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Inference for BNS stochastic volatility models

Qutline of the talk — part 1

@ In the discretely observed Barndorff-Nielsen Shepard
(BNS) setting we explore the joint distribution of spot prices
X and the instantaneous trading volume 7 since both
quantities are observable

@ inference by the martingale estimating function
approach leads to an explicit estimator

@ we show the strong law of large numbers for (7,7 > 0)
and ({_4XPr{,i > 1) without ergodicity arguments
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Inference for BNS stochastic volatility models

Ouitline of the talk — part 2

@ consistency and asymptotic normality of the simple
explicit estimator

@ we evaluate the performance of our estimator in a
simulation study for a concrete specification, the -OU

@ application of the results to daily data

@ further issues: superposition of OU-processes;
comparison with the GMM estimation procedure
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The model

Continuous time model

aX(t) = (u+ Br(t—))dt+o\/7(t—)dW(t)+ pdZs(t), X(0) = 0.

and
dr(t) = =Ar(t—)dt + dZ)\(t), 7(0) = 7o,

where 11, 3, p, A € R with A > 0. Z = (Z;) is the BDLP
Z\(t) = Z(\0).
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7o has a self-decomposable distribution corresponding to the
BDLP s. t. the process 7 is strictly stationary and

E[To] :C, Vaf[To]:n.

Assumptions: E[r{] < co, Vn € N.
True for I-OU, IG-OU,... ..
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7o has a self-decomposable distribution corresponding to the
BDLP s. t. the process 7 is strictly stationary and

E[m] = ¢, Var[ro] = 7.

Assumptions: E[7{] < o, Vn € N.
True for I-OU, 1G-OU,... ..

For our analysis we will assume that the instantaneous
variance process V is a constant time the trading
volume/number of trades 7. That is,

dV(t) = o2 - dr (1), (1)

with o > 0.
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Discretely observed continuous time model

a Barndorff-Nielsen Shepard (BNS) stochastic volatility models
@ Discretely observed continuous time model
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Discretely observed continuous time model

Observing X and 7 on a discrete grid of points intime, 0 =fh < t < ... < ty,

we obtain:

i
T(t) = 7(fi1) e~ Mb=H-1) +/ e Ni=)dz,(s)
ti—1
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Discretely observed continuous time model

Observing X and 7 on a discrete grid of points intime, 0 =fh < t; <

we obtain:

i
T(t) = 7(fi1) e~ Mb=H-1) +/ e Ni=9dz,(s)

ti—1

and
X(t) = X(ti1) = p(ti—tioa) +B(Y(H) = Y(ti-1)) . |/ (5)dW(s)
+  p(2a(t) — 2x(ti-1)),

where Y(t) = [y (s—)ds is the integrated trading volume
process.
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Discretely observed continuous time model

Discretely observed continuous time model

Introducing
Xi=X(t) = X(ti-1), Yi=Y(t) - Y(ti-1), Z=2\(t)— Zu(ti-),

W, = \/ 2)dW(s) "L N(O, 1
\/V ti—1 )

t
and an auxiliary quantity U(t) = / e =9z, (s),
0
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Discretely observed continuous time model

Discretely observed continuous time model

Introducing
Xi= X(t) = X(tic1), Yi=Y(&) = Y(ti-1), Z=2(t)— (i),

W, = \/ 2)dW(s) "L N(O, 1
\/V ti—1 )

t
and an auxiliary quantity U(t) = / e =9z, (s),

using tx = Ak, A > 0 fixed aond 7i = 7(t;) we have

1
=i+ U, Yiseig+8, Si=1(Z-U)

Xi = pl + BY; + o/ YiW, + pZ,
where v = e, U=U()-Ut_), (U,Z) iid
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Estimating functions

9 The simple explicit estimator

@ Estimating functions

o = = QR
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Estimating functions

Martingale estimating functions

@ Suppose that Xi, X», ..., X, are observations from a model
with a d-dimensional parameter 6 € ©.
@ an estimator 6, is obtained solving the equation

Gn(x1 b X27

,Xn,e) :0,
where Gp(0) is a d—dim estimating function of the
parameter § € RY.

] = = = Q>
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Estimating functions

Martingale estimating functions

@ Suppose that Xi, X», ..., X, are observations from a model
with a d-dimensional parameter 6 € ©.

@ an estimator 6, is obtained solving the equation
Gn(x1aX27"'7Xn;0) = 07 (2)

where Gp(0) is a d—dim estimating function of the
parameter § € RY.

@ Among the class of unbiased or Fisher consistent
estimating functions, we will analyze those estimating
functions that are martingales.
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Estimating functions

Estimating equations
Let 0=v,a,\uB,00p)", X=(X,7).

We consider the following 7 martingale estimating functions:

GH0) = Z [~ ECrlrn)], GE(6) = Z [r1-1 — 71l
&0) = z [ — EGfinn)],  GiO) = z X — ECtlr),
Gh(0) = é [Ximiot — mi1E(Xil7i1)],  Gh(0) = é [Ximi — E(XiTil7i—1)],
Gr(6) = Z [XF — E(XP|7i-1)]-

i=1

V.
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Estimating functions

The specifications for G — GJ, belong to the more general class of martingale

estimating functions of the form

n
GhO) =D d(mi ;O [X -7 = F(r1:0)], j=1,....4,
i=1

where o/ (V7i_1) is some F;_q-adapted random variable,
P(2,0) = EIX{ ' |m0 = 4]

and we have
hits

Alu0)=> ¢)0)- .
=0

v
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Remark

Estimating functions
The explicit solution

Consisteny
Numerical illustrations

e for the simple explicit estimator /(1) = ¢ or o/(¢) = 1 which
gives explicit G,(0), the explicit solution of G,(#) = 0 and

the explicit Cov(f,).
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Remark

e for the simple explicit estimator /(1) = ¢ or o/(¢) = 1 which
gives explicit G,(0), the explicit solution of G,(#) = 0 and

the explicit Cov(f,).

@ in this setting the problem of finding the resulting estimator
explicitly amounts to solving d explicitly given

equations.
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The explicit solution

9 The simple explicit estimator

@ The explicit solution

o = = QR
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Estimating functions
The explicit solution

Consisteny
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The simple estimator 6, = (v, o, \, i, 8, 0, p) is given by

_ 11 1,2 nUn fn
_(gn En n)/( (Un) )7 Cn_ —1 +'Yn

_(_1 +7%)(U;1)2 'Yn'Un +§n
—1 +7n

en = (1 —n)/An, Bn =

—log(vn)/A
(& — vih)
en(vf — (v})?)’
= (= Bnen(—(vn)? + endn(in + (vn)? — v3) + vh) — &aén + £5) / (2enmnn),
pin = (= BAnpnCn — B(Aln + en(—Cn + v1)) +£3) /D, 0 = \/an/bn;

4ﬂn(_A T En)"]nAnpn aF ﬁ%(—ZAﬁn - En(T]n(2 + EnAn) +
An
jLenAn((vl)2 — v2))) + An(=28mnAnph — (63)° + &7)
An ’
bn = ACn ar En(*Cn ar U;),
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The explicit solution

where
1 n 1 n 1 n
é-:]:E,ZTh éﬁZBZTI’TI’—h 62_5 7-I27
i=1 i=1 i=1
1 n 1 n 1 n
gzzﬁz)(lv ngﬁz)(ﬂ-l—h gg_fz)(l'rh
i=1 i=1 i=1
1 n 1 n 1 n
552521)(1'27 U;:BZTI_1’ UEIZE"Tsz‘I
i= i= i=
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Consisteny

9 The simple explicit estimator

@ Consistency and asymptotic normality

o = = QR
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Consisteny

Consistency

P(Cn) — 1 as n— oo, where C, = {£4 — ¢lv} > 0} and the
estimator 0, = (vn, @n, An, ttn, Bn, on, pn) is consistent on Cp,
namely

0, 2% 60, onC, asn— oco.
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Consisteny

Asymptotic normality

The estimator 6, = (v, an, An, jin, Bns on, p) is asymptotically
normal, namely

V[ — 6] = N(,T) as n— oo,

where

) T = A(G)’1’Y‘(A(0)’1)T7 T; = E[Cov(Z}, =) |70)]
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Consisteny

Asymptotic normality

The estimator 6, = (v, an, An, jin, Bns on, p) is asymptotically
normal, namely

V[ — 6] = N(,T) as n— oo,

where
° T=A0)"'"T(AO®)),  Ti=E[Cov(Z}, =} |n)]
] Sk = (Tky TkTh—1, TE ) Xk, XiTk—1, X, XE) T
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Consisteny

Asymptotic normality

The estimator 6, = (v, an, An, jin, Bns on, p) is asymptotically
normal, namely

V[ — 6] = N(,T) as n— oo,

where
° T=A0)"'"T(AO®)),  Ti=E[Cov(Z}, =} |n)]
] =k = (Th, TkTh—15 T Xies XicTk—1, XiThe, XE)
° [ (pU)
. J
AB) % Tim Lun0), SR, 09) = dGh(6 ) k=1 .4
n—oo N 819;(
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Numerical illustrations

9 The simple explicit estimator

@ Numerical illustrations

o = = QR
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BNS-rou

Numerical illustrations

We consider the '-OU model, for which the trading volume
has a stationary I'(v, ) distribution.

= & = = =
Inference for BNS stochastic volatility models




Numerical illustrations

BNS-Trou

We consider the '-OU model, for which the trading volume
has a stationary I'(v, ) distribution.

@ The corresponding BDLP Z is a compound Poisson process with
intensity v and jumps from the exponential distribution with parameter «

@ We use as time unit one year consisting of 250 trading days.

The true parameters are:
v=617, a=142, X=177.95 (= -0.015 p=—0.00056, u=
0.435, o =0.087.

Inference for BNS stochastic volatility models
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Interpretation

There are on average 4.4 jumps per day and the jumps in the BDLP and in
the trading volume are exponentially distributed with mean and standard
deviation 0.704.

@ typically every day 4 or 5 new pieces of information arrive and make the
trading volume process jump

Estimating functions
The explicit solution

Consisteny
Numerical illustrations

@ the stationary mean of the trading volume is 4.35, and of the variance is
0.033

@ if we define instantaneous volatility to be the square root of the
variance, it will fluctuate around 18% in our example

@ The half-life of the autocorrelation of the variance process is about a day

@ Annual log returns have (unconditional) mean —6.5% and annual
volatility 18.2%.
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Numerical illustrations

The resulting time series: BDLP and trading volume
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Numerical illustrations

The resulting time series: volatility and log returns
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Numerical illustrations

The asymptotic covariance matrix of the estimator

We do not estimate the asymptotic covariance, but evaluate the
explicit expression using the true parameters. Denoting the
vector of asymptotic standard deviations of the estimates and
the correlation matrix by s/+/n resp. r we have

s = [12.0257, 2.7878, 443.85, 9.0211, 2.5536, 0.0657, 0.007]"

i 1 0.938 0.578 0.007  0.051 0.006 —0.003
0.938 1 0.574 0.008  0.051 0.017 —0.004
0.578 0.574 1 0.011 0.088 —0.0006 -6.2-10~"
= 0.007  0.008 0.011 1 —-0.827 —0.013 0.03
0.0511  0.051 0.088 —0.827 1 0.012 —0.515
0.006  0.013 —0.0006 —-0.013 0.012 1 —0.005
| —0.003 -0.004 -6.2-10-"7 003 -0.515 —0.005 1
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Finite sample performance of the estimator

We will perform the estimation procedure for two different
sample sizes, namely 2500 and 8000, corresponding to 10
years and 32 years respectively, with 250 daily observation per
year.
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Finite sample performance of the estimator

We will perform the estimation procedure for two different
sample sizes, namely 2500 and 8000, corresponding to 10
years and 32 years respectively, with 250 daily observation per
year.

The empirical distribution of the simple estimators for the -OU
model is illustrated. The histograms are produced from

m = 1000 replications consisting of n = 2500 observations
each, corresponding to 10 years. We compare to the AN
distribution
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Numerical illustrations

The distribution of the estimate: v, u
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Numerical illustrations

The distribution of the estimate «, &
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Numerical illustrations

The distribution of the estimate A, p
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Numerical illustrations

The distribution of the estimate o

4 s
o -
0.082 0.084 0.086 0.088 0.09 0.092 0.094

(=] [ =

Inference for BNS stochastic volatility models




Application to daily data: the IBM stock

@ The BNS model will be fitted to daily log returns of the
International Business Machines Corporation (IBM) stock
at the New York Stock Exchange (NYSE)

@ The data spans over 5 years starting in March 23, 2003 to
March 23, 2008

@ There were 1259 observations of daily closing prices and
trading volumes. Data on trading volumes are expressed in
millions

@ Sample measures of skewness and kurtosis of the returns
are —0.35 and 7.42

Inference for BNS stochastic volatility models



The resulting time series:closing prices and trading
volume
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The resulting time series:log returns

—0.02 b

—0.04 4

—0.08 |- b

-0.1

2004 2005 2006 2007 2008

(=] [ =

Inference for BNS stochastic volatility models




Results and interpretation

Parameter Value St.dev.
% 6.17 0.339
19 1.42 0.079
A 177.95 12.509
i 0.435 0.254
I} -0.015 0.072
& 0.087 0.002
P -0.00056 || 0.0002

(=] [ = =
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Results and interpretation

Unconditional moments Value
E[X] —0.027%
St.dev[X] 1.15%
E[V] 3.3%
St.dev[V] 1.32%

o & = = DA
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Results and interpretation

@ There are on average 4.4 jumps per day each with mean
and standard deviation 0.704

@ Typical volatility is 0.18 with standard deviation 0.11
@ The proportionality of trading volume and the
instantaneous variance is given by ¢ = 0.0076

@ The leverage p is very small. For instance, the mean
values of daily log-returns including or not a leverage effect
in the model equal —0.027%, and 0.146% respectively. If
the trading volume process jumps by a typical size, the
returns jump by 0.0004.
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Estimation of the volatility
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The autocorrelation function for the variance process and the estimated theoretical

autocorrelation

Autocorrelation for variance
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Model fit investigation

@ We performed a Ljung-Box test for squared residuals of the
data set

o = = = = ) Q(
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Model fit investigation

@ We performed a Ljung-Box test for squared residuals of the
data set

@ We test the normality of the residuals
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Model fit investigation

@ We performed a Ljung-Box test for squared residuals of the
data set

@ We test the normality of the residuals

@ What are exactly the residuals in the BNS setting?

] = = = Q>
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Estimated residuals

From X; = pA + BY; + o/ YiW; + pZ;, it follows that
Wi = (X, — pp — BY; - 5Z) /6 Y;,  i€N
Since, Z; is usually not observable, we have to approximate it.

For the integral we use simple Euler approximations

li

i
Y = 7(s—)ds ~ ;A and / VT(8)dW(s) ~ /i - Ace,

i1 ti1
)
with & ~ N(0,1).
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The residuals

where

= & = = =
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&= (Xi — pA = Bris = pZ;) /6/7; - A

Zi=(ANA+ )7 —7iy




The residuals

&= (Xi — pA = Bris = pZ;) /5\/7i - A
where
Zi=(AA+ 1)1 — 7i1.

The estimated mean, standard deviation, skewness and
kurtosis of the residuals:

mean(é) std() skew(£) kurt()
IBM | —0.01568 | 1.03142 | —0.17053 | 5.40659

y

Inference for BNS stochastic volatility models




Model fit - continued

@ Ljung-Box test: the test statistic used 35 lags of the
corresponding empirical autocorrelation function

] = = = Q>
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Model fit - continued

@ Ljung-Box test: the test statistic used 35 lags of the
corresponding empirical autocorrelation function

@ The test statistic for the IBM squared residuals was equal
to 451.61, which led to a rejection of the null hypothesis,
since the test had a critical value of 113.15 at the 0.05 level
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Model fit - continued

@ Ljung-Box test: the test statistic used 35 lags of the
corresponding empirical autocorrelation function

@ The test statistic for the IBM squared residuals was equal
to 451.61, which led to a rejection of the null hypothesis,
since the test had a critical value of 113.15 at the 0.05 level

@ The IBM residuals pass the Kolmogorov-Smirnov test of
normality, for example, with p-value 0.0886,
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The empirical autocorrelation function for the residuals

20
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The empirical autocorrelation function for the squared
log returns and squared residuals for IBM
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The normal probability plot of log returns and residuals
for IBM
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Kernel estimates of the density and log density with
the theoretical one for IBM
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Estimated mean, mean square error (MSE) and mean absolute error (MAE) of all the

estimated parameter values, with the empirical standard deviations in brackets.

n = 2500 Un Qn An
Mean | 6.2145 (0.2552) | 1.435 (0.0588) | 177.865 (8.9257)
MSE 0.0672 (0.1046) | 0.0036 (0.0055) | 79.5956 (115.6766)
MAE 0.2016 (0.1629) | 0.047 (0.0369) 7.0692 (5.4454)
n = 8000 Vn Qn An
Mean | 6.1642 (0.1424) | 1.4186 (0.0329) | 177.1342 (5.208)
MSE 0.0203 (0.0283) | 0.0011 (0.0016) | 27.7663 (39.1414)
MAE | 0.1135(0.0862) | 0.0259 (0.0203) | 4.2191 (3.1584)
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Estimated mean, mean square error (MSE) and mean absolute error (MAE) of all the

estimated parameter values, with the empirical standard deviations in brackets.

n Bn On Pn
0.4402 (0.1849) 0.0148 (0.053) 0.0871 (0.001) —6-107*% (- 1074)
0.0342 (0.0492) | 0.0028 (0.0039) | 2- 106 (2- 10_6) 2.10°8 (3- 10_8)
0.1483 (0.1105) | 0.0428 (0.0313) 0.0011 (0.001) 1.1074 9- 10_5)
Hn Bn

On

Pn

0.4388 (0.1002)
0.01 (0.0138)
0.08 (0.0604)

0.0129 (0.03)
0.0008 (0.001)
0.0222 (0.02)

0.1(7-107%
6-1077(8-1077)
6-107*(5-107%)

—6-107%(8.07-107°)
7-107°(1-107%)
6-107°(5.04-1079)

(=]

&
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Further issues

@ Instantaneous variance is not an observable quantity in
discrete time and various quantities are suggested as
substitutes for the variance
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Further issues

@ Instantaneous variance is not an observable quantity in
discrete time and various quantities are suggested as
substitutes for the variance

@ the resulting estimating function will not be a martingale
estimating function anymore and the bias has to be
accounted for in a rigorous analysis
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Further issues

@ Instantaneous variance is not an observable quantity in
discrete time and various quantities are suggested as
substitutes for the variance

@ the resulting estimating function will not be a martingale
estimating function anymore and the bias has to be
accounted for in a rigorous analysis

@ superposition of OU-processes
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Further issues

@ Instantaneous variance is not an observable quantity in
discrete time and various quantities are suggested as
substitutes for the variance

@ the resulting estimating function will not be a martingale
estimating function anymore and the bias has to be
accounted for in a rigorous analysis

@ superposition of OU-processes

@ comparison with the GMM estimation procedure (or
combination of estimation procedures)
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