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Calculating Option Prices and Deltas under Lévy Models
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Motivation

introduction of the concept of implied Lévy volatility (extension of
Black-Scholes implied volatility)

Lévy implied time volatility
Lévy implied space volatility

Study of the shape of implied Lévy volatilities

Model performance ⇒ delta-hedging strategies (periodical
rebalancing)

qualitatively (Greeks)
historical time-series of the S&P500
historical option prices of the Dow Jones
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Outline
Motivation

From the Black Scholes implied volatility to the Lévy implied volatility
Calculating Option Prices and Deltas under Lévy Models
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The Black-Scholes model
The Lévy models

The Black-Scholes model

Diffusion part of the log-return process: modelled by geometrical
Brownian motion (Wt)

St = S0 exp((r − q − σ2/2)t + σWt), t ≥ 0.

Definition

The Black-Scholes implied volatility is the volatility σ = σ(K ,T ) such
that the model and market option prices coincide.

σ = σ(K ,T ) ≡ volatility surface ⇒ σ needs to be adjusted
separately for each individual contract

Historical stock returns: skewed and fatter tails than those of the
normal distribution

Development of a similar concept but now under a Lévy framework
⇒based on more empirically founded distributions
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The Black-Scholes model
The Lévy models

The Lévy space model

Lévy space stock price model:

St = S0 exp((r − q + ω)t + σXt), t ≥ 0,

where E[X1] = 0, Var[X1] = 1 and

ω = − log(φ(−σi))

where φ ≡ characteristic function of X1: φ(u) = E [exp(iuX1)]
Note: E[Xt ] = 0 and Var[Xt ] = t ⇒ Var[σXt ] = σ2t

Definition

The volatility parameter σ = σ(K ,T ) needed to match the model price
with a given market price is called the implied Lévy space volatility.
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The Black-Scholes model
The Lévy models

The Lévy time model

Lévy time stock price model:

St = S0 exp((r − q + ωσ2)t + Xσ2t), t ≥ 0,

where E[X1] = 0, Var[X1] = 1 and

ω = − log(φ(−i))

Note: Var[Xσ2t ] = σ2t

Definition

The volatility parameter σ = σ(K ,T ) needed to match the model price
with the market price is called the implied Lévy time volatility.
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Pricing Vanillas under Lévy Models

Carr-Madan formula in combination with FFT gives a very fast
evaluation of vanillas:

C (K ,T ) =
exp(−α log(K ))

π

∫ +∞

0

exp(−iv log(K ))%(v)dv ,

where

%(v) =
exp(−rT )E [exp(i(v − (α + 1)i) log(ST ))]

α2 + α− v 2 + i(2α + 1)v
.

Only dependence of the Carr-Madan formula on the model: risk
neutral (i.e. under Q) characteristic function of the log-price process
at maturity T :

φ(u; T ) = EQ [exp(iu log(ST ))].

This characteristic function is available in closed-form for many
popular Lévy processes.
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Greeks under Lévy models

Delta and many others Greeks can be calculated in a similar fashion:

∆ =
∂C (K ,T )

∂S0
=

exp(−α log(K ))

π

∫ +∞

0

exp(−iv log(K ))%∆ dv

where

%∆(v) =
exp(−rT )φ(v − (α + 1)i; T

S0(α + iv)
.
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Option prices and Greeks computation

COS method rests on Fourier-cosine series expansions and can be
applied for any model if the characteristic function ψ(u; T ) is
available where ψ is the characteristic function of the log-moneyness
at maturity

ψ(u; T ) = EQ

[
exp

(
iu log

(
ST

K

))]
(see Fang, F. and Oosterlee, C.W. (2008) A novel pricing method
for European Options based on Fourier-cosine Series Expansions.
SIAM Journal on Scientific Computing 31-2, 826-848. )
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NIG

Characteristic function of the normal inverse Gaussian distribution NIG(α, β, δ, µ) with
parameters α > 0, β ∈]− α, α[, δ > 0 and µ ∈ R:

φNIG(u;α, β, δ, µ) = exp
(

iuµ− δ
(√

α2 − (β + iu)2 −
√
α2 − β2

))
, u ∈ R.

If the parameter β is equal to zero the distribution is symmetric around µ whereas negative
and positive values of β result in negative and positive skewness

NIG(α, β, δ, µ) NIG(α, 0, δ, µ)

mean µ+ δβ√
α2−β2

µ

variance α2δ
(
α2 − β2

)−3/2 δ
α

skewness 3βα−1δ−1/2
(
α2 − β2

)−1/4
0

kurtosis 3
(

1 + α2+4β2

δα2
√
α2−β2

)
3
(
1 + 1

αδ

)
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Meixner

Characteristic function of the Meixner distribution Meixner(α, β, δ, µ) with parameters
α > 0, β ∈]− π, π[, δ > 0 and µ ∈ R:

φMeixner(u;α, β, δ, µ) = exp
(

iuµ
) cos

(
β
2

)
cosh

(
αu−iβ

2

)
2δ

, u ∈ R.

A parameter β equal to zero indicates a symmetric distribution around µ whereas negative
and positive values of β lead to negative and positive skewness

Meixner(α, β, δ, µ) Meixner(α, 0, δ, µ)

mean µ+ αδ tan
(
β
2

)
µ

variance α2δ

2 cos2( β
2 )

α2δ
2

skewness sin
(
β
2

)√
2
δ 0

kurtosis 3 + 2−cos(β)
δ 3 + 1

δ
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Calculating Option Prices and Deltas under Lévy Models
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Lévy waves

we compute the implied Lévy space and time volatility for the NIG
Lévy model for various Black-Scholes implied volatility shape and
vice-versa (T = 1, r = q = 0,S0 = 100).
The symmetric cases:
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Figure: Implied volatility for the symmetric space (left) and time (right)
NIG models.
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Lévy Waves

Some asymmetric cases:
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Figure: Implied volatility for inverse square root BS volatility for
asymmetric asymmetric NIG space models (κ = −0.625) (left) and
asymmetric NIG time models (κ = −0.375) (right).
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What is flat here is not flat there

A flat Black-Scholes implied volatility curve corresponds to a
reversed smiling Lévy implied volatility curve under each symmetric
NIG model.
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Figure: Implied space (left) and time (right) volatility for a flat BS
volatility for some symmetric NIG distributions.
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What is flat here is not flat there

A flat NIG implied volatility curve corresponds to a smiling implied
Black-Scholes volatility curve.
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Figure: Implied BS volatility for a flat space (left) and time (right)
volatility for some symmetric NIG distributions.
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Vanna

Vanna =
∂2C

∂S0∂σ
=
∂∆

∂σ
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Figure: Delta (left) and Vanna (right) as a function of the volatility for a
maturity of 1 month (ATM option).

⇒ The Vanna has roughly the same shape under each model and its smoothness increases when

the kurtosis decreases.
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Charm

Charm =
∂∆

∂T
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Figure: Delta (left) and Charm (right) as a function of the option maturity for
a volatility of 0.2 (ATM option)

⇒ The Lévy Charm exhibits the same trend as the Black-Scholes Charm and the lower the

kurtosis, the higher the similarity between the Lévy and the Black-Scholes Charm.
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Delta Hedging at Implied Lévy Volatility versus at Implied Black-Scholes Volatility
The Historical Optimal Implied Lévy Volatility
P&L

Hedging error

Each day, we delta-hedge an ATM one-month Call option for one
single day. The next day, we start with a new ATM option with
again one whole month as a lifetime.

Hedging indicator:

HE(t0+∆t) = Ct0+∆t(K ,T−∆t)−∆t0 St0+∆t+(∆t0 St0 − Ct0 (K ,T )) er∆t .

By considering an implied Lévy model different from the
Black-Scholes model, different values of the free parameters will lead
to different distributions of the hedging error (HE).

Optimal free parameter set ~p∗ = {p∗1 , . . . p∗n}:

abs(µHE( ~p∗)) + σHE( ~p∗) ≤ abs(µHE(~p)) + σHE(~p).

Data set: VIX and S&P500 from the 2nd January 1990 to the 9th
October 2008.
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Evolution of the implied volatility

Evolution of the implied volatility through time:
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Figure: Evolution of the implied volatility for the NIG (upper) and Meixner
(lower) volatility models

The implied Lévy space and time volatility moves in line with the implied Black-Scholes volatility.
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Delta Hedging at Implied Lévy Volatility versus at Implied Black-Scholes Volatility
The Historical Optimal Implied Lévy Volatility
P&L

Evolution of the Delta

Evolution of the Delta through time:
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Figure: Evolution of the Delta for the NIG (upper) and Meixner (lower)
volatility models

The higher slope of the Vanna curve under the Lévy models explains the higher volatility of the
Lévy Deltas through time in comparison with the Black-Scholes Deltas.
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Delta Hedging at Implied Lévy Volatility versus at Implied Black-Scholes Volatility
The Historical Optimal Implied Lévy Volatility
P&L

The Historical Optimal Implied NIG Volatility
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Figure: Variance (left) and functional (right) of the hedging error distribution
for the NIG volatility models.
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Delta Hedging at Implied Lévy Volatility versus at Implied Black-Scholes Volatility
The Historical Optimal Implied Lévy Volatility
P&L

The Historical Optimal Implied Meixner Volatility
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Figure: Variance (left) and functional (right) of the hedging error distribution
for the Meixner volatility models.

The historical optimal model (NIG time model with α = 1.25) leads to a reduction of the HE
variance and functional from around 3 to less than 1.5 and from around 1.85 to 1.3, respectively.
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Delta Hedging at Implied Lévy Volatility versus at Implied Black-Scholes Volatility
The Historical Optimal Implied Lévy Volatility
P&L

Dow Jones Profit and loss

Delta-hedging strategy:

At time t0: sell option + buy ∆t0 stocks
At time 0 < ti < T : buy ∆ti −∆ti−1 stocks (rebalancing)
At time T : close the option and stock positions

balance at time ti ≡ amount spent until time ti to build the
hedging portfolio:

Balance(t0) = Ct0 (K ,T )−∆t0 St0

and

Balance(ti ) = Balance(ti−1)er∆t + CF(ti ), 0 < ti ≥ T

where CF ≡ rebalance cash flow:

CF(ti ) = −
(
∆ti −∆ti−1

)
Sti
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Lévy Process Examples
Skew adjustment
Different Greeks

Improving the Delta Hedge

Delta Hedging at Implied Lévy Volatility versus at Implied Black-Scholes Volatility
The Historical Optimal Implied Lévy Volatility
P&L

Dow Jones Profit and loss (cont.)

Mark to Market at time ti ≡ amount spent until time ti to build the
hedging portfolio after the closing of the option and stock positions:

MtM(ti ) = Balance(ti ) + Cti (K ,T − ti )−∆tiSti

P&L = −MtM(T )

Data : 491 liquid Put and Call option prices (different K and T ) on
the Dow Jones

2 cases:

sell each option once
sell each option for an amount of 1$

? Model which minimises the P&L variance
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Figure: Variance (left) and weighted variance (right) of the P&L for the NIG
volatility models.
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Figure: Variance (left) and weighted variance (right) of the P&L for the
Meixner volatility models.
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Figure: Variance (left) and weighted variance (right) of the P&L for the
standard VG model volatility model.
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Lévy Process Examples
Skew adjustment
Different Greeks

Improving the Delta Hedge
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Conclusion

implied Lévy space and time models obtained by replacing the
normal distribution of the Black-Scholes model by a more suitable
Lévy distribution

Switching from the BS world to the Lévy world ⇒ additional dof
which can be used to

minimize the curvature of the volatility surface ⇒ any smiling or
smirking BS volatility curve can be transformed into a flatter Lévy
volatility curve under a well chosen parameter set ⇒ implied Lévy
models could lead to flatter volatility curves for more practical
datasets
minimise the absolute mean and the square root of the variance of
the hedging error ⇒ using the historical optimal parameters leads to
a significant reduction of the hedging error
minimise the variance of the P&L
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