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Motivation Condensed matter

Motivation 1: Diffusion in complex liquids, e.g.
liquid crystals (theory of soft condensed matter)

OPentyl

OPentyl

OPentyl

OPentyl

PentylO

PentylO

Hexakis(pentyloxy)triphenylene, a platelike molecule.
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Motivation Condensed matter

Isotropic phase P∗ = 200 and T ∗ = 13.
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Motivation Condensed matter

Nematic phase at P∗ = 200 and T ∗ = 12.
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Motivation Condensed matter

Columnar phase at P∗ = 200 and T ∗ = 11.
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Motivation Condensed matter

Determination of the diffusion constant

Diffusion equation (Fick’s 2nd law)

∂ρ(r, t)
∂t

= D
∂2ρ(r, t)
∂r2

Slope of mean square displacement vs. time (Einstein relation)

D = lim
τ→∞

1
6Nτ

N∑

i=1

〈|r i(t + τ) − r i(t)|2〉t

Integral of the velocity autocorrelation (Green-Kubo relation)

D =
1

3N

N∑

i=1

∫ ∞

0
〈v i(t + τ) · v i(t)〉t dτ
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Motivation Condensed matter
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Motivation Condensed matter

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

M
S

D

τ

perpendicular
parallel

Mean square displ. in the columnar phase at P∗ = 150, T ∗ = 10.

Guido Germano, Philipps-University Marburg CTRWs, fractional calculus and stochastic integrals



Motivation Condensed matter
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Motivation Condensed matter
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Motivation Condensed matter

Diffusion in the isotropic phase at P∗ = 150 and T∗ = 11.
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Motivation Condensed matter

Diffusion in the nematic phase at P∗ = 200 and T ∗ = 12 (top).
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Motivation Condensed matter

Diffusion in the nematic phase at P∗ = 200 and T ∗ = 12 (side).
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Motivation Condensed matter

Diffusion in the columnar phase at P∗ = 150 and T ∗ = 9 (side).
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Motivation Finance

Motivation 2: Diffusion in finance

In modern finance theory, stock prices S(t) are modelled
customarily with geometric Brownian motion (W (t) is the
Wiener process):

dS(t) = µS(t)dt + σS(t)dW (t).

This has many convenient mathematical properties, but is not
very realistic, as has been pointed out already a long time ago:
B. Mandelbrot, “The variation of certain speculative prices”,
Journal of Business 36, 394–419 (1963).
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Motivation Finance

Search for realistic high-frequency stock price
processes beyond geometric Brownian motion
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Stochastic solution of the space-time fractional diffusion equation Uncoupled continuous-time random walk (CTRW)

Continuous-time random walks

A CTRW is a pure jump process; it consists of a sequence of
independent identically distributed (IID) random jumps (events)
ξi separated by IID random waiting times τi , i = 1, . . . ,n, with
i ,n ∈ N,

tn =

n∑

i=1

τi , τi = ti − ti−1, τi ∈ R+,

so that the position X (t) of the random walker at time
t ∈ [tn, tn+1) is

X (t) def
= SN(t)

def
=

N(t)∑

i=1

ξi , ξi ∈ R
d .
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Stochastic solution of the space-time fractional diffusion equation Uncoupled continuous-time random walk (CTRW)

Sample paths of continuous-time random walks
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α = 1.7, β = 0.8
α = 2.0, β = 1.0
α = 1.0, β = 0.9

The scale parameters are linked by γα
x = γβ

t with γt = 0.001.
The jumps become larger with smaller α and larger γx ; the
waiting times become longer with smaller β and larger γt .
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Stochastic solution of the space-time fractional diffusion equation Uncoupled continuous-time random walk (CTRW)

Lévy property of continuous-time random walks

The assumption that jumps and waiting times are IID
means that the joint probability density function (PDF) of
any pair of jumps and waiting times, ϕ(ξi , τi), does not
depend on i .
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Stochastic solution of the space-time fractional diffusion equation Uncoupled continuous-time random walk (CTRW)

Lévy property of continuous-time random walks

The assumption that jumps and waiting times are IID
means that the joint probability density function (PDF) of
any pair of jumps and waiting times, ϕ(ξi , τi), does not
depend on i .

Because its increments are independent and
time-homogeneous (stationary), a CTRW is a
Lévy process .
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Stochastic solution of the space-time fractional diffusion equation Uncoupled continuous-time random walk (CTRW)

Markov or semi-Markov property of uncoupled CTRWs

A CTRW is called uncoupled if the joint PDF λ(ξ, τ)
factorizes into marginal PDFs for jumps λ(ξ) and waiting
times ψ(τ), i.e., λ(ξ, τ) = λ(ξ)ψ(τ).
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Stochastic solution of the space-time fractional diffusion equation Uncoupled continuous-time random walk (CTRW)

Markov or semi-Markov property of uncoupled CTRWs

A CTRW is called uncoupled if the joint PDF λ(ξ, τ)
factorizes into marginal PDFs for jumps λ(ξ) and waiting
times ψ(τ), i.e., λ(ξ, τ) = λ(ξ)ψ(τ).

An uncoupled CTRW is Markovian if and only if the waiting
time distribution is exponential, i.e., ψ(τ) = exp(−τ/γt)/γt .
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Stochastic solution of the space-time fractional diffusion equation Uncoupled continuous-time random walk (CTRW)

Markov or semi-Markov property of uncoupled CTRWs

A CTRW is called uncoupled if the joint PDF λ(ξ, τ)
factorizes into marginal PDFs for jumps λ(ξ) and waiting
times ψ(τ), i.e., λ(ξ, τ) = λ(ξ)ψ(τ).

An uncoupled CTRW is Markovian if and only if the waiting
time distribution is exponential, i.e., ψ(τ) = exp(−τ/γt)/γt .

An uncoupled CTRW belongs to the class of semi-Markov
processes , i.e., for any A ⊂ R

d and t > 0 we have

P(Sn ∈ A, τn ≤ t |S0, . . . ,Sn−1, τ1, . . . , τn−1)

= P(Sn ∈ A, τn ≤ t |Sn−1).

If we fix the position Sn−1 = y of the random walker at time
tn−1, the probability on the right will be independent of n.
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Stochastic solution of the space-time fractional diffusion equation Uncoupled continuous-time random walk (CTRW)

Montroll-Weiss equation

In the generic coupled case, where the law of (ξi , τi) is given by
a joint PDF ϕ(ξ, τ), we can rewrite Sn = Sn−1 + ξn as

P(Sn ∈ A, τn ≤ t |Sn−1) =

∫

A

∫ t

0
ϕ(x − Sn−1, τ) dτdx .

Guido Germano, Philipps-University Marburg CTRWs, fractional calculus and stochastic integrals



Stochastic solution of the space-time fractional diffusion equation Uncoupled continuous-time random walk (CTRW)

Montroll-Weiss equation

In the generic coupled case, where the law of (ξi , τi) is given by
a joint PDF ϕ(ξ, τ), we can rewrite Sn = Sn−1 + ξn as

P(Sn ∈ A, τn ≤ t |Sn−1) =

∫

A

∫ t

0
ϕ(x − Sn−1, τ) dτdx .

Montroll and Weiss (1965) wrote this as an integral equation for
the PDF pX (x , t) of finding the random walker in position x at
time t in terms of the joint PDF ϕ(ξ, τ),

pX (x , t) = δ(x)Ψ(t) +

∫

Rd

∫ t

0
ϕ(ξ, τ)pX (x − ξ, t − τ) dτdξ,

where Ψ(t) = 1 −
∫ t

0 ψ(τ) dτ is the complementary cumulative
distribution function for the waiting times, also called survival
function. This equation can be solved in the Fourier-Laplace
domain, but the inverse transforms are possible only in the
uncoupled case, and yield a series.
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Stochastic solution of the space-time fractional diffusion equation Uncoupled continuous-time random walk (CTRW)

Choice of waiting-time and jump marginal densities

The marginal jump PDF is a symmetric Lévy α-stable function
with order α ∈ (0,2] and scale parameter γx ∈ R+:

λ(ξ) = Lα(ξ).

The marginal waiting-time PDF is the derivative of a
Mittag-Leffler function with order β ∈ (0,1] and scale
parameter γt ∈ R+:

ψ(τ) = − d
dτ

Ψ(τ) = − d
dτ

Eβ(−(τ/γt )
β)

A motivation is the behaviour in the diffusive limit

γx → 0, γt → 0 with γα
x /γ

β
t = D.
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Stochastic solution of the space-time fractional diffusion equation Standard and anomalous diffusion

Standard diffusion equation

The well-known solution of the Cauchy problem

∂

∂t
uX (x , t) = D

∂2

∂x2 uX (x , t)

uX (x ,0+) = δ(x), x ∈ R, t ∈ R+,

is the one-point PDF of the Wiener process X (t) = W (t),

uW (x , t) =
1√

4πDt
e−x2/(4Dt),

i.e. a normal distribution N(µ, σ2) with µ = 0 and σ2 = 2Dt .
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Stochastic solution of the space-time fractional diffusion equation Standard and anomalous diffusion

Properties of diffusion processes

Let u(x , t) be the solution of a second order parabolic partial
differential equation. Its properties are:

1 Conservation of the total quantity:∫ +∞
−∞ u(x , t) dx =

∫ +∞
−∞ u(x ,0+) dx , ∀t ∈ R+.
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Stochastic solution of the space-time fractional diffusion equation Standard and anomalous diffusion

Properties of diffusion processes

Let u(x , t) be the solution of a second order parabolic partial
differential equation. Its properties are:

1 Conservation of the total quantity:∫ +∞
−∞ u(x , t) dx =

∫ +∞
−∞ u(x ,0+) dx , ∀t ∈ R+.

2 Conservation of the non-negativity:
u(x ,0+) ≥ 0,∀x ∈ R ⇒ u(x , t) ≥ 0,∀x ∈ R, ∀t ∈ R+.
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Stochastic solution of the space-time fractional diffusion equation Standard and anomalous diffusion

Properties of diffusion processes

Let u(x , t) be the solution of a second order parabolic partial
differential equation. Its properties are:

1 Conservation of the total quantity:∫ +∞
−∞ u(x , t) dx =

∫ +∞
−∞ u(x ,0+) dx , ∀t ∈ R+.

2 Conservation of the non-negativity:
u(x ,0+) ≥ 0,∀x ∈ R ⇒ u(x , t) ≥ 0,∀x ∈ R, ∀t ∈ R+.

3 Spreading law for t → ∞:
σ2(t) =

∫ +∞
−∞ x2u(x , t) dx ∼ 2Dt ,

or more generally, if there is a drift µ(t) =
∫ +∞
−∞ xu(x , t) dx ,

σ2(t) =
∫ +∞
−∞ x2[u(x , t) − µ(x , t)] dx ∼ 2Dt .
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Stochastic solution of the space-time fractional diffusion equation Standard and anomalous diffusion

Anomalous vs. standard diffusion

Some processes have only properties 1 and 2;
their variance does not exhibit linear growth for t → ∞.
This is called anomalous diffusion.
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Stochastic solution of the space-time fractional diffusion equation Standard and anomalous diffusion

Anomalous vs. standard diffusion

Some processes have only properties 1 and 2;
their variance does not exhibit linear growth for t → ∞.
This is called anomalous diffusion.

In sub-diffusion, the variance grows more slowly than
linearly.
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Stochastic solution of the space-time fractional diffusion equation Standard and anomalous diffusion

Anomalous vs. standard diffusion

Some processes have only properties 1 and 2;
their variance does not exhibit linear growth for t → ∞.
This is called anomalous diffusion.

In sub-diffusion, the variance grows more slowly than
linearly.

In super-diffusion, the variance grows faster than linearly,
or is infinite.
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Stochastic solution of the space-time fractional diffusion equation Standard and anomalous diffusion

Anomalous vs. standard diffusion

Some processes have only properties 1 and 2;
their variance does not exhibit linear growth for t → ∞.
This is called anomalous diffusion.

In sub-diffusion, the variance grows more slowly than
linearly.

In super-diffusion, the variance grows faster than linearly,
or is infinite.

Classes of sub- and super-diffusive processes can be
described by fractional diffusion equations, that generalize
the standard diffusion equation solved by the one-point
PDF of the Wiener process.
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Stochastic solution of the space-time fractional diffusion equation Standard and anomalous diffusion

Space-time fractional diffusion equation

The standard diffusion equation can be generalized to

∂β

∂tβ
uX (x , t) = D

∂α

∂|x |α uX (x , t)

uX (x ,0+) = δ(x), x ∈ R, t ∈ R+.

Riesz space-fractional derivative of order α ∈ (0,2]:

dα

d |x |α f (x) = F−1
k [−|k |α f̂ (k)](x).

Caputo time-fractional derivative of order β ∈ (0,1]:

dβ

dtβ
f (t) = L−1

s [sβ f̃ (s) − sβ−1f (0+)](t).
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Stochastic solution of the space-time fractional diffusion equation Standard and anomalous diffusion

Symmetric Lévy α-stable distribution

The Lévy α-stable function is a generalization of a Gaussian,
the latter being a special case for α = 2, and is best defined as
the inverse Fourier (or cosine) transform of its characteristic
function exp(−|γxk |α):

Lα(ξ) = F−1
k

(
e−|γx k |α

)
(ξ) =

1
π

∫ ∞

0
e−(γx k)α

cos(ξk) dk .

However, there are series expressions for the Lévy function too:

Lα(ξ) = − 1
πξ

∞∑

n=1

Γ(n/α + 1)

n!
sin

(nπ
2

)
(−ξ)n, α ∈ (1,2]

Lα(ξ) = − 1
πξ

∞∑

n=1

Γ(nα+ 1)

n!
sin

(nπα
2

)
(−ξ−α)n, α ∈ (0,1]
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Stochastic solution of the space-time fractional diffusion equation Standard and anomalous diffusion

One-parameter Mittag-Leffler function

Eβ(z) =
∞∑

n=0

zn

Γ(βn + 1)

with

Eβ(−Dtβ) = L−1
s

[
sβ−1

D + sβ

]
(t), t ∈ R+.

For β = 1 the Mittag-Leffler function is a standard exponential:

E1(z) =

∞∑

n=0

zn

Γ(n + 1)
=

∞∑

n=0

zn

n!
= ez .

Other special cases:

E1/2(z) = exp(z2)erfc(−z), E0(z) = (1−z)−1, E2(z) = cosh(
√

z).
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Stochastic solution of the space-time fractional diffusion equation Standard and anomalous diffusion
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exp(-tβ/a)
b t−β

The one-parameter Mittag-Leffler function is halfway between a
stretched exponential (Weibull function) and a power law with
index β:

Eβ

(
−tβ

)
∼

{
exp

(
−tβ/Γ(1 + β)

)
for t → 0+

t−β/Γ(1 − β) for t → ∞ .
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Stochastic solution of the space-time fractional diffusion equation Standard and anomalous diffusion

Empirical evidence of ML waiting times in finance
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Survival functions for BTP futures traded at LIFFE with delivery
date June (left) and September (right) 1997; in both cases
β = 0.96, γt = 13 s. From M. Raberto, E. Scalas, R. Gorenflo,
F. Mainardi, “The waiting time distribution of LIFFE bond
futures”, APFA2, Liège, 13–15/07/2000, arXiv:cond-mat/
0012497; see also same authors, Physica A 287, 468 (2000).
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Stochastic solution of the space-time fractional diffusion equation Standard and anomalous diffusion

Lévy α-stable PDF Lα(ξ/γx )

Chambers, Mallows, Stuck, J. Am. Stat. Assoc. 71, 340 (1976):

ξ = γx

( − log u cosφ
cos((1 − α)φ)

)1−1/α sin(αφ)

cosφ
, φ = π

(
v − 1

2

)
.

For α = 2 this gives Box-Muller: ξ = 2γx
√

− log u sinφ.
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Stochastic solution of the space-time fractional diffusion equation Standard and anomalous diffusion

Lévy α-stable PDF Lα(ξ/γx )

Chambers, Mallows, Stuck, J. Am. Stat. Assoc. 71, 340 (1976):

ξ = γx

( − log u cosφ
cos((1 − α)φ)

)1−1/α sin(αφ)

cosφ
, φ = π

(
v − 1

2

)
.

For α = 2 this gives Box-Muller: ξ = 2γx
√

− log u sinφ.

Mittag-Leffler PDF −dEβ

(
− (τ/γt)

β
)
/dτ

Kozubowski, Rachev, J. Comput. Anal. Appl. 1, 177 (1999):

τ = −γt log u
(

sin(βπ)

tan(βπv)
− cos(βπ)

)1/β

.

For β = 1 this gives the exponential distribution: τ = −γt log u.
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Stochastic solution of the space-time fractional diffusion equation Standard and anomalous diffusion

Solution of the space-time fractional diffusion equation

In the Fourier-Laplace domain

̂̃uX (k , s) =
sβ−1

D|k |α + sβ
.

Because

L−1
s

[
sβ−1

D|k |α + sβ

]
(t) = Eβ(−D|k |αtβ)

in the space-time domain

uX (x , t) = t−β/α Gα,β(xt−β/α),

with the time-independent Green function (κ = ktβ/α)

Gα,β(ξ) = F−1
κ [Eβ(−D|κ|α)] (ξ).

where α ∈ (0,2] and β ∈ (0,1].
Guido Germano, Philipps-University Marburg CTRWs, fractional calculus and stochastic integrals



Stochastic solution of the space-time fractional diffusion equation Standard and anomalous diffusion

Monte Carlo approximation of the Green function

A stochastic solution of the FDE can be obtained from the
diffusive limit of a properly scaled CTRW with a symmetric
Lévy α-stable distribution of jumps and a one-parameter
Mittag-Leffler distribution of waiting times.
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Stochastic solution of the space-time fractional diffusion equation Standard and anomalous diffusion

Monte Carlo approximation of the Green function

A stochastic solution of the FDE can be obtained from the
diffusive limit of a properly scaled CTRW with a symmetric
Lévy α-stable distribution of jumps and a one-parameter
Mittag-Leffler distribution of waiting times.

In the diffusive limit γx and γt vanish with γα
x /γ

β
t = D;

the histogram of the PDF pX (x , t ;α, β, γx , γt) of finding the
CTRW X in position x at time t converges weakly to the
Green function of the FDE uX (x , t ;α, β), weakly because a
singularity at x = 0 is always present in pX (x , t ;α, β, γx , γt)
for any finite value of γx and γt .
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Stochastic solution of the space-time fractional diffusion equation Standard and anomalous diffusion

Monte Carlo approximation of the Green function

A stochastic solution of the FDE can be obtained from the
diffusive limit of a properly scaled CTRW with a symmetric
Lévy α-stable distribution of jumps and a one-parameter
Mittag-Leffler distribution of waiting times.

In the diffusive limit γx and γt vanish with γα
x /γ

β
t = D;

the histogram of the PDF pX (x , t ;α, β, γx , γt) of finding the
CTRW X in position x at time t converges weakly to the
Green function of the FDE uX (x , t ;α, β), weakly because a
singularity at x = 0 is always present in pX (x , t ;α, β, γx , γt)
for any finite value of γx and γt .

For α = 2 and β = 1, one recovers the Green function
uW (x , t) of the standard diffusion equation, i.e. the
one-point PDF of the Wiener process.
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FDE solution uX (x , t) for α = 1.8, β = 0.9.
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CPU time for 100 million samples

Pentium Athlon Opteron Power4+
Gaussian 16 12 11 19
Lévy 73 66 52 95
Exponential 16 11 12 20
Mittag-Leffler 52 44 36 72

CPU time in seconds needed to generate 108 pseudorandom
numbers with different probability distributions on different
architectures: an Intel Pentium IV operating at 2.4 GHz, an
AMD Athlon 64 X2 “Toledo” Dual-Core at 2.2 GHz, an AMD
Opteron 270 at 2.0 GHz, and an IBM Power4+ at 1.7 GHz. On
the first three architectures we used the Intel C++ compiler with
the -O3 optimisation option; on the fourth, we used the IBM xlC
compiler with the -O5 option.
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CPU times for 10 million Monte Carlo runs

α β γt n̄ tCPU/sec
2.0 1.0 0.010 200 337
2.0 1.0 0.001 2000 3362
1.7 0.8 0.010 74 437
1.7 0.8 0.001 470 2895

Average number n̄ of jumps per run and total CPU time tCPU in
seconds for 107 runs with t ∈ [0,2] on an AMD Athlon 64 X2
Dual-Core at 2.2 GHz using the Intel C++ compiler and the -O3
-static optimization options.
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Definition of a stochastic integral driven by a CTRW

The result of a stochastic integral depends on where the
integrand is evaluated with respect to the increment. This can
be expressed with a parameter a ∈ [0,1] that interpolates
linearly between Y (t−i ) = Y (ti−1) and Y (ti):

Ja(t)
def
=

∫ t

0
Y (sa) dX (s) =

N(t)∑

i=1

Y (ta
i )ξi

=

N(t)∑

i=1

[(1 − a)Y (t−i ) + aY (ti)][X (ti ) − X (t−i )].
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Definition of a stochastic integral driven by a CTRW

The previous equation can be rearranged to

Ja(t) = J1/2(t) +

(
a − 1

2

)
[X ,Y ](t),

where

[X ,Y ](t) def
=

N(t)∑

i=1

[X (ti) − X (t−i )][Y (ti ) − Y (t−i )]

is the covariation (or cross variation) of X (s) and Y (s) for
s ∈ [0, t]. When Y (s) = X (s), the covariation [X ,X ](t) is called
quadratic variation and written shorthand [X ](t).
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Itō and Stratonovich integrals

Thus each member of the family of stochastic integrals with
a ∈ [0,1] can be obtained adding a “compensator” to the
Stratonovich integral J1/2(t) = S(t) =

∫
Y (s) ◦ dX (s):

Ja(t) = S(t) +

(
a − 1

2

)
[X ,Y ](t).
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Itō and Stratonovich integrals

Thus each member of the family of stochastic integrals with
a ∈ [0,1] can be obtained adding a “compensator” to the
Stratonovich integral J1/2(t) = S(t) =

∫
Y (s) ◦ dX (s):

Ja(t) = S(t) +

(
a − 1

2

)
[X ,Y ](t).

The Stratonovich integral J1/2(t) = S(t) corresponds to
the symmetric variant of Heaviside’s unit step function,
H(t) = (sgn t+1)/2, and is particularly appealing because
it can be computed according to the usual rules of calculus.
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Itō and Stratonovich integrals

Thus each member of the family of stochastic integrals with
a ∈ [0,1] can be obtained adding a “compensator” to the
Stratonovich integral J1/2(t) = S(t) =

∫
Y (s) ◦ dX (s):

Ja(t) = S(t) +

(
a − 1

2

)
[X ,Y ](t).

The Stratonovich integral J1/2(t) = S(t) corresponds to
the symmetric variant of Heaviside’s unit step function,
H(t) = (sgn t+1)/2, and is particularly appealing because
it can be computed according to the usual rules of calculus.

The Itō integral J0(t) = I(t) =
∫

Y (s−) dX (s)
= S(t) − [X ,Y ](t)/2, corresponding to the left-continuous
variant of Heaviside’s step function, has the advantage of
being a martingale .
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Monte Carlo simulation

The definition of a stochastic integral on a CTRW is exact
without the need for a limit: the number of jumps N(t)
between 0 and t is a random finite integer.
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Monte Carlo simulation

The definition of a stochastic integral on a CTRW is exact
without the need for a limit: the number of jumps N(t)
between 0 and t is a random finite integer.

Stochastic integrals on a CTRW can be easily calculated
by a Monte Carlo simulation.

The following figures show histograms from 1 million Monte
Carlo realizations of X (t), I(t), S(t) and [X ](t), where
t = 1 and Y (t) = X (t) is a symmetric CTRW with jump and
time scale parameters γα

x = γβ
t .
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Relation between X , [X ], S, I

The PDF of S(t) = X 2(t)/2 can be worked out from the PDF of
X (t) by the transformation

pS(s, t) =
∑

i

pX (xi (s), t)

∣∣∣∣
dxi(s)

ds

∣∣∣∣ ,

where the sum is over all xi that yield the same s. For s = x2/2
this is x1,2 = ±

√
2s and thus

pS(s, t) = 2pX (
√

2s, t)/
√

2s, s > 0.
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Relation between X , [X ], S, I

The PDF of S(t) = X 2(t)/2 can be worked out from the PDF of
X (t) by the transformation

pS(s, t) =
∑

i

pX (xi (s), t)

∣∣∣∣
dxi(s)

ds

∣∣∣∣ ,

where the sum is over all xi that yield the same s. For s = x2/2
this is x1,2 = ±

√
2s and thus

pS(s, t) = 2pX (
√

2s, t)/
√

2s, s > 0.

As seen before I(t) = S(t) − [X ](t)/2; if the dependence of S
and [X ] is small, the PDF of I can be approximated by the
convolution of the PDF of S with the PDF of [X ] mirrored
around zero and scaled to half its width:

pI(x , t) ≃ 2
∫ +∞

−∞
pS(x + 2x ′, t)p[X ](−2x ′, t) dx ′.
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Quadratic variation of the solution of the FDE

p̂[X ](k , t) =

∞∑

n=0

P(n, t)p̂n
ξ2(k)

= Eβ[−(t/γt )
β(1 − p̂ξ2(k))].

As the jumps ξ follow a Lévy α-stable distribution, for
x → ∞, pξ2(x) ∼ x−α/2−1, and the sum of ξ2

i converges to the
positive stable distribution with index α/2, whose characteristic
function is

L̂+
α/2(k) = exp

(
−(iγxk)α/2

)
.

Inserting this distribution in the previous equation, the
continuous limit yields the following characteristic function for
the quadratic variation:

û[X ](k , t) = Eβ[−Dtβ(−ik)α/2].
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Quadratic variation of the solution of the FDE

For α = 2, inverting the Fourier transform, one gets

u[X ](x , t) = t−β Mβ(xt−β),

where Mβ(u) is the Mainardi-Wright function

Mβ(u) = F−1
κ [Eβ(iDκ)] (u).
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Related ongoing and future projects

Spectral densities of free stable random variables in the
Wishart-Lévy ensemble: M. Politi, E. Scalas, D. Fulger,
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Outlook Other projects

Related ongoing and future projects

Spectral densities of free stable random variables in the
Wishart-Lévy ensemble: M. Politi, E. Scalas, D. Fulger,
G. Germano, Eur. Phys. J. B, forthcoming (2009).
Empirical analysis of the Mercato Interbancario elettronico
dei Depositi (e-MID), i.e. the Italian interbank market:
M. Politi, G. Iori, G. Germano, preprint (2009).
Spectral densities of covariance matrices from
asynchronous high-frequency financial time series
computed with previous tick interpolation or with the
Fourier method proposed by Malliavin and Mancino.
Estimation of the CTRW parameters α, β, γx , γt : there is
a huge corpus of literature on different methods, but no
open source code, just the binary STABLE by J. Nolan.
Short term or short to maturity option pricing.
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open source code, just the binary STABLE by J. Nolan.
Short term or short to maturity option pricing.
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Outlook Statistical inference

The art of fitting financial time series with Lévy stable
distributions

The binary program STABLE by J. Nolan, distributed on his web
site www.robustanalysis.com, implements the following
methods yielding αx , βx , δx , γx :

maximum likelihood;
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Outlook Statistical inference

The art of fitting financial time series with Lévy stable
distributions

The binary program STABLE by J. Nolan, distributed on his web
site www.robustanalysis.com, implements the following
methods yielding αx , βx , δx , γx :

maximum likelihood;

tabulated quantiles;

For goodness-of-fit tests on the quality of these estimates, see
E. Scalas, K. Kim, J. Korean Phys. Soc. 50, 105 (2007).
They use Kolmogorov-Smirnov and χ2, and complain that an
Anderson-Darling test for α-stable distributions is not available.
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Outlook Statistical inference

The art of fitting financial time series with Lévy stable
distributions

The binary program STABLE by J. Nolan, distributed on his web
site www.robustanalysis.com, implements the following
methods yielding αx , βx , δx , γx :

maximum likelihood;

tabulated quantiles;

regression on the sample’s characteristic function.

For goodness-of-fit tests on the quality of these estimates, see
E. Scalas, K. Kim, J. Korean Phys. Soc. 50, 105 (2007).
They use Kolmogorov-Smirnov and χ2, and complain that an
Anderson-Darling test for α-stable distributions is not available.
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Outlook Autoregressive processes (GARCH-ACD)

Alternatives to CTRWs: autoregressive processes

According to UHF-GARCH (Engle 2000), the volatility σi of
event i follows a GARCH(1,1)-ACD(1,1) process; it depends on
the previous tick ξi−1, its own previous value σi−1, and the
present duration τi , whose scale parameter θi depends in turn
on the previous values τi−1 and θi−1:

σ2
i = ω + αξ2

i−1 + βσ2
i−1 + γτ−1

i

ξi = σizi , zi ∼ N(0,1) IID

θi = ᾱ0 + ᾱ1τi−1 + β̄1θi−1

τi = θi z̄i , z̄i ∼ Exp(1) IID

R. Engle, “The econometrics of ultra-high-frequency data”,
Econometrica 68, 1–22 (2000).
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Outlook Autoregressive processes (GARCH-ACD)

GARCH(p,q)-ACD(p,q)

GARCH(p,q): Generalized AutoRegressive Conditional
Heteroskedastic process (T. Bollerslev 1986; ARCH if p = 0,
R. Engle 1982)

σ2
i = α0 +

q∑

j=1

αjξ
2
i−j +

p∑

j=1

βjσ
2
i−j

ξi = σizi , zi ∼ N(0,1) iid

ACD(p,q): Autoregressive Conditional Duration (R. Engle and
J. Russell, 1998)

θi = ᾱ0 +

q∑

j=1

ᾱjτi−j +

p∑

j=1

β̄jθi−j

τi = θi z̄i , z̄i ∼ Exp(1) iid
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Summary

Summary

We presented a numerical method for the Monte Carlo
simulation of uncoupled continuous-time random walks
with a Lévy α-stable distribution of jumps in space and a
Mittag-Leffler distribution of waiting times.
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with a Lévy α-stable distribution of jumps in space and a
Mittag-Leffler distribution of waiting times.

We used this method to obtain a stochastic solution of the
space-time fractional diffusion equation that is almost as
easy and fast to compute as for the standard diffusion
equation.
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Mittag-Leffler distribution of waiting times.

We used this method to obtain a stochastic solution of the
space-time fractional diffusion equation that is almost as
easy and fast to compute as for the standard diffusion
equation.

We defined a class of class of stochastic integrals driven
by a CTRW, that includes the Itō and Stratonovich cases.
While the latter can be computed by the usual rules of
calculus, the former is a martingale.
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Summary

Summary

We presented a numerical method for the Monte Carlo
simulation of uncoupled continuous-time random walks
with a Lévy α-stable distribution of jumps in space and a
Mittag-Leffler distribution of waiting times.

We used this method to obtain a stochastic solution of the
space-time fractional diffusion equation that is almost as
easy and fast to compute as for the standard diffusion
equation.

We defined a class of class of stochastic integrals driven
by a CTRW, that includes the Itō and Stratonovich cases.
While the latter can be computed by the usual rules of
calculus, the former is a martingale.
We showed Monte Carlo calculations of a CTRW, its
quadratic variation, its Stratonovich integral and its Itō
integral, and highlighted the relation between them.
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