# Maximum-Likelihood-Estimation of Lévy driven Ornstein-Uhlenbeck Processes

#### Hilmar Mai Humboldt-Universität zu Berlin

Workshop on Statistical Inference for Lévy processes EURANDOM

#### 16 July 2009



## Ornstein-Uhlenbeck (OU) Process

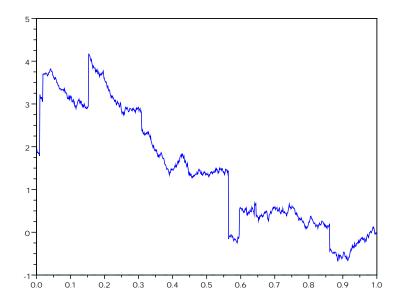
Let  $(L_t, t \ge 0)$  be a Lévy process on  $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$ . For every  $a \in \mathbb{R}$ 

$$dX_t = -aX_t dt + dL_t, \quad t \in \mathbb{R}_+, \quad X_0 = x, \tag{1}$$

defines an Ornstein-Uhlenbeck process driven by the Lévy process *L* with initial distribution  $\pi = \mathcal{L}(X_0)$ . Equivalently,

$$X_t = e^{-at}X_0 + \int_0^t e^{-a(t-s)} dL_s.$$
 (2)

## Sample path from compound Poisson plus Wiener process driver



## Recent Literature on Lévy OU Inference

- Stochastic volatility modelling: Barndorff-Nielsen and Shephard [2001]
- (Non-)Parameteric estimation for driving subordinators Jongbloed, van der Meulen and van der Vaart [2005]
- Maximum-likelihood-estimation from discrete observations Valdivieso, Schoutens and Tuerlinckx [2009]
- Least squares estimation from discrete observations for  $\alpha$ -stable driver Hu and Long [2009]

## Setting

Problem: Estimation of *a* from continuous observations  $X_t$ ,  $0 \le t \le T$  and know Lévy-Khintchine triplet of *L*.

We work throughout in the canonical setting:

- $\Omega = D(\mathbb{R}_+) = \{f : \mathbb{R}_+ \to \mathbb{R}; f \text{ càdlàg}\}$
- $X(\omega, t) = \omega(t)$  for all  $\omega \in \Omega$  coordinate process
- Filtration generated by X

$$\mathcal{F}_t = \bigcap_{s>t} \sigma(X_u : u \leq s) \text{ and } \mathcal{F} = \bigvee_t \mathcal{F}_t$$

For every  $a \in \mathbb{R}$  we obtain a solution measure  $P^a$  of the OU equation on  $D(\mathbb{R}_+)$ .

## Absolute Continuity/Singularity (ACS) Problem

 $P_t^a := P_{|\mathcal{F}_t}^a$  denotes the restriction of  $P^a$  to  $\mathcal{F}_t$ . Local absolute continuity:

$${\mathcal{P}}^{a'} \stackrel{\textit{loc}}{\ll} {\mathcal{P}}^{a} \Longleftrightarrow {\mathcal{P}}^{a'}_t \ll {\mathcal{P}}^{a}_t \quad orall t \in \mathbb{R}_+$$

In order to define an MLE for the statistical experiment  $(\Omega, \mathcal{F}, (\mathcal{F}_t), (P^a)_{a \in \mathbb{R}})$  we need:

1 Does

$$\mathcal{P}^{a'} \overset{\textit{loc}}{\ll} \mathcal{P}^{a}$$
 hold for all  $a,a' \in \mathbb{R}?$ 

2 Can we derive 
$$Z_t = \frac{dP_t^{a'}}{dP_t^{a}}$$
 explicitly?

F

## Hellinger Process and ACS Problems

Let P, P' be two probability measures on  $(\Omega, \mathcal{F}, (\mathcal{F}_t))$ .

Theorem (Jacod and Mémin (1979))

Let  $h(\alpha)$ ,  $\alpha \in (0, 1)$  be a version of the Hellinger process  $h(\alpha; P, P')$ . Then for every stopping time T there is equivalence between

- ②  $\exists \alpha \in (0, 1)$  such that  $P'(h(\alpha)_T < \infty) = 1$  and  $P'_0 \ll P_0$  and  $P'(h(0)_T = 0) = 1$ .

## Semimartingale characteristics of X

Let  $(b, \sigma^2, \mu)$  denote the Lévy-Khintchine triplet of *L*.

Then the semimartingale characteristics  $(B, C, \nu)$  of X are given by

$$B(\omega, t) = bt - a \int_0^t X_{s-}(\omega) ds,$$
  

$$C(\omega, t) = \sigma^2 t,$$
  

$$\nu(\omega, dt, dx) = \mu(dx) \lambda(dt),$$

where  $\lambda$  denotes the Lebesgue measure on  $\mathbb{R}$ .

## The Hellinger Process

#### Proposition

A version of the Hellinger process of two solution measures  $P^a, P^{a'}$  is

$$h_t(\alpha; \mathbf{a}, \mathbf{a}') = \frac{\alpha(1-\alpha)}{2\sigma^2} \int_0^t \left[ \int_0^u \left( \mathbf{a}' e^{-\mathbf{a}'(u-s)} - \mathbf{a} e^{-\mathbf{a}(u-s)} \right) L(ds) \right]^2 du.$$

for  $a, a' \in \mathbb{R}$ .

#### Theorem

Let  $P^a$ ,  $P^{a'}$  be two solution measures of the OU equation for the driving Lévy process L with characteristic triplet  $(b, \sigma^2, \rho)$  and initial distributions  $\pi$  and  $\pi'$ . Suppose that  $\sigma^2 > 0$  and  $\pi' \ll \pi$ , then we have

$${\sf P}^{a'} \stackrel{\it loc}{\ll} {\sf P}^a.$$

#### Proposition

There exists a P-local martingale  $N : \Delta \to \mathbb{R}$  on a random interval  $\Delta \subset \Omega \times \mathbb{R}_+$  such that the density process is given by

$$Z_{t} = \frac{dP_{t}^{a'}}{dP_{t}^{a}} = Z_{0} \exp\left(N_{t} - \frac{(a'-a)^{2}}{2\sigma^{2}} \int_{0}^{t} X_{s-}^{2} ds\right).$$

Furthermore, for every stopping time S such that  $[0, S] \subset \Delta$  the stopped process  $N^S$  is of the form

$$N^{S} = \left(rac{(a'-a)}{\sigma^{2}}X_{t-}\mathbf{1}_{[0,S]}
ight)\cdot X^{c},$$

where  $X^c$  denotes the continuous martingale part of X under  $P^a$ .

## Maximum-Likelihood-Estimator (MLE)

For continuous observations of the Ornstein-Uhlenbeck process *X* the likelihood function  $\mathcal{L}$  for the statistical experiment  $(\Omega, \mathcal{F}, (\mathcal{F}_t), (\mathcal{P}^a)_{a \in \mathbb{R}})$  takes the form

$$\mathcal{L}(a, X^T) = \frac{dP_t^a}{dP_t^0} = \exp\left(\frac{a}{\sigma^2} \int_0^T X_{s-} dX_s^c - \frac{a^2}{2\sigma^2} \int_0^T X_{s-}^2 ds\right),$$

Hence, the MLE for a is explicitly given by

$$\hat{a}_T = \frac{\int_0^T X_{s-} dX_s^c}{\int_0^T X_{s-}^2 ds}$$

## The continuous martingale part X<sup>c</sup>

By the Lévy-Itô decomposition of L we can write X as

$$X_t = X_0 - a \int_0^t X_{s-} ds + W_t + J_t$$
,  $t \ge 0$ ,

where W is a Wiener Process and J a quadratic pure jump process given by

$$J_t = \int_{\{|x|<1\}} x(N_t(dx) - t\mu(dx)) + bt + \sum_{0 \le s \le t} \Delta X_s \mathbf{1}_{\{|\Delta X_s| \ge 1\}}.$$

*N* is the jump measure of *L* with compensator  $\mu$ .

Under  $P^0$  it follows that  $X^c = W$ , but under  $P^a$ 

$$ilde{W}_t = W_t - a \int_0^t X_{s-} \, ds$$

defines a Wiener process such that  $X^c = \tilde{W}$  under  $P^a$ . Hence, given observations  $(X_t(\omega), t \in [0, T])$ 

$$X_t^c = X_t - \int_{\{|x| < 1\}} x(N_t(dx) - t\mu(dx)) - bt - \sum_{0 \le s \le t} \Delta X_s \mathbf{1}_{\{|\Delta X_s| \ge 1\}}.$$

which can be reconstructed from continuous observations. Hence, the MLE can be rewritten as

$$\hat{a}_{T} = rac{\int_{0}^{T} X_{s-}(dW_{s} - aX_{s-}ds)}{\int_{0}^{T} X_{s-}^{2}ds} = rac{\int_{0}^{T} X_{s-}dW_{s}}{\int_{0}^{T} X_{s-}^{2}ds} - a.$$

under P<sup>a</sup>.

## **Curved Exponential Families**

Let  $\{P^{\theta}, \theta \in \Theta\}$  be a family of measures on  $(\Omega, \mathcal{F}, (\mathcal{F}_t))$ .

Definition (Küchler and Sørensen (1997))

We say that a statistical experiment  $\{P^{\theta}, \theta \in \Theta\}$  forms a **curved exponential family** if the likelihood function exists and is of the form

$$rac{d {\cal P}^{ heta}_t}{d {\cal P}^{ heta_0}_t} = \exp \left( heta' {\cal A}_t - \kappa( heta) {\cal S}_t 
ight)$$

where  $\kappa : \Theta \to \mathbb{R}$ , for  $\theta_0 \in \Theta$  arbitrary but fixed and  $A : \Omega \times \mathbb{R}_+ \to \mathbb{R}^d$  is a càdlàg process. Moreover,  $S : \Omega \times \mathbb{R}_+ \to \mathbb{R}$  is assumed to be a non-decreasing continuous process with  $S_0 = 0$  and  $S_t \xrightarrow{t \to \infty} \infty$ .

## Strong Consistency

#### Theorem

Under the condition  $\sigma^2 > 0$  the MLE  $\hat{a}_T$  for any  $a \in \mathbb{R}$  based on continuous observations  $X_t$ ,  $t \in [0, T]$  exists and is given by

$$\hat{a}_T = \frac{\int_0^T X_{s-} dX_s^c}{\int_0^T X_{s-}^2 ds}$$

Furthermore, under  $P_a$  the MLE is unique for T sufficiently large and

$$\hat{a}_T \rightarrow a$$
 almost surely

as  $T \to \infty$ .

## Asymptotic Normality

#### Theorem

Let X be a stationary OU process and a > 0 such that  $c = E[X^2] < \infty$ . Then under  $P^a$ 

$$\sqrt{T}(\hat{a}_T - a) 
ightarrow N(0, rac{\sigma^2}{c})$$
 weakly

as  $T \to \infty$ .

## Summary and Outlook

- Under σ<sup>2</sup> > 0 the solution measures {P<sup>a</sup>, a ∈ ℝ} are locally equivalent.
- The MLE takes an explicit form and is consistent and asymptotically normal as well as efficient.
- Computation from discrete observations is straight forward.
- Asymptotics for a < 0 and without second moments of X?</li>
- Delay estimation

## Bibliography

- Ole E. Barndorff-Nielsen and Neil Shephard. Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. *J. R. Stat. Soc.*, 63(2):167–241, 2001.
- Yaozhong Hu and Hongwei Long. Least squares estimator for ornstein-uhlenbeck processes driven by [alpha]-stable motions. *Stochastic Processes and their Applications*, 2009.
- G. Jongbloed, F.H. van der Meulen, and A.W. van der Vaart. Nonparametric inference for Lévy-driven Ornstein-Uhlenbeck processes. *Bernoulli*, 11(5), 2005.
- L. Valdivieso, W. Schoutens, and F. Tuerlinckx. Maximum Likelihood Estimation in Processes of Ornstein-Uhlenbeck type. *Stat. Infer. Stoch Process.*, 12:1–19, 2009.