Estimating the jump measure
of a Lévy process

Markus Reil3*

Humboldt University Berlin
www.math.hu-berlin.de/ ~mreiss

EURANDOM Workshop
Statistical Inference for Lévy Processes
Eindhoven, 15 July 2009

*joint with M.H. Neumann, J. Kappus



Outline The model High versus low frequency Efficient low-frequency estimation Simulation example Summary

Outline

The model

High versus low frequency

Efficient low-frequency estimation

Simulation example

Summary



Outline The model High versus low frequency Efficient low-frequency estimation Simulation example Summary

Lévy-Khintchine formula

Lévy-Khintchine characterisation
The characteristic function of a Lévy process L is given by:

pi(u) == E [e"] = exp(ty(u))

2 oo )
P(u) = _%uz + ibu +/ (e™ —1— %55) v(dx)

with volatility o > 0, drift b € R and jump measure v.
(v is o-finite with [(1 A x?)v(dx) < o)
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Lévy-Khintchine formula

Lévy-Khintchine characterisation
The characteristic function of a Lévy process L is given by:

pi(u) == E [e"] = exp(ty(u))

o2 ) o .
P(u) = _?uz + ibu + /_Oo(e'“" -1 12%5) v(dx)

with volatility o > 0, drift b € R and jump measure v.
(v is o-finite with [(1 A x?)v(dx) < o)

Lévy-Itd decomposition if v(R) < oco:

Le = oW + bt + 30, Y

with Brownian motion W, b = b — J ﬁu(dx), a Poisson
process N; of intensity A := v(R) and jumps Yy ~ v/A.



The model

Statistical problem

Observations
(Lty, Lty - - -, Lty ) with 4 — tj = A equidistant.

Assumptions

T = nA — ~o (long-time asymptotics),

A = A, — 0 fast (high frequency)

or A > 0 fixed resp. A = A, — 0 slowly (low frequency).

Goal
Estimate the triplet (o2, b, ) with

¢ 02 >0;
e bcR;
» measure v with interest in [ f dv for different integrands f.
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High-frequency estimation

Idea:
Large increments Xy := Ly, — Ly, indicate a jump
(larger than diffusive oscillations, i.e. > /A loglog A-1)
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High-frequency estimation
Idea:

Large increments Xy := Ly, — Ly, indicate a jump
(larger than diffusive oscillations, i.e. > \/Aloglog A-1)

Figueroa-Lopez, Houdré (2006):
g, € L2 density of v, D € R\ {0}, () ONB in L?(D):

Gy = ijzl Gigj with 3 = T30 (%)
If g, has Sobolev-regularity s on D and At — O sufficiently fast:

E[ll§, — g””LZ D)] < T-2s/(2s+1)

2
/fg,,—/fgl, ],ST_lforaIIfeL4
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|dea for low-frequency estimation

Transformation to density estimation
X =Ly — Ly ., k=1,...,n,areiid.
with characteristic function

o(u) = exp (A( — 2u? +ibu + /_Z(e‘“x ~1- 1‘i§2)v(d><)))

Empirical characteristic function
. 1 : iux, N—oo 2 .
en(u) := ﬁ Ze — (0%, b,v;u) under P2, )
k=1
Minimum-distance estimator
(63, bn, 2n) == arginf 2, ,y d (on, (02, b, V7))

Lévy-Ornstein-Uhlenbeck-type process, option calibration:
Jongbloed/van der Meulen/van der Vaart 2005, Cont/Tankov 2004
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Consistency for A > 0 fixed
Assumptions on the distance
nll_)rgo d ((pn, (p(O’ ,b,v; o)) =0 ]P)(o'z,b,y) -a.s.

. . t t
mlmod(@(m),@) =0= lm Jg ¢M(u)du = [Jp(u)du Vst €R.

Example: d(f,g) = ([|f — g|Pw)/P withw € L', w >0
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Consistency for A > 0 fixed
Assumptions on the distance
; 2 .
nll_)rgo d ((pn, (p(U ,b,v; o)) =0 ]P)(o'z,b,y) -a.s.
i (m) ) = ' t p(m) =
mI@OOd(go ,©) O:>mlinoofsgo (u)du = [{@(u)du Vst eR.

Example: d(f,g) = ([|f — g|Pw)/P withw € L', w >0
Then:

<d(y (Ar% bn, Pnie), @n) + d(n, (0%, b, v )
< 2d(n, (Uz,b,V;o)) 23,0

and therefore [ (62, bn, on; u)du 2% [ (02, b, v; u)du.
This implies IP’(&% Buon) = P2p,) @s.
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Consistency |l

Does P "= P(2p,) iMply 63 — 02, by — b, 7 — v ?

(&%,Bn,ﬁn)
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Consistency |l

n—oo

Does Pz 5y = P(o2.b.) IMPlY 52 = 0%, by —b,op —v?

Proposition (Gnedenko/Kolmogorov 1949)

IP’(G%bmyn) = P(Uz’b,y) <= by — b and v, = v, weakly
with the finite measure v, (dx) := odo(dx) + ﬁizy(dx).
Corollary

The minimum-distance estimator is consistent for (b, v,).



High versus low frequency

Consistency |l

n—oo

Does]P’(Uzb ) P2 p0) imply 62 — o2, bn — b, o — v ?

Proposition (Gnedenko/Kolmogorov 1949)

P(O%bmyn) = ]P’(Uz’b,y) <= by — b and v, = v, weakly
with the finite measure v, (dx) := odo(dx) + ﬁizy(dx).
Corollary

The minimum-distance estimator is consistent for (b, v,).

Proposition
The volatility o2 cannot be estimated uniformly consistently:
no estimator 52 can satisfy for any o2 > 0

Ve>0: lim supPyzp (65 — 0% >¢e) =0.

n—oo bl/

The same is true, e.g., for the Blumenthal-Getoor index.
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Kolmogorov representation

Assumption: E[L?] < oo or equivalently [ x?v(dx) < occ.
Canonical representation (Kolmogorov 1932):

o(u) = exp (A( — ";uz +iub + /OO (e — 1 —iux) y(dx)))

e (afun s [T LN, (00))

e X2

with v, (dx) = 025(dx) + x?v(dx).
Note: here E[L;] = b and Var(L;) = v,(R) hold.
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Kolmogorov representation

Assumption: E[L?] < oo or equivalently [ x?v(dx) < occ.
Canonical representation (Kolmogorov 1932):

o(u) = exp (A( — ";uz +iub + /OO (e —1— iux)u(dx)))

e (afun s [T LN, (00))

o X2
with v, (dx) = 025(dx) + x?v(dx).
Note: here E[L;] = b and Var(L;) = v,(R) hold.

Important observation:

d? © d2 el _ 1 —jux

A‘lw log((u)) = G v Vo (dX) = —Fr,(u)



Efficient low-frequency estimation

Two constructions of estimators

d? © d2 e _ 1 — jux
~1
A au2 log(p(u)) = . az 2 Ve (dX) = —Fvg(u)

1. Plug-in + spectral cut-off at U > 0: (cf. Belomestny/ReiR 2006)

2

. . d
Fog(u) :=—A 1@ log(on(u))lyy(u), ueR

2. Minimum-distance estimator with a C2-distance to control

ea(Wen(u) — ¢h(u)® — ¢"(u)p(u) - ¢'(u)?
pn(u)? p(u)?
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Two-step estimation procedure

Preliminary estimator:
bn =T 'Ly, Fion = —A"t10g(pn)"L(|n| = kn~Y/?)

Minimum-distance estima}tor:
optimize locally around (by, 7, ) to find

(BI’U ﬁo’,ﬂ) = al‘glnf(bjua) dC2 ((pn’ @(b7 Vg! .))

where (weighting w(u) = log(e + |u])~%/27¢)

dea(g,h) = max A2 sup (g0(u) — i) (u)w(w))
—Y u
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Estimation error

How fast can we estimate [ fdv,?
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Estimation error

How fast can we estimate [ fdv,?

Assume E[|L;|**¥] < oco. For integrands f of regularity s
((1 4 x?)/2Ff € L') we have

|[fdipn— [fdu,| Spv(T,A) v T 12

with
o>0: V(T,A) = (A" log(T)) /2
o =0, |p(u)| Z e A v(T,A) = (A" og(T))

o =0, p(u)] Z (1+u]) 2 v(T,A) =T /(4)
(times a log-factor)

These rates are optimal in a minimax-sense.
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Estimation vs. discretisation error

Assume E[|L;|**¢] < cc. For integrands f of regularity s
((1 +x?)3/2Ff € LY) we have

|[fdD,n — [fdu,| Sp T71/2

provided
o>0: A<T S
0 =0, [p(u)] z e Al AST Y
0=0,Jp(u)| 2@+ P2 A<s/s
Example:

Gamma-processes (p(u) = (1 —iu/\)~P2) require A < s/p;
compound Poisson processes do not require A to be small.
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Main tool in the proof (A = 1)

Consider the k-th derivative of the empirical characteristic
process

Cr(]k)(u) — dduk (nfl/Z Z(eluxj _ E[eluxj])>.
j=1

Then with the empirical process G, = n/2(Fxt*" —FX)

sup|Cr(1k)(u)|W(u) =sup [ hdGp
uek heH

with ’
H= {x - w(u)ddw(eiux Luc R}.
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Main tool in the proof (ctd.)

ko
H= {x Hw(u):w(e'uxz u e]R}

Consequently, empirical process theory yields

sup E | sup|Cy/ () w(u)] < E[0G)*] +3y(H)

with Jpj the bracketing entropy of H. For suitable brackets

ki
h"(x) = (w(uy) @™ e X[ ) Ly )W oo X [ L paje (X)

this Jy is finite for w(u) ~ (log(u))~*/?~ and E[|Xj|?**] < cc.



Efficient low-frequency estimation

Decay of ¢ versus singularity of v

Lemma:

Consider a Lévy process with a characteristic function of at
most polynomial decay: | (u)| > (1 + u?)~At. Then the Lévy
measure v satisfies forany ¢ > 0

/ log(|x|~1)"2~*v(dx) < oc.
[7171]

This implies sup,cr|¢’(u)/¢(u)| < oo provided ¢ € C1.
Example:

The Lévy measure of the Gamma process has a density of
order x ! around zero and Jioaa log(]x|~%)~2=¢|x|tdx < oo.
Intuition:

The more singular the Lévy measure at zero, the rougher the
sample paths, but the smoother the transition density.
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Example

Simulation:

Superposition of Brownian motion and Exp(1)-process
o=1b=1,v(dx) =x"te ™1y g dx
A=1,n=1000

10 5 o 5 10

modulus of the empirical (solid
Histogram of the data. blue) and true (dashed orange)
characteristic function.
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Estimation for the example

by = 0.922 (true b = 1), 7,.n({0})Y/2 = 1.092 (true o = 1)

Estimate of v([1, o)

=i x

~2u,(dx) is 0.16 (true: 0.22).

The HF-estimator 2 = lel 1q,-L, ,>1y Yields 0.46.

Im(¢n) (blue), Im(y) (orange),
Im(

n) (green) and Im(¢n) (red).

density of 7, (green), P, (solid)
and v, (orange);
7 has no point mass in zero.

Summary
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High. vs. low-frequency observations of a Lévy process

LF-estimation based on minimum-distance fit of
characteristic function.

LF-estimation of o2 cannot be uniformly consistent.
Adjust to any observation distance A.

LF-rate for b = E[L,] is parametric.

LF-rate for [ f dv, depends on the decay of .

LF-rate T~1/2 for [fdu, if A < A(p,s; T) (automatic).

Summary



Summary

High. vs. low-frequency observations of a Lévy process

LF-estimation based on minimum-distance fit of
characteristic function.

LF-estimation of o2 cannot be uniformly consistent.
Adjust to any observation distance A.

LF-rate for b = E[L,] is parametric.

LF-rate for [ f dv, depends on the decay of .

LF-rate T~1/2 for [fdu, if A < A(p,s; T) (automatic).

Thank you very much for your attention!

Summary
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