
Stability Properties of Networks with
Interacting TCP Flows

Philippe Robert
INRIA Paris-Rocquencourt

November, 23 2009



Joint work with
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Adaptive Algorithm to regulate data transfers

Evolution of Throughput:

— Linear Increase

— Multiplicative Decrease

Literature

Various asymptotic formulas for throughput

The Internet with ONE node is fully understood !
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Coexistence of TCP Flows

Literature

Mathematical Description of Coexistence:

Few rigorous results.

Deterministic Models



Coexistence of TCP Flows: an approach
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xk routes of class k ∈ 1, . . . ,K:

receive throughput λ0
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k) achieves

max
λ∈C

K∑
k=1

xkUk(λk/xk)

Uk utility function.
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xk routes of class k ∈ 1, . . . ,K:

receive throughput λ0
k, such that (λ0

k) achieves

max
λ∈C

K∑
k=1

xkUk(λk/xk)

Uk utility function.

Kelly, Maulloo and Tan (1998)

Massoulié and Roberts (1999)

Kelly and Williams (2004), Massoulié (2007).
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Limits from Microscopic Dynamics

— (Wn) successive congestion window sizes

of a single flow

— α loss rate.

Theorem Dumas et al.(2002)

lim
α→0

(√
αWbt/√αc, 0 ≤ t ≤ +∞

)
=
(
W (t), 0 ≤ t ≤ +∞

)
(W (t)) is a Markov process with generator

Ω(f)(x) = f ′(x) + x(f(rx)− f(x))



A Dynamic Picture of a Single Connection

The throughput W (t) = w of a single connection

— a rate of increase.

— bw loss rate at time t.



A Dynamic Picture of a Single Connection

The throughput W (t) = w of a single connection

— a rate of increase. Example:

a =
1

C +RTT

— bw loss rate at time t.



A Dynamic Picture of a Single Connection

The throughput W (t) = w of a single connection

— a rate of increase. Example:

a =
1

C +RTT

— bw loss rate at time t.

A Markov process with generator

Ω(f)(x) = af ′(x) + bx(f(rx)− f(x))
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A Dynamic Picture of a Single Connection

Stochastic Differential Equation for (W (t))

dW (t) = adt+ (1− r)W (t−)NW (t−)b(dt),

Nx: Poisson process with rate x.

Throughput λ at Equilibrium: Ott et al. (1996)

λ = ψ

√
a

b
with

ψ =

√
2

π

+∞∏
n=1

1− r2n

1− r2n−1
.



A Dynamic Picture: Network Context

— J nodes.

— K classes of connections.

— Nk class k permanent connections.

N = N1 + · · ·+NK.
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A Dynamic Picture

— Wk,`(t): throughput of `th connection of class k.

— u(t) = (uj(t), 1 ≤ j ≤ J), utilization of nodes

uj(t) =
K∑
k=1

Ak,j

Nk∑
`=1

Wk,`(t)

where (for example)

Ak,j =

{
1 if class k connections use node j

0 otherwise.

uj(t): level of congestion of node j.
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A Dynamic Picture

Generator of (Wk,`(t))

Ωk(f)(wk) = akf
′(wk) + wkbk(u)(f(rkwk)− f(wk))

— u→ bk(u) depends of the coordinates uj
for which Ak,j 6= 0.
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A Dynamic Picture: Stochastics

Stochastic Differential Equation for (Wk,`(t))

dWk,`(t) = akWk,`(t) dt

− (1− rk)Wk,`(t−)N k,`
Wk,`(t−)bk(U(t−))(dt),

with U(t) = (Uj(t), 1 ≤ j ≤ J) and

Uj(t) =
K∑
k=1

Ajk

Nk∑
i=1

Wk,i(t),

and N k,`
x Poisson process with rate x.



A Markovian Picture

The process

(W (t)) = [(Wk,`(t), 1 ≤ ` ≤ Nk), 1 ≤ k ≤ K]

has the Markov property.
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Evolution of (WR(t),WB(t),WY (t))

Loss Rates:

— For B: wBbB(wR + wB, wR + wB + wY , wB)

— For R: wRbR(wR + wB, wR + wB + wY )

— For Y : wY bY (wR + wB + wY )



An Example (II)

1 2 3

B 

R

Y

Loss Rates:

— For B:

wB[b1(wR + wB) + b2(wR + wB + wY ) + b3(wB)]

— For R: wR[b1(wR + wB) + b2(wR + wB + wY )]

— For Y : wY b2(wR + wB + wY )
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A Mean Field Setting

— N = N1 + · · ·+NK → +∞.

Nk

N
→ pk

— The functions bk are scaled by 1/N .

Capacity of a node ∼ N .

If Wk,` = w, the loss rate of connection is

w

J∑
j=1

Ajkbjk

(
uj

N

)
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A Multi-Class Mean-Field Convergence Result

(WN(t)) = [(WN
k,`(t), 1 ≤ ` ≤ Nk), 1 ≤ k ≤ K]

Theorem [Graham and Robert (2008)] AsN → +∞
(WN

k,∗(t), 1 ≤ k ≤ K) converges in distribution to

(W k(t), 1 ≤ k ≤ K).

The (W k(t), t ≥ 0), k = 1, . . .K are independent.

Proofs:

— Iterative scheme for estimation.

— Decomposition in boxes for local averaging.
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The limiting process (W k(t), 1 ≤ k ≤ K)

Solution of a SDE such that

dW k(t)) = ak dt+ (1− rk)W k(t)NW k(t)bk(uW (t))(dt)

Nx Poisson with rate x.

uW (t) = (uW,j(t), 1 ≤ j ≤ J)

uW,j(t) =
K∑
k=1

AjkpkE(W k(t)),

Theorem:

A unique solution to (unconventional) SDE.
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The Limiting process (W k(t), 1 ≤ k ≤ K)

W k(t) depends

— on the past W k(s), s ≤ t

— in a non-linear way of expected values

E(W `(s)), 1 ≤ ` ≤ K, s ≤ t

A Markov process

non-homogeneous with respect to time.



The Equilibrium of the Limiting process

Theorem

Equilibrium Distributions

are in one to one correspondence with u = (uj)

solution of fixed point equation:
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The Equilibrium of the Limiting process

Theorem

Equilibrium Distributions

are in one to one correspondence with u = (uj)

solution of fixed point equation:

uj =
K∑
k=1

Ajkψkpk

√
ak

bk(u)
, 1 ≤ j ≤ J,

Interaction of flows at equilibrium

⇒ Fixed Point Equation.



Throughput at Equilibrium

Throughput λk for class k connection

λk = E(W k) = ψk

√
ak

bk(u)
.

with u solution of H(u) = 0.



Back to Kelly’s Picture

A route of class k ∈ 1, . . . ,K:

receives throughput λ0
k, such that (λ0

k) achieves

max
λ∈C

K∑
k=1

pkUk(λk/pk)

or equivalently (under some conditions)

∇G(λ0/p) = 0,

for some convenient function G.



How Many Solutions for Fixed Point Equations ?

Uniqueness holds for several topologies

— Linear Network

— Torus

— Trees

under some assumptions.



Examples



Trees

Proposition:

If the functions bH, H ∈ T , are continuous and

non-decreasing, then there exists a unique solution

for fixed point equations.

Proof:

Recursion (starting from leaves).
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Ring Topologies

General Result:

If the functions bk, 1 ≤ k ≤ K, are Lipschtiz and

non-decreasing, then there exists a unique solution

for fixed point equations.

Two Methods for Proof:

Contraction Arguments.

Monotonicity Properties.
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Uniqueness

Always true

as long as u→ bk(u) is non-decreasing ?

Counter-example of Raghunathan and Kumar (2007)

in a wireless context.

If it fails:

Multi-stability phenomenon in these networks ?



Non-stable phenomena in IP networks

Bandwidth allocation algorithms



Non-stable phenomena in IP networks

Bandwidth allocation algorithms

may exhibit

— Multiple Stable points ?

— Oscillations ?



Non-stable phenomena in IP networks

Bandwidth allocation algorithms

may exhibit

— Multiple Stable points ?

— Oscillations ?

How to prove with rigorous scaling results ?



Multiple stable phenomena in networks

Known for

— Loss Networks,

Gibbens et al. (1990), Marbukh (1993).

— Wireless Networks,

Antunes et al. (2008).
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Data for Model: Utility function.



A Conclusion

Representation of the interaction of flows:

— Instantaneous fluid picture of Kelly et al.:

An optimisation problem

Data for Model: Utility function.

— Starting from microscopic dynamics

A fixed point equation

Data for Model: Function for loss rates.
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On going work and open questions

— A more dynamic setting:

non-permanent connections.

A different scaling.

— Convergence to equilibrium.

A difficult technical question.



The End


