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Inference for BNS stochastic volatility models

Outline of the talk – part 1
In the discretely observed Barndorff-Nielsen Shepard
(BNS) setting we explore the joint distribution of spot prices
X and the instantaneous trading volume τ since both
quantities are observable
inference by the martingale estimating function
approach leads to an explicit estimator
we show the strong law of large numbers for

(
τp

i , i ≥ 0
)

and
(
τ r

i−1X p
i τ

q
i , i ≥ 1

)
without ergodicity arguments
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Inference for BNS stochastic volatility models

Outline of the talk – part 2
consistency and asymptotic normality of the simple
explicit estimator
we evaluate the performance of our estimator in a
simulation study for a concrete specification, the Γ-OU
application of the results to daily data
further issues: superposition of OU-processes;
comparison with the GMM estimation procedure
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The model

Continuous time model

dX (t) = (µ+βτ(t−))dt +σ
√
τ(t−)dW (t)+ρdZλ(t), X (0) = 0.

and
dτ(t) = −λτ(t−)dt + dZλ(t), τ(0) = τ0,

where µ, β, ρ, λ ∈ R with λ > 0. Z = (Zt ) is the BDLP
Zλ(t) = Z (λt).
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Discretely observed continuous time model

τ0 has a self-decomposable distribution corresponding to the
BDLP s. t. the process τ is strictly stationary and

E [τ0] = ζ, Var [τ0] = η.

Assumptions: E [τn
0 ] <∞, ∀n ∈ N.

True for Γ-OU, IG-OU,. . . ..

For our analysis we will assume that the instantaneous
variance process V is a constant time the trading
volume/number of trades τ. That is,

dV (t) = σ2 · dτ(t), (1)

with σ > 0.
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Discretely observed continuous time model

Observing X and τ on a discrete grid of points in time, 0 = t0 < t1 < . . . < tn,
we obtain:

τ(ti) = τ(ti−1)e−λ(ti−ti−1) +

∫ ti

ti−1

e−λ(ti−s)dZλ(s)

and

X (ti )− X (ti−1) = µ(ti − ti−1) + β(Y (ti )− Y (ti−1)) + σ

∫ ti

ti−1

√
τ(s−)dW (s)

+ ρ(Zλ(ti )− Zλ(ti−1)),

where Y (t) =
∫ t

0 τ(s−)ds is the integrated trading volume
process.
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Discretely observed continuous time model
Introducing

Xi = X (ti )− X (ti−1), Yi = Y (ti )− Y (ti−1), Zi = Zλ(ti )− Zλ(ti−1),

Wi =
1√
Yi

∫ ti

ti−1

√
τ(s−)dW (s)

i.i.d∼ N(0, 1),

and an auxiliary quantity U(t) =

∫ t

0
e−λ(t−s)dZλ(s),

using tk = ∆k , ∆ > 0 fixed and τi = τ(ti) we have

τi = γτi−1 + Ui , Yi = ετi−1 + Si , Si =
1
λ

(Zi − Ui)

Xi = µ∆ + βYi + σ
√

YiWi + ρZi ,

where γ = e−λ, Ui = U(ti)− U(ti−1), (Ui ,Zi) i.i.d
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Martingale estimating functions

Suppose that X1,X2, . . . ,Xn are observations from a model
with a d-dimensional parameter θ ∈ Θ.

an estimator θ̂n is obtained solving the equation

Gn(X1,X2, . . . ,Xn; θ) = 0, (2)

where Gn(θ) is a d−dim estimating function of the
parameter θ ∈ Rd .

Among the class of unbiased or Fisher consistent
estimating functions, we will analyze those estimating
functions that are martingales.
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Estimating equations

Let θ = (ν, α, λ, µ, β, σ, ρ)>, X = (X , τ).

We consider the following 7 martingale estimating functions:

G1
n(θ) =

n∑
i=1

[
τi − E(τi |τi−1)

]
, G2

n(θ) =
n∑

i=1

[
τiτi−1 − τi−1E(τi |τi−1)

]
,

G3
n(θ) =

n∑
i=1

[
τ 2

i − E(τ 2
i |τi−1)

]
, G4

n(θ) =
n∑

i=1

[
Xi − E(Xi |τi−1)

]
,

G5
n(θ) =

n∑
i=1

[
Xiτi−1 − τi−1E(Xi |τi−1)

]
, G6

n(θ) =
n∑

i=1

[
Xiτi − E(Xiτi |τi−1)

]
,

G7
n(θ) =

n∑
i=1

[
X 2

i − E(X 2
i |τi−1)

]
.
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The specifications for G1
n −G7

n belong to the more general class of martingale

estimating functions of the form

Gj
n(θ) =

n∑
i=1

αj(τi−1; θ)
[
X rj

i · τ
sj
i − f j(τi−1; θ

)]
, j = 1, . . . ,d ,

where αj(V τi−1) is some Fi−1-adapted random variable,

f j (ι, θ) = E [X
rj
1 τ

sj
1 |τ0 = ι]

and we have

f j(ι; θ) =

rj+sj∑
l=0

φj
l(θ) · ιl .
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Remark

for the simple explicit estimator αj(ι) = ι or αj(ι) = 1 which
gives explicit Gn(θ), the explicit solution of Gn(θ) = 0 and
the explicit Cov(θ̂n).

in this setting the problem of finding the resulting estimator
explicitly amounts to solving d explicitly given
equations.
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The simple estimator θ̂n = (ν, α, λ, µ, β, σ, ρ) is given by

γn = (ξ2
n − ξ1

nυ
1
n)/(υ2

n − (υ1
n)2), ζn =

γnυ
1
n − ξ1

n

−1 + γn
,

ηn = − (−1 + γ2
n )(υ1

n)2 − γ2
nυ

2
n + ξ3

n

−1 + γ2
n

, λn = − log(γn)/∆,

εn = (1− γn)/λn, βn =
(ξ5

n − υ1
nξ

4
n)

εn(υ2
n − (υ1

n)2)
,

ρn =
(
− βnεn(−(υ1

n)2 + εnλn(ηn + (υ1
n)2 − υ2

n) + υ2
n)− ξ1

nξ
4
n + ξ6

n
)
/(2εnηnλn),

µn =
(
−∆λnρnζn − βn(∆ζn + εn(−ζn + υ1

n)) + ξ4
n
)
/∆, σn =

√
an/bn;

an =
4βn(−∆ + εn)ηnλnρn + β2

n (−2∆ηn + εn(ηn(2 + εnλn)

λn
+

+
εnλn((υ1

n)2 − υ2
n))) + λn(−2∆ηnλnρ

2
n − (ξ4

n)2 + ξ7
n)

λn
,

bn = ∆ζn + εn(−ζn + υ1
n),
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where

ξ1
n =

1
n

n∑
i=1

τi , ξ2
n =

1
n

n∑
i=1

τiτi−1, ξ3
n =

1
n

n∑
i=1

τ 2
i ,

ξ4
n =

1
n

n∑
i=1

Xi , ξ5
n =

1
n

n∑
i=1

Xiτi−1, ξ6
n =

1
n

n∑
i=1

Xiτi ,

ξ7
n =

1
n

n∑
i=1

X 2
i , υ1

n =
1
n

n∑
i=1

τi−1, υ2
n =

1
n

n∑
i=1

τ 2
i−1.
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Consistency

Theorem

P(Cn) −→ 1 as n→∞, where Cn =
{
ξ2

n − ξ1
nυ

1
n > 0

}
and the

estimator θ̂n = (νn, αn, λn, µn, βn, σn, ρn) is consistent on Cn,
namely

θ̂n
a.s.−→ θ0 on Cn as n→∞.
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Asymptotic normality

Theorem

The estimator θ̂n = (νn, αn, λn, µn, βn, σn, ρ) is asymptotically
normal, namely

√
n
[
θ̂n − θ0

] D−→ N(0,T ) as n→∞,

where

T = A(θ)−1Υ
(
A(θ)−1)T

, Υij = E [Cov(Ξi
1,Ξ

j
1|τ0)]

Ξk = (τk , τkτk−1, τ
2
k ,Xk ,Xkτk−1,Xkτk ,X 2

k )>

A(θ)
a.s.
= lim

n→∞

1
n

Jn(θ), J j,k
n (θ(1), . . . , θ(d)) =

∂Gj
n(θ(j))

∂θk
, k = 1, . . . , d .
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BNS-ΓOU

We consider the Γ-OU model, for which the trading volume τ
has a stationary Γ(ν, α) distribution.

The corresponding BDLP Z is a compound Poisson process with
intensity ν and jumps from the exponential distribution with parameter α

We use as time unit one year consisting of 250 trading days.

The true parameters are:
ν = 6.17, α = 1.42, λ = 177.95, β = −0.015, ρ = −0.00056, µ =

0.435, σ = 0.087.
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Interpretation
There are on average 4.4 jumps per day and the jumps in the BDLP and in
the trading volume are exponentially distributed with mean and standard
deviation 0.704.

typically every day 4 or 5 new pieces of information arrive and make the
trading volume process jump

the stationary mean of the trading volume is 4.35, and of the variance is
0.033

if we define instantaneous volatility to be the square root of the
variance, it will fluctuate around 18% in our example

The half-life of the autocorrelation of the variance process is about a day

Annual log returns have (unconditional) mean −6.5% and annual
volatility 18.2%.
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The resulting time series: BDLP and trading volume
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The resulting time series: volatility and log returns
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The asymptotic covariance matrix of the estimator

We do not estimate the asymptotic covariance, but evaluate the
explicit expression using the true parameters. Denoting the
vector of asymptotic standard deviations of the estimates and
the correlation matrix by s/

√
n resp. r we have

s = [12.0257, 2.7878, 443.85, 9.0211, 2.5536, 0.0657, 0.007]T

r =



1 0.938 0.578 0.007 0.051 0.006 −0.003
0.938 1 0.574 0.008 0.051 0.017 −0.004
0.578 0.574 1 0.011 0.088 −0.0006 −6.2 · 10−17

0.007 0.008 0.011 1 −0.827 −0.013 0.03
0.0511 0.051 0.088 −0.827 1 0.012 −0.515
0.006 0.013 −0.0006 −0.013 0.012 1 −0.005
−0.003 −0.004 −6.2 · 10−17 0.03 −0.515 −0.005 1
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Finite sample performance of the estimator
We will perform the estimation procedure for two different
sample sizes, namely 2500 and 8000, corresponding to 10
years and 32 years respectively, with 250 daily observation per
year.
The empirical distribution of the simple estimators for the Γ-OU
model is illustrated. The histograms are produced from
m = 1000 replications consisting of n = 2500 observations
each, corresponding to 10 years. We compare to the AN
distribution
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The distribution of the estimate: ν, µ
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The distribution of the estimate α, β
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Application to daily data: the IBM stock

The BNS model will be fitted to daily log returns of the
International Business Machines Corporation (IBM) stock
at the New York Stock Exchange (NYSE)
The data spans over 5 years starting in March 23, 2003 to
March 23, 2008
There were 1259 observations of daily closing prices and
trading volumes. Data on trading volumes are expressed in
millions
Sample measures of skewness and kurtosis of the returns
are −0.35 and 7.42
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The resulting time series:closing prices and trading
volume
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The resulting time series:log returns
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Results and interpretation

Parameter Value St.dev.
ν̂ 6.17 0.339
α̂ 1.42 0.079
λ̂ 177.95 12.509
µ̂ 0.435 0.254
β̂ -0.015 0.072
σ̂ 0.087 0.002
ρ̂ -0.00056 0.0002
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Results and interpretation

Unconditional moments Value
E [X ] −0.027%

St .dev [X ] 1.15%

E [V ] 3.3%

St .dev [V ] 1.32%
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Results and interpretation

There are on average 4.4 jumps per day each with mean
and standard deviation 0.704
Typical volatility is 0.18 with standard deviation 0.11
The proportionality of trading volume and the
instantaneous variance is given by σ2 = 0.0076
The leverage ρ is very small. For instance, the mean
values of daily log-returns including or not a leverage effect
in the model equal −0.027%, and 0.146% respectively. If
the trading volume process jumps by a typical size, the
returns jump by 0.0004.
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Estimation of the volatility
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The autocorrelation function for the variance process and the estimated theoretical

autocorrelation
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Model fit investigation

We performed a Ljung-Box test for squared residuals of the
data set
We test the normality of the residuals
What are exactly the residuals in the BNS setting?
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Estimated residuals

From Xi = µ∆ + βYi + σ
√

YiWi + ρZi , it follows that

Ŵi =
(
Xi − µ̂∆− β̂Yi − ρ̂Zi

)
/σ̂
√

Yi , i ∈ N

Since, Zi is usually not observable, we have to approximate it.
For the integral we use simple Euler approximations

Yi =

∫ ti

ti−1

τ(s−)ds ≈ τi∆ and
∫ ti

ti−1

√
τ(s)dW (s) ≈

√
τi ·∆ ε,

(3)
with ε ∼ N(0,1).
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The residuals

ε̂i =
(
Xi − µ̂∆− β̂τi∆− ρ̂Zi

)
/σ̂
√
τi ·∆

where
Zi = (λ∆ + 1)τi − τi−1.

The estimated mean, standard deviation, skewness and
kurtosis of the residuals:

mean(ε̂) std(ε̂) skew(ε̂) kurt(ε̂)
IBM −0.01568 1.03142 −0.17053 5.40659
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Model fit - continued

Ljung-Box test: the test statistic used 35 lags of the
corresponding empirical autocorrelation function
The test statistic for the IBM squared residuals was equal
to 451.61, which led to a rejection of the null hypothesis,
since the test had a critical value of 113.15 at the 0.05 level
The IBM residuals pass the Kolmogorov-Smirnov test of
normality, for example, with p-value 0.0886,
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The empirical autocorrelation function for the residuals
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The empirical autocorrelation function for the squared
log returns and squared residuals for IBM

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Petra Posedel Inference for BNS stochastic volatility models



BNS stochastic volatility models
The simple explicit estimator

Real data analysis
Future work

Bibliography

The normal probability plot of log returns and residuals
for IBM
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Kernel estimates of the density and log density with
the theoretical one for IBM
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Estimated mean, mean square error (MSE) and mean absolute error (MAE) of all the

estimated parameter values, with the empirical standard deviations in brackets.

n = 2500 νn αn λn

Mean 6.2145 (0.2552) 1.435 (0.0588) 177.865 (8.9257)
MSE 0.0672 (0.1046) 0.0036 (0.0055) 79.5956 (115.6766)
MAE 0.2016 (0.1629) 0.047 (0.0369) 7.0692 (5.4454)

n = 8000 νn αn λn

Mean 6.1642 (0.1424) 1.4186 (0.0329) 177.1342 (5.208)
MSE 0.0203 (0.0283) 0.0011 (0.0016) 27.7663 (39.1414)
MAE 0.1135 (0.0862) 0.0259 (0.0203) 4.2191 (3.1584)
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Estimated mean, mean square error (MSE) and mean absolute error (MAE) of all the

estimated parameter values, with the empirical standard deviations in brackets.

µn βn σn ρn

0.4402 (0.1849) 0.0148 (0.053) 0.0871 (0.001) −6 · 10−4 (1 · 10−4)
0.0342 (0.0492) 0.0028 (0.0039) 2 · 10−6 (2 · 10−6) 2 · 10−8 (3 · 10−8)
0.1483 (0.1105) 0.0428 (0.0313) 0.0011 (0.001) 1 · 10−4 (9 · 10−5)

µn βn σn ρn

0.4388 (0.1002) 0.0129 (0.03) 0.1 (7 · 10−4) −6 · 10−4 (8.07 · 10−5)
0.01 (0.0138) 0.0008 (0.001) 6 · 10−7 (8 · 10−7) 7 · 10−9 (1 · 10−8)
0.08 (0.0604) 0.0222 (0.02) 6 · 10−4 (5 · 10−4) 6 · 10−5 (5.04 · 10−5)
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Further issues

Instantaneous variance is not an observable quantity in
discrete time and various quantities are suggested as
substitutes for the variance
the resulting estimating function will not be a martingale
estimating function anymore and the bias has to be
accounted for in a rigorous analysis
superposition of OU-processes
comparison with the GMM estimation procedure (or
combination of estimation procedures)
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