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Introduction

This talk is concerned with:

continuous time GARCH processes

The continuous time GARCH

is based on the discrete time GARCH of Engle (1982) and
Bollerslev (1986)

reproduces the so-called stylized facts of financial data

volatility clustering
fat tails
volatility mean reversion
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Introduction

Facts: about the discrete GARCH

popular model choice by academics in finance and economics

applied by finance and banking industry as well

used for option pricing

estimating volatility (as synonym for risk) for risk

management purposes

Is there a demand for a continuous time version of the successful
GARCH model?
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Introduction

The demand for a continuous time version of GARCH stems from

theory of option pricing:

study market for properties (no-arbitrage, completeness)
better formulation for pricing and hedging of derivatives

econometric theory

continuous time model allows to study unequally spaced time
series data in the GARCH framework (scaling rules)
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Discrete Time GARCH

The discrete time GARCH(1,1)-model is defined by

Xt = µt +
√

ht εt

ht = ω + α (Xt−1 − µt−1)
2 + β ht−1

The parameters have the interpretation:

ω is the base level variance;

α quantifies the impact of shocks ;

β quantifies the persistence of shocks.
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Discrete Time GARCH

For the variance ht we have the representation

ht = ω

t−1
∑

s=0

t−1
∏

u=s+1

(β + α ε2
u) + h0

t−1
∏

u=0

(β + α ε2
u) .

relating the stability (ht

D
→ h∞?) to perpetuities, see Goldie and

Maller (1996).

The above representation inspired a continuous time version of
the process, see Klüppelberg, Lindner and Maller (2004).
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Continuous Time GARCH

Given:

pure jump Lévy process L with characteristic triplet (γ, 0, Π),

parameter θ = (κ, V , η)′, with κ > 0, V > 0, η > 0.

Define the variance processV = (Vt)t≥0 and the integrated

continuous time GARCH process E = (Et)t≥0 by

dVt = κ
(

V − Vt−

)

dt + η Vt− d[L, L]t , t > 0. (1)

dEt =
√

Vt− dLt , t ≥ 0. (2)

See Klüppelberg et al. (2004, 2006) for properties of E and V .
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Continuous Time GARCH

Note:

The term Vt− in the volatility of the variance equation

dVt = κ
(

V − Vt−

)

dt + η Vt− d[L, L]t , t > 0.

leads to technically difficult non-linearities.

E is heteroscedastic noise, hence we require ELt = 0 and
unit variance rate, i.e. EL2

t = t, or, equivalently,
∫

x2 Π(dx) = 1.
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Continuous Time GARCH

Extension: The heteroscedastic noise E can serve as a basis for
formulating continuous time processes of the form:

dYt = f (Yt−,Xt−, Vt−; θ)dt + dEt .

Examples

continuous time version of linear regression

dYt = β′ Xt dt + dEt .

cumulative return process Y of stock price S = S0 E(Y ):

dYt = µ(Vt−)dt + dEt .

The process has to be stopped at τ = inf{t ≥ 0 : ∆E ≤ −1}.
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Semiparametric Estimation

Question:

How can we estimate the parameter vector θ?

i.e.: the variance parameters (κ, V , η)′, and

the structural parameters in the mean equation.

We do not want to estimate the Lévy characteristics!

Thus we are in a semiparametric setting!
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Quasi Likelihood

For discretely observed data Haug, Klüppelberg, Lindner and
Zapp (2007) apply the method of moment estimation.

We wish to estimate θ from continuous time observations of E

using quasi likelihood, see Hutton and Nelson (1986) and
Heyde (1997).

Throughout, denote θ0 the true parameter value.
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Quasi Likelihood

Define the natural basis of the martingale estimating functions by

KT (θ) :=

∫

T

0
Vt−(θ)dt − [E , E ]T , for t ≥ 0 .

We consider martingale estimating functions:

M =

{

GT (θ) =

∫

T

0
αt(θ)dKt(θ)

}

, (3)

where α(θ) = (α(θ))t≥0 is a predictable 3-dimensional processes
that is twice continuously differentiable in θ.
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Quasi Likelihood

Technical Assumptions:

all elements GT (θ) of M are square integrable;

EL4
t < ∞, i.e.,

∫

|x |≥1 x4 Π(dx) < ∞, such that [L, L] is square

integrable (and hence ([L, L]t − t)t≥0 is a square integrable
martingale);

〈G〉T (θ) is nonsingular.

These assumptions are required to apply martingale convergence theorems

leading to an asymptotic normal distribution of the estimators. Note that in

general, these assumption are not necessary and can be relaxed by introducing

appropriate transformations of the underlying martingale family, see

Heyde (1997), Chapter 13.1.2.
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Deriving the Optimal Estimator

In (3) we are given a large set of estimating functions.

The aim is to derive an optimal estimating function G⋆
T

(θ).

Optimality here is understood as outlined by, e.g., Heyde (1997),
as the element GT (θ) that maximizes the martingale information

IG(θ) = 〈G(θ)〉T , (4)

leading to minimal confidence zones.
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Deriving the Optimal Estimator

We prepare the derivation of optimal estimating function
rewriting (1) as follows:

dVt(θ) = κ
(

V − Vt−(θ)
)

dt + η d[E , E ]t , t > 0, (5)

where the dependence on the parameters θ is made explicit here.

Noting that the expression is of OU-type with driver η [E , E ]
yields the formal solution

Vt(θ) = V +
(

V0 − V
)

e−κ t + η e−κ t

∫

t

0
eκ s

d[E , E ]s , t ≥ 0,

(6)
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Deriving the Optimal Estimator

The construction of the optimal estimating function from the class
of martingale estimating functions in (3) can be performed by

G⋆
kT (θ) = −

∫

T

0

dK̄t−(θ)

d〈Kt(θ)〉t−
dKt(θ) ,

see Hutton and Nelson (1986) and Heyde (1997), Chapter 2.5.
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Deriving the Optimal Estimator

The first derivative and its compensator are

dK̇t(θ) = V̇t−(θ)dt , and dK̄t(θ) = V̇t−(θ)dt , t > 0 .

The predictable projection of the bracket process is

d〈K (θ)〉t = m4 V 2
t−(θ)dt ,

where m4 =
∫

x4 Π(dx) < ∞, and m4 is a nuisance parameter.
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Deriving the Optimal Estimator

Then the quasi score is

G ⋆
T (θ) =

1

m4

∫

T

0

V̇t−(θ)

V 2
t−(θ)

(d[E , E ]t − Vt−(θ)dt) .

To obtain the point estimate θ̂T solve

0 = G⋆
T (θ̂T ) .

The partial derivatives of Vt(θ) are straightforward

∂Vt

∂κ
(θ) = −t (V0 − V ) e−κ t − η

∫

t

0
(t − s) e−κ (t−s)

d[E , E ]s ,

∂Vt

∂V
(θ) = 1 − e−κ t ,

∂Vt

∂η
(θ) =

∫

t

0
e−κ (t−s)

d[E , E ]s .
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Deriving the Optimal Estimator

Standard Program in Statistics:

Establish the consistency of estimator θT .

Establish local asymptotic normality of estimator θT :

provide confidence zones
prepare hypothesis testing

Problem:

Non-linearity of volatility component of the variance process

dVt = κ
(

V − Vt−

)

dt + η Vt− d[L, L]t , t > 0.
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Consistency

The formal condition for the strong consistency (possibly on an
event A ∈ Ω) is that for all sufficiently small δ > 0,

lim sup
T→∞

(

sup
‖θ−θ0‖=δ

LT (θ) − LT (θ0)

)

< 0 a.s. (on A) .

see Hutton and Nelson (1986) and Heyde (1997).

Here, the quasi-likelihood LT (θ) is

LT (θ) = −
1

m4

(
∫

T

0
log(Vt−(θ))dt +

∫

T

0

1

Vt−(θ)
d[E ]t

)

.

By differentiating with respect to θ we verify

∂LT

∂θ
(θ) = G⋆

T (θ) .
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Consistency

In the quasi-likelihood setting we can check the stronger

condition

lim sup
T→∞

(

sup
‖θ−θ0‖=δ

LT (θ) − LT (θ0)

T

)

< 0 a.s. (on A) . (7)

For the rather simple structure of the quasi-likelihood, strong
consistency can be shown by verifying (7) directly.
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Consistency

Strategy

1 Define

lT (θ) =
LT (θ) − LT (θ0)

T
.

2 For some real number l∞(θ) < 0 show that

lT (θ) → l∞(θ) < 0 a.s.

3 Establish equicontinuity by showing for some constant C

∣

∣

∣

∣

∂lT (θ)

∂θ

∣

∣

∣

∣

≤ C a.s. .
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Consistency

Lemma

Assume that EL4
1 < ∞. Then for any θ ∈ Θ with θ 6= θ0 the

following limit behavior applies

lim
T→∞

LT (θ) − LT (θ0)

T
< 0 a.s. (8)
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Consistency

Sketch of Proof:

Establish joint limit distribution of V (θ) and V (θ0):

(Vt(θ), Vt(θ0))
D
→ (V∞(θ), V∞(θ0)) .

Apply the ergodicity of Vt(θ) established by Fasen (2009).

Prove that
V∞(θ) 6= V∞(θ0) , a.s.
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Consistency

Next the equicontinuity of lT (θ) = m4
LT (θ)−LT (θ0)

T
is established

Lemma

Assume that EL4
1 < ∞. Then for some a.s. finite random time T0

and some small δ0 > 0 and a positive constant C > 0 we have

∥

∥

∥

∥

∂lT

∂θ
(θ)

∥

∥

∥

∥

∞

≤ C a.s. , for all θ ∈ Bδ0(θ0) and T ≥ T0 . (9)
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Consistency

Sketch of Proof:

Make use of monotonicity of partials in all components of
parameter θ.

Apply same rationale as in previous lemma.
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Consistency

Finally we obtain the desired consistency result.

Theorem

Assume that EL4
1 < ∞. Then the quasi-likelihood estimator θ̂T is

strongly consistent.
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Consistency

The problem of showing local asymptotic normality remains
unsolved.

The main technical problem is the non-linearity caused by the
volatility of the variance process V .
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Conclusion

Concluding Remarks:

Estimation the continuous time GARCH model based on
continuous observations is in principle possible (though
maybe not realistic).

Proving the usual consistency and LAN is technical and
difficult, and moreover incomplete!

In my personal opinion, the continuous GARCH is though
interesting because:

study generalized Ornstein-Uhlenbeck (GOU) processes;
understand the unclear limit results obtained for the discrete
GARCH;
get an idea of time-scaling for the discrete GARCH
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Outlook

Outlook I: Extended the simple noise model E to

dYt = f (Yt−,Xt−, Vt−; θ)dt + dEt .

The optimal quasi-likelihood estimators are

G ⋆
T (θ) =

∫

T

0

ḟt−(θ) + fvt−(θ) V̇t−(θ)

Vt−(θ)
dG1t(θ)

+

∫

T

0

V̇t−(θ)
(

1 − m3 V
1/2
t− (θ)fvt−(θ)

)

− m3 V
1/2
t− (θ) ḟt−(θ)

(m4 − m2
3)V 2

t−(θ)
dG2t(θ) ,

what is the continuous time version of (14) in Li and Turtle (2000).
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Outlook

Outlook II: Study the model for the stock price S = S0 E(Y ) with
cumulative return process Y given by

dYt = µ(Vt−)dt + dEt .

The process has to be stopped at

τ = inf{t ≥ 0 : ∆Et ≤ −1} = inf{t ≥ 0 : Vt− ∆Lt ≤ −1} .

This can be seen as an interesting boundary crossing problem.
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