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Setting
We are given an Ito semimartingale X on (Ω,F , (Ft)t∈R+ ,P), thus

Xt = X0 +

∫ t

0

bu du +

∫ t

0

σu dWu + (δ1{|δ|≤1}) ? (µ
t
− νt) + (δ1{|δ|>1}) ? µt

,

where W is a Brownian motion and µ and ν are a Poisson random measure on
R+ × E and its compensator ν(du, dx) = du × λ(dx).

Standard assumptions:
1 The drift b is optional and càglàd.
2 The volatility σ is an Ito semimartingale itself and satisfies σ > 0 almost surely.
3 The function δ is predictable and locally bounded by a family (γk) of

non-negative functions such that
∫

E
(1 ∧ γs

k(z)) λ(dz) <∞.

Aim: Being on a fixed time span [0,T ] and observing X i
n

for i = 0, . . . , bnT c
we are interested in estimating the quadratic variation∫ t

0

σ2
u ds +

∑
u≤t

|∆Xu|2

or parts thereof, typically the integrated volatility
∫ t

0
σ2

u du.
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Realized volatility
In the continuous case

Xt = X0 +

∫ t

0

bu du +

∫ t

0

σu dWu

the standard estimator for the integrated volatility is the realized variance

RV (X )n
t =

∑bntc
i=1 |∆n

i X |2, where ∆n
i X = X i

n
− X i−1

n
.

We have

RV (X )n
t

P−→
∫ t

0

σ2
u du

and an associated central limit theorem

√
n
(

RV (X )n
t −

∫ t

0

σ2
u du

)
Dst−→
√

2

∫ t

0

σ2
u dW ′

u,

where W ′ is defined on an extension of (Ω,F , (Ft)t∈R+ ,P) and independent of
F .
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Truncated realized volatility
In the presence of jumps, RV (X )n

t obviously becomes an estimator for the
entire quadratic variation of X and thus has to be modified.

Mancini has proposed to use a truncated version of RV (X )n
t , namely

TRV (X )n
t =

bntc∑
i=1

|∆n
i X |21{|∆n

i X |≤αn−$}

for some α > 0 and 0 < $ < 1
2 .

Intuition: We are cutting off large increments as these are likely due to a jump
within [ i−1

n , i
n ].

TRV (X )n
t is consistent for the integrated volatility and we obtain the same

central limit theorem as before, as long as s ≤ 4$−1
2$ (so in particular s < 1):

√
n
(

TRV (X )n
t −

∫ t

0

σ2
u du

)
Dst−→
√

2

∫ t

0

σ2
u dW ′

u.
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Multipower variation I
Alternatively, one uses multipower variations, which are defined as

MV (X , r)n
t = n|r|/2−1

bntc−q+1∑
i=1

q∏
j=1

|∆n
i+j−1X |rj ,

with r = (r1, . . . , rq) having non-negative components. We set
|r| = r1 + . . .+ rq, r+ = max(r1, . . . , rq) and r− = min(r1, . . . , rq).

Intuition: One pairs intervals containing jumps with those that do not contain
jumps, and typically (depending on r) these intervals do not play a role in the
asymptotics.

Let mp denote the p-th absolute moment of a standard normal distribution and
set mr =

∏q
j=1 mj . Then

MV (X , r)n
t

P−→ mr

∫ t

0

σ|r|u du,

as long as r+ < 2.
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Multipower variation II
Central limit theorems have only been shown for specific choices of r: Suppose
that s

2−s < r− ≤ r+ < 1. Then we have

√
n
(

MV (X , r)n
t −mr

∫ t

0

σ|r|u du
)
Dst−→

√
p(r)

∫ t

0

σ|r|u dW ′
u

for some known function p.

The two most prominent estimators for the integrated volatility in this context
are MV (X , (1, 1))n

t and MV (X , (2/3, 2/3, 2/3))n
t . For both, we have

convergence in probability (of a rescaled version) towards the integrated
volatility, but only for the latter one we have a central limit theorem, as long as

s
2−s <

2
3 .

Question: Is there no central limit theorem for bipower variation? Or has is
simply not been proven yet? And if there is one, does it depend on the jumps?
Notation:

V (X )n
t =

bntc∑
i=1

|∆n
i X ||∆n

i+1X |.

Mathias Vetter

Limit theorems for bipower variation of semimartingales



Outline of the talk Estimation of integrated volatility Two central limit theorems References

Multipower variation II
Central limit theorems have only been shown for specific choices of r: Suppose
that s

2−s < r− ≤ r+ < 1. Then we have

√
n
(

MV (X , r)n
t −mr

∫ t

0

σ|r|u du
)
Dst−→

√
p(r)

∫ t

0

σ|r|u dW ′
u

for some known function p.
The two most prominent estimators for the integrated volatility in this context
are MV (X , (1, 1))n

t and MV (X , (2/3, 2/3, 2/3))n
t . For both, we have

convergence in probability (of a rescaled version) towards the integrated
volatility, but only for the latter one we have a central limit theorem, as long as

s
2−s <

2
3 .

Question: Is there no central limit theorem for bipower variation? Or has is
simply not been proven yet? And if there is one, does it depend on the jumps?
Notation:

V (X )n
t =

bntc∑
i=1

|∆n
i X ||∆n

i+1X |.

Mathias Vetter

Limit theorems for bipower variation of semimartingales



Outline of the talk Estimation of integrated volatility Two central limit theorems References

Multipower variation II
Central limit theorems have only been shown for specific choices of r: Suppose
that s

2−s < r− ≤ r+ < 1. Then we have

√
n
(

MV (X , r)n
t −mr

∫ t

0

σ|r|u du
)
Dst−→

√
p(r)

∫ t

0

σ|r|u dW ′
u

for some known function p.
The two most prominent estimators for the integrated volatility in this context
are MV (X , (1, 1))n

t and MV (X , (2/3, 2/3, 2/3))n
t . For both, we have

convergence in probability (of a rescaled version) towards the integrated
volatility, but only for the latter one we have a central limit theorem, as long as

s
2−s <

2
3 .

Question: Is there no central limit theorem for bipower variation? Or has is
simply not been proven yet? And if there is one, does it depend on the jumps?

Notation:

V (X )n
t =

bntc∑
i=1

|∆n
i X ||∆n

i+1X |.

Mathias Vetter

Limit theorems for bipower variation of semimartingales



Outline of the talk Estimation of integrated volatility Two central limit theorems References

Multipower variation II
Central limit theorems have only been shown for specific choices of r: Suppose
that s

2−s < r− ≤ r+ < 1. Then we have

√
n
(

MV (X , r)n
t −mr

∫ t

0

σ|r|u du
)
Dst−→

√
p(r)

∫ t

0

σ|r|u dW ′
u

for some known function p.
The two most prominent estimators for the integrated volatility in this context
are MV (X , (1, 1))n

t and MV (X , (2/3, 2/3, 2/3))n
t . For both, we have

convergence in probability (of a rescaled version) towards the integrated
volatility, but only for the latter one we have a central limit theorem, as long as

s
2−s <

2
3 .

Question: Is there no central limit theorem for bipower variation? Or has is
simply not been proven yet? And if there is one, does it depend on the jumps?
Notation:

V (X )n
t =

bntc∑
i=1

|∆n
i X ||∆n

i+1X |.

Mathias Vetter

Limit theorems for bipower variation of semimartingales



Outline of the talk Estimation of integrated volatility Two central limit theorems References

Prerequisites
Suppose we have s ≤ 1, thus

Xt = X0 + Bt +

∫ t

0

σu dWu +
∑
u≤t

∆Xu

with Bt =
∫ t

0
bu du − δ1{|δ|≤1} ? νt .

We define an appropriate extension of (Ω,F , (Ft)t∈R+ ,P) supporting two
independent sequences (Um+) and (Um−) of standard normally distributed
random variables and an independent Brownian motion W ′, all independent of
F . Furthermore, (Tm) is a sequence of stopping times exhausting the jumps of
X . We set

U ′t =
∑

m:Tm≤t

|∆XTm | ·
(
σTm−|Um−|+ σTm |Um+|

)
and

U ′′t =
√

1 + 2m2
1 − 3m4

1

∫ t

0

σ2
u dW ′

u.

Mathias Vetter

Limit theorems for bipower variation of semimartingales



Outline of the talk Estimation of integrated volatility Two central limit theorems References

Prerequisites
Suppose we have s ≤ 1, thus

Xt = X0 + Bt +

∫ t

0

σu dWu +
∑
u≤t

∆Xu

with Bt =
∫ t

0
bu du − δ1{|δ|≤1} ? νt .

We define an appropriate extension of (Ω,F , (Ft)t∈R+ ,P) supporting two
independent sequences (Um+) and (Um−) of standard normally distributed
random variables and an independent Brownian motion W ′, all independent of
F . Furthermore, (Tm) is a sequence of stopping times exhausting the jumps of
X . We set

U ′t =
∑

m:Tm≤t

|∆XTm | ·
(
σTm−|Um−|+ σTm |Um+|

)
and

U ′′t =
√

1 + 2m2
1 − 3m4

1

∫ t

0

σ2
u dW ′

u.

Mathias Vetter

Limit theorems for bipower variation of semimartingales



Outline of the talk Estimation of integrated volatility Two central limit theorems References

CLT for bipower variation I
Then we have

√
n
(

V (X )n
t −m2

1

∫ t

0

σ2
u du

)
Dst−→ U ′t + U ′′t .

Intuition: If there are only finitely many jumps on [0,T ], all jump times Tm and
Tm′ satisfy |Tm − T ′m| > 2

n for large n. Thus, if a jump lies within [ i−1
n , i

n ], it
occurs in V (X )n

t as

|∆n
i X | · (|∆ i−1

n
X |+ |∆ i+1

n
X |),

and the neighbouring increments are not affected by jumps. Using the
approximations

∆n
i X ≈ ∆Tm X and ∆ i−1

n
X ≈ σTm−∆ i−1

n
W ,

we end up with the finite sum
√

n
∑

m:Tm≤t

|∆Tm X | · (σTm−|∆ i−1
n

W |+ σTm |∆ i+1
n

W |)→ U ′t .
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CLT for bipower variation II
U ′t is not a martingale (unless X is continuous, of course), and thus plays the
role of a bias in the limit. How can one get rid of the bias?

By subtracting an estimator for it: Quite naturally, we estimate

U ′t =
∑

m:Tm≤t

|∆XTm | ·
(
σTm−|Um−|+ σTm |Um+|

)
by
√

nV ∗(X , α,$)n
t with

V ∗(X , α,$)n
t =

bntc−1∑
i=1

|∆n
i X ||∆n

i+1X | ·
(

1{|∆n
i X |≥αn−$}1{|∆n

i+1X |<αn−$}

+ 1{|∆n
i X |<αn−$}1{|∆n

i+1X |≥αn−$}

)
and look at the asymptotics of

√
n
(

(V (X )n
t − V ∗(X , α,$)n

t )−m2
1

∫ t

0

σ2
u du

)
.
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CLT for truncated bipower variation

Alternatively, we can look at the direct analogue of TRV (X )n
t , namely

TV ∗(X , α,$)n
t =

bntc−1∑
i=1

|∆n
i X |1{|∆n

i X |<αn−$}|∆n
i+1X |1{|∆n

i+1X |<αn−$}.

We have

√
n
(

(V (X )n
t − V ∗(X , α,$)n

t )−m2
1

∫ t

0

σ2
u du

)
Dst−→ U ′′t ,

and

√
n
(

TV ∗(X , α,$)n
t −m2

1

∫ t

0

σ2
u du

)
Dst−→ U ′′t .

Note that this results holds for all s ≤ 1 and irrespectively of the choice of $.
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CLT for truncated bipower variation

Alternatively, we can look at the direct analogue of TRV (X )n
t , namely

TV ∗(X , α,$)n
t =

bntc−1∑
i=1

|∆n
i X |1{|∆n

i X |<αn−$}|∆n
i+1X |1{|∆n

i+1X |<αn−$}.

We have

√
n
(

(V (X )n
t − V ∗(X , α,$)n

t )−m2
1

∫ t

0

σ2
u du

)
Dst−→ U ′′t ,

and

√
n
(

TV ∗(X , α,$)n
t −m2

1

∫ t

0

σ2
u du

)
Dst−→ U ′′t .

Note that this results holds for all s ≤ 1 and irrespectively of the choice of $.
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