAC).



Generalized hyperbolic distributions
(O.E. Barndorff-Nielsen (1977))

Lévy term
(A=1/2)/2 structures
Density:  dgn(x) = a(), o, 3,6) (52 +(X—u)2)

X Ka-1/2 (CV\/ 6%+ (x — #)2) exp(B(x — )

(062 _ ﬁ2)>\/2
V21267 Ky (5\/012 - 52)
K, modified Bessel function of the third kind with index A

A Class parameter, a Shape, 3 Skewness,
1 Location, § Scale parameter (Volatility)

a(A o, 3,0) =

Generalized hyperbolic distributions are infinitely divisible

=—> dgu generates a Lévy process (Li)i>o s.t. L(L1) ~ dgu



values of NIG(100,0,1,0) Levy process

Simulation of a GH Lévy motion

NIG Levy process with marginal densities
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Lévy term
structures
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Simulation of a Lévy process
NIG(10,0,0.100,0) on [0,1]
NIG(10,0,0.025,0) on [1,3]
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Lévy term
structures



Dynamics of the forward rates

(Eb—Raible (1999), Eb—Ozkan (2003),
Eb—Jacod—Raible (2005), Eb—Kluge (2006) Lévy term

structures

df(t, T) = a(t, T)dt — o(t, T)dL; 0<t<T<TY

a(t, T) and o(t, T) satisfy measurability and boundedness conditions and
a(s,T)=o0(s,T)=0fors>T

T T

a(s,u)du and Z(s,T):/ o(s,u)du

SAT

Define A(s, T) :/
S

AT

Assume 0<Y'(s, ) <M (1<i<d)

For most purposes we can consider deterministic « and o



Implications

H . . Lévy term
Savings account and default-free zero coupon bond prices are given by structures

1 t t
B; B0, D exp (/0 A(s, T)dsf/0 (s, t)dLs) and

t
0

t
B(t, T) = B(0, T)B:exp <—/ A(s, T)ds +/ X (s, T)dLS>.
0
If we choose A(s, T) = 6s(X(s, T)), then bond prices, discounted by the
savings account, are martingales.

In case d = 1, the martingale measure is unique (see Eberlein, Jacod, and
Raible (2004)).



Key tool

L=(L"..., Ld) d-dimensional time-inhomogeneous Lévy process
t
Elexp(i(u, Lt))] = exp/ Os(iu)ds  where
0

0s(2) = (2, bs) + %(z, CsZ) +/

R
in case L is a (time-homogeneous) Lévy process, s = 6 is the cumulant
(log-moment generating function) of L;.

(e<z,x) -z, X)) Fs(dx)

Proposition Eberlein, Raible (1999)

Suppose f : R, — C?is a continuous function such that |R(f'(x))| < M for
allie{1,...,d} and x € R4, then

E [exp (/Ot f(s)dLs>] = exp </0[ os(f(s))ds)

Take f(s)=>.(s,T)forsome T € [0, T*]

Lévy term
structures



Correlation of zero coupon bond
prices

Lévy term
structures

Theorem
Let0 <t< Ty < T> < T*. The correlation of B(t, T1) and B(t, T») is

COFF(B(f, 7-1)7 B(t, T2)) _ g1(t: T1, T2) — g2(t: T1, T2)

h(t, T)V/h(t, T2)

where
t
gi(t, T, T) = exp (/ es(z(s, t,Ti) + (s, t, Tg)) ds) ,
0

9:(t, T, T2) == exp (/Ot (95(2(3, t, 1)) + 0s(X(s, t, Tg))) ds)

and

h(t, T) := exp (/Or 0s(2X(s,t, T)) ds) — exp (/Ot 20s(X(s,t, T)) ds) .

Similar for Corr(B(t, T1), B(t, T2)).



Lévy term
structures

Correlation of zero coupon bond prices for « = 100, 5 = 0,
0 =1and a=0.05



L(t,T):

Fa(t,T,U):

Basic interest rates

: price attime t € [0, T] of a default-free zero coupon bond

. instantaneous forward rate

B(LT)::exp(—-LTf(Lu)du)
default-free forward Libor rate for the interval Tto T + ¢
B(t, T
L(t,T):= 3 (B(I(,t'f+)6) - 1)
forward price process for the two maturities T and U
FB(t7T7U) = BEIVT)

B(1,0)
B(t,T)
B(1,T +9)

= 1440L(LT) = = Fp(t, T, T +6)

Lévy LIBOF
model



The Lévy Libor model

(Eb—Ozkan (2005))

Tenorstructure To< Th < - < Ty < Ty =T"
with Tiy1 — Ti=46,set T =T"—i§ fori=1,....M

| |

1
| ] ] ]
I I I I I I

Assumptions

(LR.1): For any maturity T; there is a bounded deterministic function

A(+, Ti), which represents the volatility of the forward Libor
rate process L(-, T;).

(LR.2): We assume a strictly decreasing and strictly positive initial term

structure B(0, T) (T €]0, T*]). Consequently the initial term
structure of forward Libor rates is given by

1/ BO,T)
L(O’T)‘S<B(o7r+5)_1)

Lévy LIBOF
model



Backward Induction (1)

Given a stochastic basis (Q, Fr«, Pr=, (Ft)o<t<7+)

o o * * Lévy LIBOF
11;4 ]l;/l—l ?—2' l]—;//ﬁ\ | mec;gel

} I I % I I
T, A L I .., 1, T
We postulate that under Pr-
L(t, T7) = L(0, T{) exp (/ot)\(s, T:)dLST*)
where LT :/Ot bsds+/0tc;/2dWsT* +/0t/Rx(uLfvT*’L)(ds, dx)

is a non-homogeneous Lévy process with random measure of jumps x' and
Pr--compensator v t(ds, dx) = Fs(dx)ds



Backward Induction (2)

In order to make L(t, T;") a Pr~-martingale, choose the drift characteristic
(bs) s.t.

Lévy LIBOF
model

t t
/ (s, T )bsds = — %/ cshe(s, Ty)ds
0

0

t
- / / (e*<S»T1*>X—1 — A(s, T1*)x) v L(ds, dx)
0 JR

Transform L(t, T{") in a stochastic exponential
L(t, T7) = L(O, T)E(H(L, T1))
where

tT1)—/ (s, TH)el2aw!” + // A TE)x (ML_VT*,L)(dS,dX)



Backward Induction (3)
Equivalently

ALt Tr) = L(t—, T}) (A(t, Tr)ol 2w

+/ (ek(hﬂ*)x _ 1) (ML — I/T*’L)(dt, dX))
R

with initial condition

SHERR

Lévy LIBOF
model



Backward Induction (4)

Recall Fg(t, T, T*) =1+ 6L(t, T{"), therefore,
dFB(ta T1*7 T*) = §dL(t7 T1*)

Lévy LIBOF
model

SL(t—, T?)
T+ oL(t—, T7)

= a(t, T, T%)

SL(t—,T7) METE X L TiL
+471 LT (e 1)(u vTLY(dt, dx)

= BltX,Tf, T)—1

= Fa(t-. T7, T*)( At TT) 62w

Define the forward martingale measure associated with T;*

dPr.

_ 1
. Err(MY) where

M — /a(s Tr, T 2aw!”

+/O/R(ﬁ(s, % T T7) = 1) (4 — v (ds, d)



Backward Induction (5)
* * t
Then W[ — W —/ ofs, Tr, T*)c/2ds
0
is the forward Brownian motion for date 7" and

vIrb(at, dx) = B(t, x, T, T*)v" H(at, dx) is the Pr.-compensator for .

Second step

L* L
| | | L | |
I I I I I 1
1, T L L, Ty T*

We postulate that under Prff

t *
L(t, T3) = L(0, T3 ) exp (/ A(s, Tg*)dLST1 ) where
0

. to_. t . t .
i / b7 ds + / o 2w + / / x(ut = vTh)(ds, o)
0 0 0 R

Lévy LIBOF
model



Backward Induction (6)

Second measure change

dPr, 2 Lévy LIBOF
gy, =& (M) el

where

t *
M2 :/ (s, T3, TH)cl 2aw
0

t
+/0 /R (B(s,x, T2, T7) — 1)(,uL — b (ds, dx)

This way we get for each time point 7;* in the tenor structure a Libor rate
process which is under the forward martingale measure P7-  of the form

t *
L(t, T7) = L(0, T") exp ( [ T,-*)dLZ’*‘)
0



Backward Induction (7)

Simpler formula for the forward martingale measure Lévdy ILIBOF
moae!

dPr, 1+ 6L(T;, T;)
dPr.,  1+0L(0,T;)

i+1

Under the forward martingale measure Py, , the difference of the driving
processes can be given in the form

t
Ti1 Tt _ ij
L™ - L = | ds/ds



Correlations of the Libor rates

Lévy LIBOF
In order to stay within the class of time-inhomogeneous Lévy processes model

oL(s—T) _ _8LO,T)
1+0L(s—, T) 1+6L(0,T))

Set
~T,

00+ (2) = %cj + / (6 —1 — zx)F]*' (dx)
R



Correlations of the Libor rates (2)

Theorem

Leti,j,ke{1,...,M+1} and0 < t < min{T;, T;}. Then under the forward )

. g . . Lévy LIBOF
martingale measure Pr,_, (and under the approximation), the correlation of model
the LIBOR rates L(t, T;) and L(t, T;) is

t,i,j, k) — ti,j, k
G, (L6 T LG T) = g1\(/h(tji /z))\izh((t jjk) :

where

gi(t,i,j,k)) = exp </0' flie (A(s, T)) + A(s, T,-)) ds) ,
9(t,i,j, k) :== exp (/Ot (ésTm (A(s, 1)) + 02 (A(s, T,-))) ds>

and for | € {i,j} we set

h(t,1, k) == exp ( /0 T (20(s. ) ds) —exp (2 /0 e (s, Th) ds) .

Suitable volatility structure Mt T)=(Ti—t)yexp(—b(Ti—t)) + ¢



Correlation

1.00

0.98

0.96

0.94

0.92

Correlation of L(t,1) and L(t,2)
Correlation of L(t,1) and L(t,20)
Correlation of L(t,1) and L(t,10)
Correlation of L(t,1) and L(t,5)
Correlation of L(l 1) and L(t,7)

0.2 0.4 0.6 0.8 1.0

Correlations of IiIBOR rates
fora =100,83=0,6 =0.01,b=0.5and ¢ = 0.1

Lévy LIBOF
model



Correlation of L(t,5) and L(t,10)

Correlation of L(t,5) and L(t, 10) for « - 100,3=0,6 =0.01 and ¢ = 0.1

1.00

0.98

0.96

0.94

0.92

0.90

Lévy LIBOF
model



0.8 0.9 1.0

Correlation of L(t,5) and L(t,10)

0.7

T
0 1 2 3 4 5

Correlation of L(t,5) and L(t,10) for 3 - 0,6 =10,b=0.5and ¢ =0.1

Lévy LIBOF
model
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Forward process model (1)

Postulate

t
14+ 6L(t, T7) = (1 +6L(0, T7)) exp (/ (s, T7)dL! )
0 Lévy forwar
process mo

equivalently
t
FB(ta T‘I*a T*) = FB(O> T1*7 T*)exp (/ )‘(87 T‘I*)dL;r )
0

In differential form

dFa(t, 7, T) = Falt—, T7. T (\(t. 7)ol “awd”

+ /R (eA(t’Tr)X - 1)(# — v bt dx))



Forward process model (2)

Define the forward martingale measure associated with T}

Lévy forwar
process mo

1
iy, = S (M)

where

= /Asﬂ)c;/deT // NET ) (b~ T 0, ).



Forward process model (3)

* " t
Then W =w/ — / (s, T7')cd/?ds is the forward Brownian motion for
0
date T;" and
VT (dt, dx) = exp(A(t, T)x) v *(dt, dx) is the Pr--compensator of 4i*. Lévy forwar
process mo

Continuing this way we get for each time point 7;* in the tenor structure a
Libor rate process under P+  in the form

t *
140L(t, T7) = (1+6L(0, ")) exp (/ A(s, Tj*)dLST’*‘).
0

with successive compensators

J
Vit (dt, dx) = exp (Z At T,»*)x) Fi(dx)dt.

i=1

Consequence of this alternative approach: negative Libor rates can occur



Lévy market model
(Eb—Ozkan (2005))

Extensions of the basic Lévy

/TN

market model

Multi-currency setting
(Eb—Koval (2006))

Lévy forwar
process mo

Credit risk model
(Eb—Kluge—Schénbucher (2006))

Swap rate model
(Eb—Liinev (2006))

Duality principle
(Eb—Kluge—Papapantoleon (2006))



Cross-currency Lévy market model

Domestic Market Foreign Market

FyiC5T) -
’ PO " forward measure ‘X—4 P T" forward measure ‘

’ PO TN -forward measure ‘ ’ P> TN -forward measure ‘
0. Tn—1 i TN—1
P -forward measure P -forward measure
0,74 i Tipq
P~ '/+1 -forward measure P" J+1-forward measure
Fa( Ty, Tji1) Fai( Ty Tit)
FyiC T

0.T; xi ¢ T) 0T
P '/ -forward measure P '/ -forward measure

’ P9 1 -forward measure ‘ ’ P> T1 -forward measure ‘

Relationship between domestic and foreign fixed income markets in a discrete-tenor framework.

Cross-curre
Lévy model



interest rate in percent

Comparison of estimated interest rates (least squares Svensson)

Euroland
Japan
Switzerland
USA

time to maturity

Termstructure, February 17, 2004
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Cross-curre
Lévy model



The foreign forward exchange
rate for date 7* (1)

Assumption

(FXR.1): For every marketi € {0, ..., m} there are strictly decreasing and
strictly positive zero-coupon bond prices B'(0,T;)(j = 0,...,N + 1) and for
every foreign economy i € {1,..., m} there are spot exchange rates X'(0)
given.

Consequently the initial foreign forward exchange rate corresponding to T*
is

0 7 _ B(0,T)X'(0)

Fe@.T) = "po(5,7)

Cross-curre
Lévy model



The foreign forward exchange
rate for date T* (2)

Assumption
(FXR.2): For every foreign market i € {1,...,m} there is a continuous Eefgssnf;ér:l
deterministic function &'(-, T*) : [0,T*] — RY. !

For every coordinate 1 < k < d we assume
6T <M (se[0,T], 1<i<m)

= M
here M < ——.
where <N+2



The foreign forward exchange
rate for date 7* (3)

Assumption
(FXR.3): Foreveryic {1,..., m} the foreign forward exchange rate for
date T™ is given by
t t .
Fo(t,T") = F(0,T") exp ( /0 (s, T*)ds + /0 ¢i(s,T) T dLo7 ) e
where 1
V(8T = =g(s,T) 087 — 1€, T) el
- / (efi(sf*)” —1- g"(s,T*)Tx) AT (dx)
R
Equivalently

Fyi(t,T*) = FX,(O,T*)&(/ (s, T") e dW2T
0

+ /0‘ /Rd (exp (fi(S,T*)TX) — 1)(,u — Vo,T*)(dS,dx))



The foreign forward exchange
rate for date T (4)

Consequences: Fyi(-, T*) isa P* -martingale
FX’(t7T*) _
[T =
Define .
dP" | Fu(tTY)
dPoT" | F(0,T)

By Girsanov’s theorem we get a P’ -standard Brownian motion

- " t .
Wit = e - / cot'(s,T*) ds
0
and a P'""-compensator

vir-(dt,dx) = exp(¢'(t, T*) " X)o7+ (dt, dx)

Cross-curre
Lévy model



Cross-currency Lévy market model

Domestic Market Foreign Market

FyiC5T) -
’ PO " forward measure ‘X—4 P T" forward measure ‘

’ PO TN -forward measure ‘ ’ P> TN -forward measure ‘
0. Tn—1 i TN—1
P -forward measure P -forward measure
0,74 i Tipq
P~ '/+1 -forward measure P" J+1-forward measure
Fa( Ty, Tji1) Fai( Ty Tit)
FyiC T

0.T; xi ¢ T) 0T
P '/ -forward measure P '/ -forward measure

’ P9 1 -forward measure ‘ ’ P> T1 -forward measure ‘

Relationship between domestic and foreign fixed income markets in a discrete-tenor framework.

Cross-curre
Lévy model



Correlations of the Libor rates (3)

Define

0 (2) = %cszz +/ (™ —1—2zx) F; FL T (dx).
R

Then the correlation of L (t, T,) and L2(t, T,,) under Py, , is

g1t it b2, iy o, 1, k) — Qo(t, iv, o, fi, 2, 1, K) Cross-curre
N AN RN T

Cortp, 5, (L"(t, T;), LE(t, T,)) =
where

[“‘/ T, i .
g1(t7 i1ai27j1aj27 I7 k) = exp </ 087 et ()‘I1 (S, 7—/1) + )‘,2(87 TJZ)) ds> )

Gelt, i oo i Jos | k) = exp ( / (7 (V0 (s. ) + 8™ (X (5. T,) ) ds)

and for p € {1,2} we define

h(t, ip, o, I, K) _exp</9’ Tt (200 (s, T))ds) exp( /0’ Tt (Nb (s, T, -p))ds).



Calibration of the Lévy forward

rate model
First step: Estimate correlations between zero coupon bond prices
Second step: Use the correlations to estimate the parameters
of the driving Lévy process Calibration
Data set: Yield curve of German government bonds

August 7, 1997 — April 9, 2008
— 2707 trading days

How to get independent samples for each price?



Derivation of samples

Fort, T, Awheret < Tand A € [0, T* — T] define

B(0,T) B(A,t+ A)

A [p—
BAT) =B+ A T+2) 507 Ba, T+a)

then B (t, T) has the same distribution as B(t, T). For A > t, BA(t, T) is
independent of B(t, T). Calibration

Choose A = t,2t,3t,... = independent samples B2(t, T)
Furthermore, for all A >t

Corr(B2(t, Ty), B2(t, T2)) = Corr(B(t, Ty), B(t, T2))



Estimation

To estimate Corr(B(t, T1), B(t, T>)) use the empirical correlation

Cor(B(t, T1), B(t, T2))
ST o(B(t, T) — B(t, T1))(B(t, T2) — B(t, T2))
VELo(BH (. T) — B(t. T1))2 /S0y (BU(t. To) — Bt To))2

where n = [#%] and B(t, T), B(t, T>) denote the arithmetic means.

’

Calibration

To estimate the parameters, minimize

100 days 10 years 10 years

SOy % (Corr B(t, T+), B(t, T»)) — Corr(B(t, T:), B(t, Tg)))z.

t=1day Ty=1year Tp=1year



0.8 1.0
I

Correlations of B(t,1 year) and B(t,T2)
06
i

Correlations of B(t,1 year) and B(t,T2)

1.0

0.8

0.6

<] —— T2= 2years < —— T2= 2years
° —— T2= Syears e —— T2= S5years
—— T2=10years —— T2=10years
T T T T T T T T T T T
0 20 40 60 80 100 20 40 60 80 100

Empirical correlations (points) and correlations calculated from the models
(lines) for the calibrations with NIG Lévy processes (left) and with Brownian

motions (right)

Calibration
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