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Ornstein-Uhlenbeck (OU) Process

Let (Lt , t ≥ 0) be a Lévy process on (Ω,F , (Ft), P) . For every
a ∈ R

dXt = −aXt dt + dLt , t ∈ R+, X0 = x , (1)

defines an Ornstein-Uhlenbeck process driven by the Lévy
process L with initial distribution π = L(X0).
Equivalently,

Xt = e−atX0 +

∫ t

0
e−a(t−s)dLs. (2)



Sample path from compound Poisson plus Wiener process
driver
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Recent Literature on Lévy OU
Inference

• Stochastic volatility modelling: Barndorff-Nielsen and
Shephard [2001]

• (Non-)Parameteric estimation for driving subordinators
Jongbloed, van der Meulen and van der Vaart [2005]

• Maximum-likelihood-estimation from discrete observations
Valdivieso, Schoutens and Tuerlinckx [2009]

• Least squares estimation from discrete observations for
α-stable driver Hu and Long [2009]



Setting

Problem: Estimation of a from continuous observations Xt ,
0 ≤ t ≤ T and know Lévy-Khintchine triplet of L.

We work throughout in the canonical setting:
• Ω = D(R+) = {f : R+ → R; f càdlàg}
• X (ω, t) = ω(t) for all ω ∈ Ω coordinate process
• Filtration generated by X

Ft =
⋂
s>t

σ(Xu : u ≤ s) and F =
∨

t

Ft

For every a ∈ R we obtain a solution measure Pa of the OU
equation on D(R+).



Absolute Continuity/Singularity (ACS)
Problem

Pa
t := Pa

|Ft
denotes the restriction of Pa to Ft .

Local absolute continuity:

Pa′ loc
¿ Pa ⇐⇒ Pa′

t ¿ Pa
t ∀t ∈ R+

In order to define an MLE for the statistical experiment
(Ω,F , (Ft), (Pa)a∈R) we need:

1 Does
Pa′ loc

¿ Pa hold for all a, a′ ∈ R?

2 Can we derive Zt =
dPa′

t
dPa

t
explicitly?



Hellinger Process and ACS Problems

Let P, P ′ be two probability measures on (Ω,F , (Ft)).

Theorem (Jacod and Mémin (1979))
Let h(α), α ∈ (0, 1) be a version of the Hellinger process
h(α; P, P ′). Then for every stopping time T there is equivalence
between

1 P ′
T ¿ PT ;

2 ∃α ∈ (0, 1) such that P ′(h(α)T < ∞) = 1 and P ′
0 ¿ P0 and

P ′(h(0)T = 0) = 1.



Semimartingale characteristics of X

Let (b, σ2, µ) denote the Lévy-Khintchine triplet of L.

Then the semimartingale characteristics (B, C, ν) of X are
given by

B(ω, t) = bt − a
∫ t

0
Xs−(ω)ds,

C(ω, t) = σ2t ,
ν(ω, dt , dx) = µ(dx) λ(dt),

where λ denotes the Lebesgue measure on R.



The Hellinger Process

Proposition
A version of the Hellinger process of two solution measures
Pa, Pa′

is

ht(α; a, a′) =
α(1− α)

2σ2

∫ t

0

[∫ u

0

(
a′e−a′(u−s) − ae−a(u−s)

)
L(ds)

]2

du.

for a, a′ ∈ R.



Theorem
Let Pa, Pa′

be two solution measures of the OU equation for the
driving Lévy process L with characteristic triplet (b, σ2, ρ) and
initial distributions π and π′. Suppose that σ2 > 0 and π′ ¿ π,
then we have

Pa′ loc
¿ Pa.



Proposition
There exists a P-local martingale N : ∆ → R on a random
interval ∆ ⊂ Ω×R+ such that the density process is given by

Zt =
dPa′

t
dPa

t
= Z0 exp

(
Nt −

(a′ − a)2

2σ2

∫ t

0
X 2

s−ds
)

.

Furthermore, for every stopping time S such that [0, S] ⊂ ∆ the
stopped process NS is of the form

NS =

(
(a′ − a)

σ2 Xt−1[0,S]

)
· X c ,

where X c denotes the continuous martingale part of X under
Pa.



Maximum-Likelihood-Estimator (MLE)

For continuous observations of the Ornstein-Uhlenbeck
process X the likelihood function L for the statistical experiment
(Ω,F , (Ft), (Pa)a∈R) takes the form

L(a, X T ) =
dPa

t

dP0
t

= exp

(
a
σ2

∫ T

0
Xs− dX c

s −
a2

2σ2

∫ T

0
X 2

s− ds

)
,

Hence, the MLE for a is explicitly given by

âT =

∫ T
0 Xs−dX c

s∫ T
0 X 2

s−ds
.



The continuous martingale part X c

By the Lévy-Itô decompostition of L we can write X as

Xt = X0 − a
∫ t

0
Xs− ds + Wt + Jt , t ≥ 0,

where W is a Wiener Process and J a quadratic pure jump
process given by

Jt =

∫
{|x |<1}

x(Nt(dx)− tµ(dx)) + bt +
∑

0≤s≤t

∆Xs1{|∆Xs|≥1}.

N is the jump measure of L with compensator µ.



Under P0 it follows that X c = W , but under Pa

W̃t = Wt − a
∫ t

0
Xs− ds

defines a Wiener process such that X c = W̃ under Pa.
Hence, given observations (Xt(ω), t ∈ [0, T ])

X c
t = Xt−

∫
{|x |<1}

x(Nt(dx)− tµ(dx))−bt−
∑

0≤s≤t

∆Xs1{|∆Xs|≥1}.

which can be reconstructed from continuous observations.
Hence, the MLE can be rewritten as

âT =

∫ T
0 Xs−(dWs − aXs−ds)∫ T

0 X 2
s−ds

=

∫ T
0 Xs−dWs∫ T

0 X 2
s−ds

− a.

under Pa.



Curved Exponential Families

Let {Pθ, θ ∈ Θ} be a family of measures on (Ω,F , (Ft)).

Definition (Küchler and Sørensen (1997))
We say that a statistical experiment {Pθ, θ ∈ Θ} forms a
curved exponential family if the likelihood function exists and
is of the form

dPθ
t

dPθ0
t

= exp
(
θ′At − κ(θ)St

)
where κ : Θ → R, for θ0 ∈ Θ arbitrary but fixed and
A : Ω×R+ → Rd is a càdlàg process. Moreover,
S : Ω×R+ → R is assumed to be a non-decreasing
continuous process with S0 = 0 and St

t→∞−→ ∞.



Strong Consistency

Theorem
Under the condition σ2 > 0 the MLE âT for any a ∈ R based on
continuous observations Xt , t ∈ [0, T ] exists and is given by

âT =

∫ T
0 Xs−dX c

s∫ T
0 X 2

s−ds
.

Furthermore, under Pa the MLE is unique for T sufficiently
large and

âT → a almost surely

as T →∞.



Asymptotic Normality

Theorem
Let X be a stationary OU process and a > 0 such that
c = E [X 2] < ∞. Then under Pa

√
T (âT − a) → N(0,

σ2

c
) weakly

as T →∞.



Summary and Outlook

• Under σ2 > 0 the solution measures {Pa, a ∈ R} are
locally equivalent.

• The MLE takes an explicit form and is consistent and
asymptotically normal as well as efficient.

• Computation from discrete observations is straight forward.
• Asymptotics for a < 0 and without second moments of X?
• Delay estimation
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