Estimating the jump measure of a Lévy process

Markus Reiß*

Humboldt University Berlin www.math.hu-berlin.de/~mreiss

EURANDOM Workshop Statistical Inference for Lévy Processes Eindhoven, 15 July 2009

^{*}joint with M.H. Neumann, J. Kappus

The model

High versus low frequency

Efficient low-frequency estimation

Simulation example

Summary

Lévy-Khintchine formula

Lévy-Khintchine characterisation

The characteristic function of a Lévy process *L* is given by:

$$\begin{aligned} \varphi_t(u) &:= \mathbb{E}\left[e^{iuL_t}\right] = \exp(t\psi(u)) \\ \psi(u) &:= -\frac{\sigma^2}{2}u^2 + ibu + \int_{-\infty}^{\infty} (e^{iux} - 1 - \frac{iux}{1 + x^2})\nu(dx) \end{aligned}$$

with volatility $\sigma \ge 0$, drift $b \in \mathbb{R}$ and jump measure ν . (ν is σ -finite with $\int (1 \wedge x^2)\nu(dx) < \infty$)

Lévy-Itô decomposition if $\nu(\mathbb{R}) < \infty$:

$$L_t = \sigma W_t + \tilde{b}t + \sum_{k=1}^{N_t} Y_k$$

with Brownian motion W_t , $\tilde{b} = b - \int \frac{x}{1+x^2} \nu(dx)$, a Poisson process N_t of intensity $\lambda := \nu(\mathbb{R})$ and jumps $Y_k \sim \nu/\lambda$.

Lévy-Khintchine formula

Lévy-Khintchine characterisation

The characteristic function of a Lévy process *L* is given by:

$$\begin{aligned} \varphi_t(u) &:= \mathbb{E}\left[e^{iuL_t}\right] = \exp(t\psi(u)) \\ \psi(u) &:= -\frac{\sigma^2}{2}u^2 + ibu + \int_{-\infty}^{\infty} (e^{iux} - 1 - \frac{iux}{1 + x^2})\nu(dx) \end{aligned}$$

with volatility $\sigma \ge 0$, drift $b \in \mathbb{R}$ and jump measure ν . (ν is σ -finite with $\int (1 \wedge x^2)\nu(dx) < \infty$)

Lévy-Itô decomposition if $\nu(\mathbb{R}) < \infty$:

$$L_t = \sigma W_t + \tilde{b}t + \sum_{k=1}^{N_t} Y_k$$

with Brownian motion W_t , $\tilde{b} = b - \int \frac{x}{1+x^2} \nu(dx)$, a Poisson process N_t of intensity $\lambda := \nu(\mathbb{R})$ and jumps $Y_k \sim \nu/\lambda$.

Statistical problem

Observations $(L_{t_0}, L_{t_1}, \ldots, L_{t_n})$ with $t_{i+1} - t_i = \Delta$ equidistant.

Assumptions $T = n\Delta \rightarrow \infty$ (long-time asymptotics), $\Delta = \Delta_n \rightarrow 0$ fast (*high frequency*) or $\Delta > 0$ fixed resp. $\Delta = \Delta_n \rightarrow 0$ slowly (*low frequency*).

Goal

Estimate the triplet $(\sigma^2, \mathbf{b}, \nu)$ with

- σ² ≥ 0;
- *b* ∈ ℝ;
- measure ν with interest in $\int f d\nu$ for different integrands f.

High-frequency estimation

Idea:

Large increments $X_k := L_{t_k} - L_{t_{k-1}}$ indicate *a* jump (larger than diffusive oscillations, i.e. $\gg \sqrt{\Delta \log \log \Delta^{-1}}$)

Figueroa-Lopez, Houdré (2006): $g_{\nu} \in L^2$ density of ν , $D \in \mathbb{R} \setminus \{0\}$, (φ_j) ONB in $L^2(D)$:

$$\hat{g}_{
u} := \sum_{j=1}^{J} \hat{eta}_j \varphi_j$$
 with $\hat{eta}_j := T^{-1} \sum_{k=1}^{n} \varphi_j(X_k)$

If g_{ν} has Sobolev-regularity s on D and $\Delta_T \rightarrow 0$ sufficiently fast:

$$\mathbb{E}[\|\hat{g}_
u - g_
u\|_{L^2(D)}^2] \lesssim T^{-2s/(2s+1)} \ \mathbb{E}\left[\left(\int_D f \hat{g}_
u - \int_D f g_
u
ight)^2
ight] \lesssim T^{-1} ext{ for all } f \in L^4$$

High-frequency estimation

Idea:

Large increments $X_k := L_{t_k} - L_{t_{k-1}}$ indicate a jump (larger than diffusive oscillations, i.e. $\gg \sqrt{\Delta \log \log \Delta^{-1}}$)

Figueroa-Lopez, Houdré (2006): $g_{\nu} \in L^2$ density of ν , $D \in \mathbb{R} \setminus \{0\}$, (φ_j) ONB in $L^2(D)$:

$$\hat{g}_{
u} := \sum_{j=1}^J \hat{eta}_j arphi_j$$
 with $\hat{eta}_j := T^{-1} \sum_{k=1}^n arphi_j(X_k)$

If g_{ν} has Sobolev-regularity s on D and $\Delta_T \rightarrow 0$ sufficiently fast:

$$\mathbb{E}[\|\hat{g}_{
u} - g_{
u}\|_{L^2(D)}^2] \lesssim T^{-2s/(2s+1)}$$

 $\mathbb{E}\left[\left(\int_D f \hat{g}_{
u} - \int_D f g_{
u}
ight)^2
ight] \lesssim T^{-1} ext{ for all } f \in L^4$

Idea for low-frequency estimation

Transformation to density estimation $X_k := L_{t_k} - L_{t_{k-1}}$, k = 1, ..., n, are i.i.d. with characteristic function

$$\varphi(u) = \exp\left(\Delta\left(-\frac{\sigma^2}{2}u^2 + ibu + \int_{-\infty}^{\infty} (e^{iux} - 1 - \frac{iux}{1+x^2})\nu(dx)\right)\right)$$

Empirical characteristic function

$$\varphi_n(u) := \frac{1}{n} \sum_{k=1}^n e^{iuX_k} \xrightarrow{n \to \infty} \varphi(\sigma^2, b, \nu; u) \text{ under } \mathbb{P}_{(\sigma^2, b, \nu)}$$

Minimum-distance estimator

$$(\hat{\sigma}_n^2, \hat{b}_n, \hat{\nu}_n) := \operatorname{arginf}_{(\sigma^2, b, \nu)} d(\varphi_n, \varphi(\sigma^2, b, \nu; \bullet))$$

Lévy-Ornstein-Uhlenbeck-type process, option calibration: Jongbloed/van der Meulen/van der Vaart 2005, Cont/Tankov 2004

Consistency for $\Delta>0$ fixed

Assumptions on the distance

$$\lim_{n \to \infty} d(\varphi_n, \varphi(\sigma^2, b, \nu; \bullet)) = 0 \quad \mathbb{P}_{(\sigma^2, b, \nu)} \text{-a.s.}$$
$$\lim_{m \to \infty} d(\varphi^{(m)}, \varphi) = 0 \Rightarrow \lim_{m \to \infty} \int_s^t \varphi^{(m)}(u) \, du = \int_s^t \varphi(u) \, du \quad \forall s, t \in \mathbb{R}.$$

Example: $d(f, g) = (\int |f - g|^{p} w)^{1/p}$ with $w \in L^{1}$, w > 0

Then:

$$d(\varphi(\hat{\sigma}_n^2, \hat{b}_n, \hat{\nu}_n; \bullet), \varphi(\sigma^2, b, \nu; \bullet)) \\ \leqslant d(\varphi(\hat{\sigma}_n^2, \hat{b}_n, \hat{\nu}_n; \bullet), \hat{\varphi}_n) + d(\hat{\varphi}_n, \varphi(\sigma^2, b, \nu; \bullet)) \\ \leqslant 2d(\hat{\varphi}_n, \varphi(\sigma^2, b, \nu; \bullet)) \xrightarrow{\text{a.s.}} 0$$

and therefore $\int_{s}^{t} \varphi(\hat{\sigma}_{n}^{2}, \hat{b}_{n}, \hat{\nu}_{n}; u) du \xrightarrow{\text{a.s.}} \int_{s}^{t} \varphi(\sigma^{2}, b, \nu; u) du$. This implies $\mathbb{P}_{(\hat{\sigma}_{n}^{2}, \hat{b}_{n}, \hat{\nu}_{n})} \Rightarrow \mathbb{P}_{(\sigma^{2}, b, \nu)}$ a.s.

Consistency for $\Delta > 0$ fixed

Assumptions on the distance

$$\lim_{n \to \infty} d(\varphi_n, \varphi(\sigma^2, b, \nu; \bullet)) = 0 \quad \mathbb{P}_{(\sigma^2, b, \nu)} \text{-a.s.}$$

$$\lim_{m \to \infty} d(\varphi^{(m)}, \varphi) = 0 \Rightarrow \lim_{m \to \infty} \int_s^t \varphi^{(m)}(u) \, du = \int_s^t \varphi(u) \, du \quad \forall s, t \in \mathbb{R}.$$
Example: $d(f, g) = (\int |f - g|^p w)^{1/p}$ with $w \in L^1$, $w > 0$
Then:

$$d(\varphi(\hat{\sigma}_n^2, \hat{b}_n, \hat{\nu}_n; \bullet), \varphi(\sigma^2, b, \nu; \bullet)) \\ \leqslant d(\varphi(\hat{\sigma}_n^2, \hat{b}_n, \hat{\nu}_n; \bullet), \hat{\varphi}_n) + d(\hat{\varphi}_n, \varphi(\sigma^2, b, \nu; \bullet)) \\ \leqslant 2d(\hat{\varphi}_n, \varphi(\sigma^2, b, \nu; \bullet)) \xrightarrow{\text{a.s.}} 0$$

and therefore $\int_{s}^{t} \varphi(\hat{\sigma}_{n}^{2}, \hat{b}_{n}, \hat{\nu}_{n}; u) du \xrightarrow{\text{a.s.}} \int_{s}^{t} \varphi(\sigma^{2}, b, \nu; u) du$. This implies $\mathbb{P}_{(\hat{\sigma}_{n}^{2}, \hat{b}_{n}, \hat{\nu}_{n})} \Rightarrow \mathbb{P}_{(\sigma^{2}, b, \nu)}$ a.s.

Consistency II

Does $\mathbb{P}_{(\hat{\sigma}_{n}^{2},\hat{b}_{n},\hat{\nu}_{n})} \stackrel{n \to \infty}{\Longrightarrow} \mathbb{P}_{(\sigma^{2},b,\nu)}$ imply $\hat{\sigma}_{n}^{2} \to \sigma^{2}, \hat{b}_{n} \to b, \hat{\nu}_{n} \to \nu$? Proposition (Gnedenko/Kolmogorov 1949) $\mathbb{P}_{(\sigma_{n}^{2},b_{n},\nu_{n})} \Rightarrow \mathbb{P}_{(\sigma^{2},b,\nu)} \iff b_{n} \to b \text{ and } \nu_{\sigma,n} \Rightarrow \nu_{\sigma} \text{ weakly}$

with the finite measure $\nu_{\sigma}(dx) := \sigma^2 \delta_0(dx) + \frac{x^2}{1+x^2} \nu(dx)$.

Corollary

The minimum-distance estimator is consistent for (b, ν_{σ}) .

Proposition

The volatility σ^2 cannot be estimated uniformly consistently: no estimator $\tilde{\sigma}_n^2$ can satisfy for any $\sigma^2 \ge 0$

$$\forall \varepsilon > 0: \lim_{n \to \infty} \sup_{b, \nu} \mathbb{P}_{(\sigma^2, b, \nu)}(|\tilde{\sigma}_n^2 - \sigma^2| > \varepsilon) = 0.$$

The same is true, e.g., for the Blumenthal-Getoor index.

Consistency II

Does $\mathbb{P}_{(\hat{\sigma}_n^2, \hat{b}_n, \hat{\nu}_n)} \stackrel{n \to \infty}{\Longrightarrow} \mathbb{P}_{(\sigma^2, b, \nu)}$ imply $\hat{\sigma}_n^2 \to \sigma^2$, $\hat{b}_n \to b$, $\hat{\nu}_n \to \nu$? Proposition (Gnedenko/Kolmogorov 1949) $\mathbb{P}_{(\sigma_n^2, b_n, \nu_n)} \Rightarrow \mathbb{P}_{(\sigma^2, b, \nu)} \iff b_n \to b$ and $\nu_{\sigma, n} \Rightarrow \nu_{\sigma}$ weakly

with the finite measure $\nu_{\sigma}(dx) := \sigma^2 \delta_0(dx) + \frac{x^2}{1+x^2} \nu(dx)$.

Corollary The minimum-distance estimator is consistent for (b, ν_{σ}) .

Proposition The volatility σ^2 cannot be estimated uniformly consistently: no estimator $\tilde{\sigma}_n^2$ can satisfy for any $\sigma^2 \ge 0$

$$\forall \varepsilon > 0: \lim_{n \to \infty} \sup_{b, \nu} \mathbb{P}_{(\sigma^2, b, \nu)}(|\tilde{\sigma}_n^2 - \sigma^2| > \varepsilon) = 0.$$

The same is true, e.g., for the Blumenthal-Getoor index.

Consistency II

Does $\mathbb{P}_{(\hat{\sigma}_{n}^{2},\hat{b}_{n},\hat{\nu}_{n})} \stackrel{n \to \infty}{\Longrightarrow} \mathbb{P}_{(\sigma^{2},b,\nu)}$ imply $\hat{\sigma}_{n}^{2} \to \sigma^{2}, \hat{b}_{n} \to b, \hat{\nu}_{n} \to \nu$? Proposition (Gnedenko/Kolmogorov 1949) $\mathbb{P}_{(\sigma_{n}^{2},b_{n},\nu_{n})} \Rightarrow \mathbb{P}_{(\sigma^{2},b,\nu)} \iff b_{n} \to b \text{ and } \nu_{\sigma,n} \Rightarrow \nu_{\sigma} \text{ weakly}$

with the finite measure $\nu_{\sigma}(dx) := \sigma^2 \delta_0(dx) + \frac{x^2}{1+x^2} \nu(dx)$.

Corollary

The minimum-distance estimator is consistent for (b, ν_{σ}) .

Proposition

The volatility σ^2 cannot be estimated uniformly consistently: no estimator $\tilde{\sigma}_n^2$ can satisfy for any $\sigma^2 \ge 0$

$$\forall \varepsilon > 0: \lim_{n \to \infty} \sup_{b, \nu} \mathbb{P}_{(\sigma^2, b, \nu)}(|\tilde{\sigma}_n^2 - \sigma^2| > \varepsilon) = 0.$$

The same is true, e.g., for the Blumenthal-Getoor index.

Kolmogorov representation

Assumption: $\mathbb{E}[L_t^2] < \infty$ or equivalently $\int x^2 \nu(dx) < \infty$. Canonical representation (Kolmogorov 1932):

$$\varphi(u) = \exp\left(\Delta\left(-\frac{\sigma^2}{2}u^2 + iub + \int_{-\infty}^{\infty} (e^{iux} - 1 - iux)\nu(dx)\right)\right)$$
$$= \exp\left(\Delta\left(iub + \int_{-\infty}^{\infty} \frac{e^{iux} - 1 - iux}{x^2}\nu_{\sigma}(dx)\right)\right)$$

with $\nu_{\sigma}(dx) = \sigma^2 \delta_0(dx) + x^2 \nu(dx)$. Note: here $\mathbb{E}[L_1] = b$ and $\operatorname{Var}(L_1) = \nu_{\sigma}(\mathbb{R})$ hold.

Important observation:

$$\Delta^{-1} \frac{d^2}{du^2} \log(\varphi(u)) = \int_{-\infty}^{\infty} \frac{d^2}{du^2} \frac{e^{iux} - 1 - iux}{x^2} \nu_{\sigma}(dx) = -\mathcal{F}\nu_{\sigma}(u)$$

Kolmogorov representation

Assumption: $\mathbb{E}[L_t^2] < \infty$ or equivalently $\int x^2 \nu(dx) < \infty$. Canonical representation (Kolmogorov 1932):

$$\varphi(u) = \exp\left(\Delta\left(-\frac{\sigma^2}{2}u^2 + iub + \int_{-\infty}^{\infty} (e^{iux} - 1 - iux)\nu(dx)\right)\right)$$
$$= \exp\left(\Delta\left(iub + \int_{-\infty}^{\infty} \frac{e^{iux} - 1 - iux}{x^2}\nu_{\sigma}(dx)\right)\right)$$

with $\nu_{\sigma}(dx) = \sigma^2 \delta_0(dx) + x^2 \nu(dx)$. Note: here $\mathbb{E}[L_1] = b$ and $\operatorname{Var}(L_1) = \nu_{\sigma}(\mathbb{R})$ hold.

Important observation:

$$\Delta^{-1}\frac{d^2}{du^2}\log(\varphi(u)) = \int_{-\infty}^{\infty}\frac{d^2}{du^2}\frac{e^{iux}-1-iux}{x^2}\nu_{\sigma}(dx) = -\mathcal{F}\nu_{\sigma}(u)$$

Two constructions of estimators

$$\Delta^{-1}\frac{d^2}{du^2}\log(\varphi(u)) = \int_{-\infty}^{\infty}\frac{d^2}{du^2}\frac{e^{iux}-1-iux}{x^2}\nu_{\sigma}(dx) = -\mathcal{F}\nu_{\sigma}(u)$$

1. Plug-in + spectral cut-off at U > 0: (cf. Belomestny/Reiß 2006)

$$\mathcal{F}\hat{
u}_{\sigma}(u) := -\Delta^{-1}rac{d^2}{du^2}\log(arphi_n(u))\mathbf{1}_{[-U,U]}(u), \quad u\in\mathbb{R}$$

2. Minimum-distance estimator with a C^2 -distance to control

$$\Big|\frac{\varphi_n''(u)\varphi_n(u)-\varphi_n'(u)^2}{\varphi_n(u)^2}-\frac{\varphi''(u)\varphi(u)-\varphi'(u)^2}{\varphi(u)^2}\Big|$$

Two-step estimation procedure

Preliminary estimator:

$$\tilde{b}_n = T^{-1}L_T, \quad \mathcal{F}\tilde{\nu}_{\sigma,n} = -\Delta^{-1}\log(\varphi_n)''\mathbf{1}(|\varphi_n| \ge \kappa n^{-1/2})$$

Minimum-distance estimator: optimize locally around $(\tilde{b}_n, \tilde{\nu}_{\sigma,n})$ to find

$$(\hat{b}_n, \hat{\nu}_{\sigma,n}) := \operatorname{arginf}_{(b,\nu_{\sigma})} d_{C^2}(\varphi_n, \varphi(b, \nu_{\sigma}; \bullet))$$

where (weighting $w(u) = \log(e + |u|)^{-1/2-\varepsilon}$)

$$d_{C^2}(g,h) = \max_{j=0,1,2} \Delta^{-j/2} \sup_{u \in \mathbb{R}} \left(|g^{(j)}(u) - h^{(j)}(u)|w(u) \right)$$

Estimation error

How fast can we estimate $\int f d\nu_{\sigma}$?

Assume $\mathbb{E}[|L_t|^{4+\varepsilon}] < \infty$. For integrands *f* of regularity *s* $((1 + x^2)^{s/2} \mathcal{F} f \in L^1)$ we have $|\int f d\hat{\nu}_{\sigma,n} - \int f d\nu_{\sigma}| \lesssim_P v(T, \Delta) \vee T^{-1/2}$

with

$$\begin{aligned} \sigma > 0 : & v(T, \Delta) = (\Delta^{-1} \log(T))^{-s/2} \\ \sigma = 0, \ |\varphi(u)| \gtrsim e^{-\Delta \alpha |u|} : & v(T, \Delta) = (\Delta^{-1} \log(T))^{-s} \\ \sigma = 0, \ |\varphi(u)| \gtrsim (1 + |u|)^{-\beta \Delta} : & v(T, \Delta) = T^{-s/(2\beta \Delta)} \\ & \text{(times a log-factor)} \end{aligned}$$

These rates are optimal in a minimax-sense.

Estimation error

How fast can we estimate $\int f d\nu_{\sigma}$?

Assume $\mathbb{E}[|L_t|^{4+\varepsilon}] < \infty$. For integrands *f* of regularity *s* $((1 + x^2)^{s/2} \mathcal{F} f \in L^1)$ we have

$$|\int f\, d\hat{
u}_{\sigma,n} - \int f\, d
u_\sigma| \lesssim_{P} v(T,\Delta) ee T^{-1/2}$$

with

$$\begin{split} \sigma > 0 : & v(T, \Delta) = (\Delta^{-1} \log(T))^{-s/2} \\ \sigma = 0, \ |\varphi(u)| \gtrsim e^{-\Delta \alpha |u|} : & v(T, \Delta) = (\Delta^{-1} \log(T))^{-s} \\ \sigma = 0, \ |\varphi(u)| \gtrsim (1 + |u|)^{-\beta \Delta} : & v(T, \Delta) = T^{-s/(2\beta \Delta)} \\ & \text{(times a log-factor)} \end{split}$$

These rates are *optimal* in a minimax-sense.

Estimation vs. discretisation error

Assume $\mathbb{E}[|L_t|^{4+\varepsilon}] < \infty$. For integrands *f* of regularity *s* $((1 + x^2)^{s/2} \mathcal{F} f \in L^1)$ we have

$$|\int f\, d\hat{
u}_{\sigma,n} - \int f\, d
u_\sigma| \lesssim_{P} T^{-1/2}$$

provided

$$\begin{split} \sigma > 0 : & \Delta \lesssim T^{-1/s} \\ \sigma = 0, \ |\varphi(u)| \gtrsim e^{-\Delta \alpha |u|} : & \Delta \lesssim T^{-1/(2s)} \\ \sigma = 0, \ |\varphi(u)| \gtrsim (1 + |u|)^{-\beta \Delta} : & \Delta < s/\beta \end{split}$$

Example:

Gamma-processes ($\varphi(u) = (1 - iu/\lambda)^{-p\Delta}$) require $\Delta < s/p$; compound Poisson processes do not require Δ to be small.

Main tool in the proof ($\Delta = 1$)

Consider the *k*-th derivative of the *empirical characteristic process*

$$C_n^{(k)}(u) = rac{d^k}{du^k} \Big(n^{-1/2} \sum_{j=1}^n (e^{iuX_j} - \mathbb{E}[e^{iuX_j}]) \Big).$$

Then with the empirical process $\mathbb{G}_n = n^{1/2} (\mathbb{F}_n^{X_1,...,X_n} - \mathcal{F}^X)$

$$\sup_{u\in\mathbb{R}}|C_n^{(k)}(u)|w(u)=\sup_{h\in H}\int h\,d\,\mathbb{G}_r$$

with

$$H = \Big\{ x \mapsto w(u) \frac{d^k}{du^k} e^{iux} : u \in \mathbb{R} \Big\}.$$

Main tool in the proof (ctd.)

$$H = \left\{ x \mapsto w(u) \frac{d^k}{du^k} e^{iux} : \ u \in \mathbb{R} \right\}$$

Consequently, empirical process theory yields

$$\sup_{n} \mathbb{E}\left[\sup_{u \in \mathbb{R}} |C_{n}^{(k)}(u)|w(u)\right] \lesssim \mathbb{E}[(X_{j})^{2k}] + J_{[]}(H)$$

with $J_{[]}$ the *bracketing entropy* of *H*. For suitable brackets $h_{j}^{\pm}(x) = (w(u_{j})\frac{d^{k}}{du^{k}}e^{iu_{j}x}\pm\varepsilon|x|^{k})\mathbf{1}_{[-M,M]}(x)+||w||_{\infty}|x|^{k}\mathbf{1}_{[-M,M]^{c}}(x)$ this $J_{[]}$ is finite for $w(u) \sim (\log(u))^{-1/2-\varepsilon}$ and $\mathbb{E}[|X_{j}|^{2k+\varepsilon}] < \infty$.

Decay of φ versus singularity of ν

Lemma:

Consider a Lévy process with a characteristic function of at most polynomial decay: $|\varphi_t(u)| \gtrsim (1 + u^2)^{-\beta t}$. Then the Lévy measure ν satisfies for any $\varepsilon > 0$

$$\int_{[-1,1]}\log(|x|^{-1})^{-2-\varepsilon}\nu(dx)<\infty.$$

This implies $\sup_{u \in \mathbb{R}} |\varphi'(u)/\varphi(u)| < \infty$ provided $\varphi \in C^1$. Example:

The Lévy measure of the Gamma process has a density of order x^{-1} around zero and $\int_{[-1,1]} \log(|x|^{-1})^{-2-\varepsilon} |x|^{-1} dx < \infty$. Intuition:

The more singular the Lévy measure at zero, the rougher the sample paths, but the smoother the transition density.

Example

Simulation:

Superposition of Brownian motion and Exp(1)-process

 $\sigma = 1, b = 1, \nu(dx) = x^{-1}e^{-x} \mathbf{1}_{\{x>0\}} dx$ $\Delta = 1, n = 1000$

Histogram of the data.

modulus of the empirical (solid blue) and true (dashed orange) characteristic function.

Estimation for the example

 $\widehat{b}_n = 0.922$ (true b = 1), $\widehat{
u}_{\sigma,n}(\{0\})^{1/2} = 1.092$ (true $\sigma = 1$)

Estimate of $\nu([1,\infty)) = \int_{1}^{\infty} x^{-2} \nu_{\sigma}(dx)$ is 0.16 (true: 0.22). The HF-estimator $\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{L_{i}-L_{i-1} \ge 1\}}$ yields 0.46.

Im (φ_n) (blue), Im (φ) (orange), Im $(\tilde{\varphi}_n)$ (green) and Im $(\hat{\varphi}_n)$ (red). and ν_{σ} (green), $\dot{\nu}_{\sigma}$ (solid) and ν_{σ} (orange); $\tilde{\nu}_{\sigma}$ has no point mass in zero.

Summary

- High. vs. low-frequency observations of a Lévy process
- LF-estimation based on minimum-distance fit of characteristic function.
- LF-estimation of σ^2 cannot be uniformly consistent.
- Adjust to any observation distance Δ .
- LF-rate for $b = \mathbb{E}[L_1]$ is parametric.
- LF-rate for $\int f d\nu_{\sigma}$ depends on the decay of φ .
- LF-rate $T^{-1/2}$ for $\int f d\nu_{\sigma}$ if $\Delta < \overline{\Delta}(\varphi, s; T)$ (automatic).

Thank you very much for your attention!

Summary

- High. vs. low-frequency observations of a Lévy process
- LF-estimation based on minimum-distance fit of characteristic function.
- LF-estimation of σ^2 cannot be uniformly consistent.
- Adjust to any observation distance Δ .
- LF-rate for $b = \mathbb{E}[L_1]$ is parametric.
- LF-rate for $\int f d\nu_{\sigma}$ depends on the decay of φ .
- LF-rate $T^{-1/2}$ for $\int f d\nu_{\sigma}$ if $\Delta < \overline{\Delta}(\varphi, s; T)$ (automatic).

Thank you very much for your attention!