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1. Introduction

◮ Stochastic processes with jumps are becoming increasingly popular,
especially in financial mathematics.

◮ Among jump processes Lévy processes constitute a fundamental class,
which is mainly due to their analytical tractability and their flexibility.
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Introduction [2]

In many instances in finance and insurance one has to do with multiple sources
of risk and it is of vital importance to model the dependence between these
risks.

Examples:

◮ risk taxonomy for financial conglomerates (market, credit, insurance,
operational, liquidity, concentration)

◮ asset classes (stocks, bonds, real estate, . . . ; between and within)

◮ credit risk (between sectors, intra-sectorial)

◮ etc.

Multivariate probabilistic and statistical modeling is much more complicated
than univariate modeling because the number of degrees of freedom ramifies
rapidly with dimension.
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Introduction [3]

Quoting the CEO of Van Lanschot while explaining the main causes of the
current credit crunch in The Dutch House of Representatives:

“Over the past few years, we have invested tremendously in improving our risk
management systems, but our models appeared to be unable to appropriately
capture the interdependences between risks.” (NRC Handelsblad, November
27, 2008)
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Dependence in multi-dimensional Lévy processes

◮ The dependence among components of a multi-dimensional Lévy process
is characterized by:

1. A Gaussian copula for the continuous Brownian part; and
2. A Lévy copula for the discontinuous jump part.

◮ Relatively little is known about the corresponding inference problem for
multi-dimensional Lévy processes.
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The problem and its relevance

◮ I would like to enable statistical inference on the dependence function
within a multi-dimensional Lévy process.

◮ It would allow a scale-free measurement of dependence.

◮ It would also reveal important information for the construction of
multi-dimensional Lévy processes.
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Contribution of the paper

◮ This paper proposes two non-parametric estimators for the Lévy copula.

◮ Under natural conditions I prove (weak and strong) consistency and
asymptotic normality of the estimators.

◮ A test for independent jumps is also constructed.

◮ Finally, the estimators and test are implemented on Monte Carlo
simulations and on asset returns data.

◮ The write-up is for the bivariate case but extensions to a
multi-dimensional (n > 2) setting are feasible.
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2. Preliminaries for Lévy Processes

◮ A bivariate stochastic process initialized at X0 = 0 is a bivariate Lévy
process if it has stationary and independent increments and is continuous
in probability.

◮ The law of the bivariate Lévy process (Xt){t≥0} is uniquely determined by
the law of Xt for some t > 0.

◮ The characteristic function of Xt is given by the Lévy-Khintchine formula.
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Preliminaries for Lévy Processes [2]

◮ The triplet (γ,A, ν), called the characteristic triplet of the Lévy process,
completely describes the probabilistic behavior of the process; γ is the drift
rate, A the covariance matrix of the continuous Brownian component and
ν the Lévy measure of the pure jump component.

◮ Sample paths of the process are continuous if and only if ν ≡ 0.

◮ Note that ν(R2) may be finite or infinite and hence that ν is not a
probability measure.
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Preliminaries for Lévy Copulas

◮ Rather than modeling the dependence structure implicit in the bivariate
law of Xt for some t > 0 by means of a (time-dependent) regular copula
Ct , the Lévy copula models the dependence structure implicit in the
(time-invariant) Lévy measure ν.

◮ Jointly with the correlation coefficient of the continuous Brownian
component, the Lévy copula completely characterizes the dependence
structure among the elements of a bivariate Lévy process.
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Preliminaries for Lévy Copulas [2]

The function F : (−∞,+∞]2 → (−∞, +∞] is a Lévy copula if:

i. F is 2-increasing:

F (v1, v2) − F (v1, u2) − F (u1, v2) + F (u1, u2) ≥ 0, (1)

for all u1, u2, v1, v2 satisfying u1 ≤ v1, u2 ≤ v2.

ii. F is grounded: F (u1, 0) = F (0, u2) = 0.

iii. F (u1, u2) < +∞ whenever (u1, u2) 6= (+∞,+∞).

iv. Fj(u) = u, j = 1, 2, u ∈ R. Here, F1(u) := F (u,+∞) − lima→−∞ F (u, a)
and F2 is obtained from this by symmetry.
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Preliminaries for Lévy Copulas [3]

There exists an analogue of Sklar’s Theorem: Let X be a bivariate Lévy
process. Then ∃F satisfying i.-iv. above such that

U(x1, x2) = F (U1(x1), U2(x2)), (x1, x2) ∈ R
2\{0}, (2)

where the so-called tail integrals U : R
2\{0} → R, Uj : R\{0} → R, j = 1, 2,

are defined by

U(x1, x2) :=
2Y

j=1

sgn(xj)ν

 
2Y

l=1

I(xl )

!
,

Uj(xj) := sgn(xj)νj (I(xj)) ,

with

I(x) :=

�
(x , +∞), x ≥ 0;
(−∞, x], x < 0;

and where ν and νj are the Lévy and marginal Lévy measure of X, respectively.
The Lévy copula is unique on

Q2
j=1 Ran Uj .
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Preliminaries for Lévy Copulas [4]

Analogue of Sklar’s Theorem [Continued]: Conversely, if F is a bivariate Lévy
copula and U1, U2 are the tail integrals of two univariate Lévy processes then
there exists a bivariate Lévy process X with tail integral (2) and marginal tail
integrals U1, U2. The Lévy measure of X is uniquely determined by F and
U1, U2.
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Statistical setting

The setting of our statistical problem is as follows:

◮ A 2-dimensional Lévy process X is observed at i = 1, . . . , n discrete
instants separated by ∆n units of time.

◮ Since X0 = 0 this amounts to observing the n increments Xi∆n − X(i−1)∆n
.

◮ So when ∆n = ∆ is fixed, we observe n i.i.d. random vectors distributed
as X∆.
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Intuition

◮ The non-parametric estimators are inspired by the fact that the Lévy
copula F : (−∞, +∞]2 → (−∞,+∞] of a 2-dimensional Lévy process X

can be obtained as the following limit, involving the regular copula Ct

corresponding to the joint distribution of Xt at a given time t:

F (u1, u2) = lim
t→0

1

t
C

(sgn u1,sgn u2)
t (t|u1|, t|u2|)

2Y
j=1

sgn uj , (3)

(u1, u2) ∈
2Y

j=1

Ran Uj ,

with C
(α1,α2)
t a survival copula of (α1X1,t , α2X2,t) and

sgn uj :=

�
1, uj ≥ 0;
−1, uj < 0.

◮ From (3) it becomes apparent that the Lévy copula is determined only by
the behavior of Ct in the corners of its domain [0, 1]2.
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Intuition [2]

◮ The first estimator then, is based on (3), treating the limit relation as an
approximate equality for t small enough:

F̂ (u1, u2) :=
1

k

nX
i=1

18>><>>:∀j=1,2:

8>><>>: R
Xj

i∆n
> n + 1 − kuj , sgn uj ≥ 0;

R
Xj

i∆n
≤ k |uj |, sgn uj < 0;

9>>=>>; 2Y
j=1

sgn uj ,

(4)

where R
Xj

i∆n
is the rank of Xj,i∆n − Xj,(i−1)∆n

among
{Xj,i∆n − Xj,(i−1)∆n

, i = 1, . . . , n}, and where k = kn is an intermediate
sequence of integers; that is, k → +∞, k/n → 0, as n → +∞.

◮ The estimator (4) seems natural since it is essentially the empirical tail
(survival) copula at a sampling interval ∆n; it can be viewed as a tail
version of Deheuvels’ (1979) empirical copula computed under a finer and
finer microscope.

◮ However, the mathematical details of the derivations are delicate.
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Notation

Before stating the main results we need to introduce some notation:

◮ Let Λ be a non-negative measure on (−∞, +∞]2 \ {(+∞, +∞)} induced
by F via

Λ((u1 ∧ 0, u1 ∨ 0] × (u2 ∧ 0, u2 ∨ 0]) = F (u1, u2)

2Y
j=1

sgn uj ,

for all (u1, u2) ∈ (−∞,+∞]2 \ {(+∞, +∞)}.
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Notation [2]

◮ Furthermore, let WΛ be a mean-zero Wiener process on
(−∞,+∞]2 \ {(+∞, +∞)} with covariance function

E[WΛ(C)WΛ(C̃)] = Λ(C ∩ C̃),

for Borel sets C and C̃ .

◮ Define, for (u1, u2) ∈ (−∞, +∞]2 \ {(+∞, +∞)},

W (u1, u2) := WΛ((u1 ∧ 0, u1 ∨ 0] × (u2 ∧ 0, u2 ∨ 0]),

and for u1, u2 ∈ (−∞,+∞) let its marginals W1 and W2 be defined by

W1(u1) := WΛ((u1 ∧ 0, u1 ∨ 0] × (0, +∞]) + WΛ((u1 ∧ 0, u1 ∨ 0] × (−∞, 0));

W2(u2) := WΛ((0, +∞] × (u2 ∧ 0, u2 ∨ 0]) + WΛ((−∞, 0) × (u2 ∧ 0, u2 ∨ 0]).
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Asymptotics

◮ Let k = kn ≤ n be an intermediate sequence of integers such that

k → +∞ and k/n → 0 as n → +∞. (5)

◮ Furthermore, let the sequence ∆ = ∆n satisfy for some α ≥ 1,

k

n
− ∆ = o

��
k

n

�α�
as n → +∞. (6)
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Theorem (Consistency)

1. Weak Consistency: Suppose that (5) and (6) hold. Then, as n → +∞,

F̂ (u1, u2)
P→ F (u1, u2), (u1, u2) ∈

2Y
j=1

Ran Uj . (7)

2. Strong Consistency: Suppose in addition that, as n → +∞,
k/ log log n → +∞. Then, as n → +∞,

F̂ (u1, u2)
a.s.→ F (u1, u2), (u1, u2) ∈

2Y
j=1

Ran Uj . (8)
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Theorem (Asymptotic Normality)

Assumption (CD) F (u1, u2) has continuous first partial derivatives

F 1(u1, u2) :=
∂F (u1, u2)

∂u1
; F 2(u1, u2) :=

∂F (u1, u2)

∂u2
. (9)

Assumption (SO) Second order condition: For some α, c > 0, as t → 0,

1

t
C

(sgn u1,sgn u2)
t (t|u1|, t|u2|)

2Y
j=1

sgn uj − F (u1, u2) = O(tα), (10)

holds uniformly on the set(
u2

1 + u2
2 = c, (u1, u2) ∈

2Y
j=1

Ran Uj

)
.

In addition, suppose that (5) holds, and that, as n → +∞,
k

n
− ∆ = O

��
k

n

�1+α
�
, and k = o(n2α/(1+2α)).
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Theorem (Asymptotic Normality [Continued] )

Then, as n → +∞,

√
k(F̂ (u1, u2) − F (u1, u2))

d→ B(u1, u2), (u1, u2) ∈
2Y

j=1

Ran Uj , (11)

where

B(u1, u2) :=W (u1, u2)

2Y
j=1

sgn uj (12)

− F 1(u1, u2)W1(u1) sgn u1 − F 2(u1, u2)W2(u2) sgn u2.
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Discussion

◮ Strengths: natural and simple.

◮ A drawback of the estimator (4) is that it is not a Lévy copula itself. In
particular, it does not satisfy a positive homogeneity property.

◮ To remedy this problem I will also study an estimator based on the
so-called Lévy spectral measure introduced in this paper. This second
estimator does belong to the class of Lévy copulas.

◮ Having at our disposal an estimator that takes values in the class of Lévy
copulas is important for several reasons: it makes simulation from
estimated multi-dimensional Lévy processes feasible and is likely to exhibit
superior efficiency.
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Discussion [2]

◮ Consider the related statistical problem of testing the simple null
hypothesis H0 : F = F0 for a given Lévy copula F0, against the alternative
Ha : F 6= F0.

◮ Adequately chosen functionals (test statistics) of the empirical process

νn(u1, u2) :=
√

kn

�
F̂ (u1, u2) − F0(u1, u2)

�
, (13)

can be used for this purpose.

◮ While (13) can serve as a basis for testing a simple null hypothesis, it is
not an appropriate basis for testing for independent jump components.
This is so because under the null of independent jump components its
limit process is degenerate.

◮ I therefore propose a different basis to test for independence, and derive its
asymptotic properties.
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4. Independence Test

◮ A bivariate Lévy process has independent jump components if and only if
its Lévy measure is supported on the coordinate axes.

◮ This entails that the corresponding Lévy copula is not unique.

◮ It entails furthermore that the limit process B is degenerate for any such
Lévy copula.

◮ Therefore the empirical process νn defined in (13) is not an appropriate
basis for constructing tests for independence.
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Theorem (Asymptotic Normality under Independence)

Suppose that, as n → +∞, k/
√

n → +∞, and for some α > 0,
k

n
− ∆ = O

��
k

n

�2+α
�
, and k = o

�
n

1+2α

2+2α

�
. Then, under the null hypothesis of

independent jump components, as n → +∞,

k√
n

�n

k
F̂ (u1, u2) − u1u2

�
d→ W⊥(u1, u2)

2Y
j=1

sgn uj , (14)

(u1, u2) ∈
2Y

j=1

Ran Uj ,

where the mean-zero Wiener process W⊥ on (−∞, +∞]2 \ {(+∞, +∞)} has
covariance function

E[W⊥(u1, u2)W
⊥(v1, v2)] = |u1| ∧ |v1||u2| ∧ |v2|1{∀j=1,2, sgn uj sgn vj =1}, (15)

for (u1, u2), (v1, v2) ∈ (−∞, +∞]2 \ {(+∞,+∞)}.
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Corollary (Asymptotic Distribution of Independence Test Statistic)

Suppose that the conditions of the previous Theorem hold. Then, under the
null hypothesis of independent jump components, as n → +∞,Z

(u1,u2)∈[−c,c]∩
Q2

j=1
Ran Uj

k2

n

�n

k
F̂ (u1, u2) − u1u2

�2

du1du2 (16)

d→
Z

(u1,u2)∈[−c,c]∩
Q2

j=1
Ran Uj

W⊥(u1, u2)
2du1du2,

for an arbitrary c > 0.
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Discussion

◮ A bivariate Lévy process has independent jump components if and only if
the marginal processes never jump at the same time. This means that the
independence test may also be regarded as a test for (non-)co-jumping.

◮ Test statistics are very easy to compute.
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Outline

1. Introduction
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5. Lévy Spectral Measure

Theorem (Lévy Spectral Measure)

Let X be a 2-dimensional Lévy process with Lévy copula F . Then there exists a
finite measure µF on [0, +∞]2 \ {(0, 0)} such that

1

t
P [t(Z1,t , Z2,t) ∈ ·] v→ µF (·), t → 0, (17)

with

Zj,t :=
1

1 − Gj,t(Xj,t)
, j = 1, 2,

and where µF and F are connected through

F (u1, u2) = µF

��
(z1, z2) ∈ [0, +∞]2 : ∀j = 1, 2 zj ≥ 1

uj

��
, (18)

with (u1, u2) ∈ [0, +∞]2 \ {(+∞, +∞)}.
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Theorem (Lévy Spectral Measure [Continued])

Defining

ΦF (·) := µF

�
{(z1, z2) ∈ [0, +∞)2 : r ≥ 1, θ ∈ ·}

�
(19)

with the polar coordinates

r := ‖(z1, z2)‖p, ∈ (0, +∞);

θ := arctan(z1/z2), ∈ [0, π/2];

(17) implies that

1

t
P

�
‖(Z1,t , Z2,t)‖p ≥ 1

t
, arctan(Z1,t/Z2,t) ∈ ·

�
v→ Φp,F (·), t → 0. (20)

We coin µF and Φp,F the Lévy exponent measure and the Lévy spectral
measure (corresponding to the Lp-norm), respectively.
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Results

◮ I propose a non-parametric estimator for ΦF that is essentially a weighted
version of its empirical counterpart.

◮ Consistency (relatively easy) and asymptotic normality (delicate!) results
are established.
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6. A Monte Carlo Study

◮ Two prominent examples of (bivariate) Lévy processes are
1. the bivariate (Poisson) jump diffusion; and
2. the bivariate Cauchy process with Brownian noise.

◮ We adopt a Clayton Lévy copula to specify the dependence in the bivariate
(Poisson) jump diffusion case.
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Figure: Scatter plots for samples of n = 1000 observations of the bivariate Cauchy
process (top left) and a bivariate (Poisson) jump diffusion with exponential jump
sizes and Clayton Lévy copula.
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Figure: Empirical Lévy copula bivariate Cauchy with Brownian noise.
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Figure: Empirical Lévy spectral measure bivariate Cauchy with Brownian noise
(p = 2).

0.
0

0.
5

1.
0

1.
5

2.
0

theta

P
hi

(t
he

ta
)

0 pi/8 pi/4 3*pi/8 pi/2

k = 30
k = 50
k = 100

0.
0

0.
5

1.
0

1.
5

2.
0

theta

P
hi

(t
he

ta
)

0 pi/8 pi/4 3*pi/8 pi/2

k = 30
k = 50
k = 100

0.
0

0.
5

1.
0

1.
5

2.
0

theta

P
hi

(t
he

ta
)

0 pi/8 pi/4 3*pi/8 pi/2

k = 30
k = 50
k = 100

0.
0

0.
5

1.
0

1.
5

2.
0

theta

P
hi

(t
he

ta
)

0 pi/8 pi/4 3*pi/8 pi/2

k = 30
k = 50
k = 100
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Figure: Empirical Lévy copula bivariate jump diffusion with Clayton Lévy copula.
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Figure: Empirical Lévy spectral measure bivariate jump diffusion with Clayton
Lévy copula (p = 2).
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7. Conclusion

◮ I have introduced two non-parametric estimators for the Lévy copula and
derived the estimators’ properties.

◮ In addition, I have constructed a test for independence.

◮ Extensive Monte Carlo evidence shows that the estimators and test are
quite accurate on small samples.
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