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Overlay of the presentation

• The problem & the model

• The proposed solution: asymptotic results

• Monte Carlo simulations

• Empirical application: short rate modeling

• Comparisons

• Conclusions
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The problem and the model

A state variable R (e.g. spot interest rate) follows

dRt = µtdt + σ(Rt)dWt + dJt, t ∈ [0, T ] :

? level-dependent diffusion coefficient σ(Rt)

Goal

reconstruct the function σ2(r), fixed T , given observations

{R0, Rt1, Rt2, Rt3, ..., Rtn}, ti = iδ, i = 1...n, nδ = T

? any progressively measurable cadlag drift µt

J = J1 + J̃2
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? J1 any pure jump finite activity (FA) semimartingale: a.s. finite

number of jumps in each finite time interval

J1 =
∫ ·
0

∫

IR
x m1(dx, du) =

Nt∑

j=1

γj

m1 jump measure of J1 with a.s. Nt =
∫ t
0

∫
IR 1m1(dx, du) < ∞, ∀ t ≤ T

N = jumps counting process, jump intensity λt

e.g. J1 doubly stochastic compound Poisson with E[
∫ T
0 λtdt] < ∞

? J̃2 pure jump infinite activity (IA) SM: there are paths with in-

finitely many jumps in some finite time interval

J̃2 =
∫ ·
0

∫

|x|≤1
xm̃2(dx, du),

m̃2 = m2 − νt(ω, dx)dt compensated m2
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Furthermore

in the FA case, assuming µt ≡ µ(Rt), λt ≡ λ(Rt)

we even want to reconstruct µ(r), λ(r) as T →∞
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PRELIMINARIES

In the continuous case, J ≡ 0: kernel estimation

proposed by Florens-Zmirou (1993), and generalized by Stanton

(1997), Jiang and Knight (1997), Bandi and Phillips (2003), Renò

(2008)

σ̂2
n(r) =

n∑

i=1

K

(
Rti−1 − r

h

)
(Rti −Rti−1)

2

n∑

i=1

K

(
Rti − r

h

)
δ

K kernel, h bandwidth: h → 0 at given speed as δ → 0.

Asymptotic properties of σ̂2
n(r), for fixed T < ∞, are fully assessed

in Florens-Zmirou (1993) using the local time properties of R
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Why this works?

Notation:

∆iR = Rti −Rti−1, Ki−1 = K

(Rti−1 − r

h

)

through K, we take a term (∆iR)2 only if observation Rti−1 is close

to level r:

σ̂2
n(r) =

∑n
i=1 Ki−1

(∆iR)2

δ∑n
i=1 Ki−1

≈ E

[
(∆iR)2

δ

∣∣∣∣Rti−1 = r

]

≈ E


σ2(Rti−1)δ

δ

∣∣∣∣Rti−1 = r


 = σ2(r)
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However adding jumps is important

• better explains interest rates (macroeconomic news and an-
nouncement effects → abrupt changes, Das 02, Piazzesi 05),
stock prices (endogenous crashes, e.g. Black Friday, 1987, or
exogenous crashes, e.g. September 11), commodities prices
(abrupt spikes due to shortages), electricity prices (supply are
highly inelastic to demand → spikes)

• better explains option prices (flattening smile in short term op-
tions when underlying asset jumps)

• jump-diffusion models for bond and derivative pricing are used
(e.g. Eraker et al. 03)

• IA jumps are used to model asset prices (Carr et al. 02, Ait-
Sahalia and Jacod, 08)
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But in presence of jumps, e.g. FA with λt ≡ λ(Rt):

n∑

i=1

Ki−1
(∆iR)2

δ
n∑

i=1

Ki−1

≈ E

[
(∆iR)2

δ

∣∣∣∣Rti−1 = r

]
≈ σ2(r) + λ(r)σ2

J

information about σ (and µ) is carried only by the continuous part

within Rti −Rti−1 → discard the jump part
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Literature in disentangling jumps from diffusion in nonparametric

models, using discrete observations:

• Power, Bipower and multipower variation (Berman 1965, Barndorff-

Nielsen and Shephard, 2004, 2006, Woerner 2005, 2006, Jacod

2008)

• Range theory (Christensen and Podolskij, 2006, Dobrev, 2007)

• Wavelets (Fan and Wang, 2007)

• Threshold technique (Mancini 2001, 2009, Jacod, 2008)
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Threshold technique is efficient ⇒
we use a combination of threshold and kernel techniques

♣ alternative kernel method to reconstruct the coefficients in pres-

ence of FA jumps with µt ≡ µ(IRt), λt ≡ λ(Rt): Bandi and Nguyen,

2003, Johannes, 2004

? however threshold can also estimate jump sizes and times

? our estimator is the first kernel estimator of σ2(r) in presence

of IA jumps
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The intuition of the threshold approach: FA jumps

When δ → 0, diffusive variations go to zero, while jumps do not.

Paul Lévy law =⇒ a.s. lim
δ→0

sup
i∈{1,...,n}

|∆iW |√
2δ log 1

δ

≤ 1.

The stochastic integral σ.W is a time changed Brownian motion

⇓
a.s. for small δ

sup
i

| ∫ ti
ti−1

µsds +
∫ ti
ti−1

σsdWs|
√

2δ log 1
δ

≤ Λ < ∞

Remark: Λ = Λ
(
sups∈[0,T ] |σ(Rs)|

)
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choose a threshold ϑ(δ) > 2δ log 1
δ

if (∆iR)2 > ϑ(δ) > 2δ log 1
δ ⇒ some jumps occurred

Theorem (Mancini, 2001 and extensions) Suppose T fixed, FA jumps,

ϑ(δ) deterministic function

lim
δ→0

ϑ (δ) = 0 and lim
δ→0

δ log 1
δ

ϑ (δ)
= 0

⇓
a.s. ∃δ̄(ω) > 0 such that ∀δ < δ̄(ω) we have ∀i = 1, ..., n,

I{∆iN 6=0}(ω) = I{(∆iR)2>ϑ(δ)}(ω). •
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The proposed estimator of σ2(r): when J is FA

Theorem Let R be a FA jump-diffusion process, assume:

• regularity of σ(r);

• as δ → 0, ϑ(δ) → 0 and
(
δ ln 1

δ

)
/ϑ(δ) → 0;

• conditions on how h, δ → 0 and n →∞;

• regularity of K (e.g. Gaussian)

σ̂2
n(r)

.
=

∑n
i=1 K

(
Rti−1−r

h

)
(∆iR)2I{(∆iR)2≤ϑ(δ)}

∑n
i=1 K

(
Rti−1−r

h

)
δ

for all r visited by R

√
nh

(
σ̂2

n(r)− σ2(r)
)

st→ MN
(
0,2

σ6(r)L??
T (r)

(L?
T )2(r)

)

MN (0, U2) mixed normal law with stochastic variance U2

L?
T (r), L??

T (r) estimable modified versions of the local time of R
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Remark

ϑt(δ) = ct · ϑ̄(δ) is allowed,

with ct stoch proc. bdd and bdd away from zero
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Extension when J is IA

We need νt(ω, dx) is stable-like for x around the origin, i.e.

νt(ω, dx) =
(

A

x1+α
I{x>0} +

B

|x|1+α
I{x<0}

)

and J̃2 has finite variation: a.s.
∑

s≤T |∆J̃2s| < ∞ ⇒ ∃ Lt(r) local

time for R for which occupation time formula still holds true

? assumptions satisfied e.g. if J̃2 is

Gamma or Variance Gamma process,
α-stable process with α < 1,
CGMY model with Y < 1.

Theorem Same asymptotic result for σ̂2
n(r) as soon as

• ϑ(δ) = δη, h = δφ with proper range for η, φ
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Threshold setting

Any ϑ(δ) satisfying the given conditions gives consistent σ̂2(r)

However in practice δ > 0 is fixed, and the particular choice of

the function ϑ(δ) can make a difference in the performance of the

estimator.
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An auxiliary model for the threshold

We use a GARCH(1,1) model. Even if misspecified, it asymptot-

ically provides the optimal volatility forecast (Nelson and Foster,

1994). We fit:

Rti −Rti−1 = R̄ +
√

hti · εti∀i

hti = ω + α(Rti−1 −Rti−2)
2 + βhti−1

then we set

ϑti = c · hti

with c = 9 (three standard deviations)

So that

high volatility forecast (persistency) ⇒ high threshold

less diffusive variations are mis-interpreted as jumps
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Checking the performance on simulations: FA jumps

dRt = κ1(bt −Rt)dt−κ̄λRtdt +γ
√

RtdW1,t + (eZt−1)RtdNt

dbt = κ3(θ − bt)dt + η2
√

btdW2,t

where

Zt ' N (µJ , σ2
J), κ̄ = E[eZt − 1] = eµJ+1

2σ2
J

This is a modified version of the models estimated by Andersen,

Benzoni and Lund (2004) on a time series of 3-months Treasury

Bills annualized rates.

We use their estimates of the SV1J − SD model.

The starting values R0 and b0 are sampled from the unconditional

distribution.
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Simulations - no jumps (λ = 0)
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Simulations - realistic jumps: λ̂ = 5.3 per year, σ̂J = 0.026 ≈ 5% of

current rate level
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Simulations - doubled jump size 2σ̂J
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Estimating µ and λ: FA jumps, µt = µ(Rt), λt = λ(Rt)

estimate the drift and the jump intensity functions by letting T →∞
while δ = T/n → 0.

Estimator for the drift:

µ̂n(r) =

n∑

i=1

Ki−1∆iR · I{(∆iR)2≤ϑ(δ)}
n∑

i=1

Ki−1δ

Estimation of the intensity function:

λ̂n(r) =

n∑

i=1

Ki−1 · I{(∆iR)2>ϑ(δ)}
n∑

i=1

Ki−1δ

,
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Theorem. Analogous assumptions as above plus T →∞
• R is Harris recurrent;

• ∀ε > 0 P{|γ`| < ε} ≤ cε and {γ`}` independent on N ;

• conditions on how δ, h → 0, n → ∞ now depend ALSO on how

LT (r) →∞ (as in Bandi & Nguyen 03).

For each r visited by R we have

√
hL̂?

T (r)
(
µ̂n(r)− µ(r)

)
d→ MN (0, K2σ2(r)),

where K2 :=
∫
IR K2(u)du;

√
hL̂?

T (r)
(
λ̂n(r)− λ(r)

)
d→ MN (0, K2λ(r)).

? as T →∞ it holds that ∀r, L?
T (r) →∞ (rate T if R is stationary)
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Estimates on simulations constructed on Johannes (2004) data

Left: GARCH(1,1) thershold right: iterating smoothing
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Empirical application: short rate modeling

Problem: which (term) rate to choose to proxy the (unobservable)

spot rate?

? in the literature both 7-days rate (Eurodollar deposit, inter-bank

rate) and 3-months rates (US Treasury Bills, market rate) are used

BUT

we show that they HAVE IMPORTANT DIFFERENCES!!
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daily obs

? 7-days rates: higher in level, more (periodic) spikes (liquidity ef-
fects)



Estimation with Florens-Zmirou technique (assuming a diffusion

underlying model)

? 7-days rates: spikes make variance increase

? 7-days rates: bias (presence of jumps)
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Estimation with threshold technique: jumps detected
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? 7-days rates: our estimate (35 jumps/year) is quite consistent

with the parametric estimates by Das (02) and correspond to need

of liquidity

? 3-months rates: our estimate (5 jumps/year) is consistent with

the parametric estimates by ABL (04) and correspond to macroe-

conomic announcements



Estimation with threshold technique:

? for the 3-months rates: classical and threshold estimators are quite

consistent
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? quite same drift for rates up to 0.1



Our interpretation:

? weekly time series and monthly time series have the SAME un-

derlying DIFFUSION PART

? however the JUMP COMPONENT of the 7-days time series is

different, much more active

⇓
use the 3month time series to proxy the spot rate: the 7-day rate

is NOT a market rate
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♣ Comparison with Bandi&Nguyen and Johannes

Johannes (2004) dataset (3 month rates 1965-1999, daily obs)

first differences
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Comparison with Bandi-Nguyen-Johannes

? consistent
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Comparison with Bandi-Nguyen-Johannes
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Comparison with Bandi-Nguyen-Johannes

? to reach the same empirical second moment, BNJ attribute less
to the diffusion part and more to the jump part than us, for levels
of r up to 11%

34



BUT

? 15-30 jumps/year are levels parametrically estimated by Das (02)

for the 7-days rates, not for the 3-months

? 5-10 jumps/year is consistent with parametric estimates in ABL

(04) for the 3-months
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? Monte Carlo simulations show that Johannes estimated jump in-
tensity is upper biased while the threshold estimator is not

⇓
threshold is preferable
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Conclusions

• We propose nonparametric estimators to reconstruct the coef-
ficients in univariate jump-diffusion models, based on threshold-
kernel estimation.

• The threshold can be set using standard econometric techniques
(GARCH modeling).

• Monte Carlo simulations show that the proposed estimator is
superior to estimators which do not consider jumps

• We show that the 7-day time series is characterized by a sup-
plementary jump component (due to liquidity reasons) which is
absent on the 3-months time series.
The 7-days rate cannot be used as a proxy for the spot rate

• Our estimators provide different and more convincing results
than those obtained so far on jump-diffusion models
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