Stability Properties of Networks with Interacting TCP Flows

> Philippe Robert INRIA Paris-Rocquencourt

> > November, 23 2009

Joint work with

— Carl Graham (École Polytechnique).

— Maaike Verloop (CWI)

A single long TCP flow

Congestion:

Adaptive Algorithm to regulate data transfers Evolution of Throughput:

— Linear Increase

- Multiplicative Decrease

A single long TCP flow

Congestion:

Adaptive Algorithm to regulate data transfers Evolution of Throughput:

— Linear Increase

- Multiplicative Decrease

Literature

Various asymptotic formulas for throughput

A single long TCP flow

Congestion:

Adaptive Algorithm to regulate data transfers Evolution of Throughput:

— Linear Increase

— Multiplicative Decrease

Literature

Various asymptotic formulas for throughput

The Internet with ONE node is fully understood !

Coexistence of TCP Flows

Coexistence of TCP Flows

Literature Mathematical Description of Coexistence: Few rigorous results. Deterministic Models Coexistence of TCP Flows: an approach

As an optimisation problem

 x_k routes of class $k \in 1, \ldots, K$: receive throughput λ_k^0 , such that (λ_k^0) achieves

$$\max_{\lambda \in \mathcal{C}} \sum_{k=1}^K x_k U_k (\lambda_k / x_k)$$

 U_k utility function.

Coexistence of TCP Flows: an approach

As an optimisation problem

 x_k routes of class $k \in 1, \ldots, K$: receive throughput λ_k^0 , such that (λ_k^0) achieves

$$\max_{\lambda \in \mathcal{C}} \sum_{k=1}^K x_k U_k (\lambda_k/x_k)$$

 U_k utility function.

Kelly, Maulloo and Tan (1998) Massoulié and Roberts (1999) Kelly and Williams (2004), Massoulié (2007). Limits from Microscopic Dynamics

- (W_n) successive congestion window sizes of a single flow
- $-\alpha$ loss rate.

Limits from Microscopic Dynamics

- (W_n) successive congestion window sizes of a single flow
- $-\alpha$ loss rate.

Theorem Dumas *et al.*(2002) $\lim_{\alpha \to 0} \left(\sqrt{\alpha} W_{\lfloor t/\sqrt{\alpha} \rfloor}, 0 \le t \le +\infty \right) = \left(\overline{W}(t), 0 \le t \le +\infty \right)$ $(\overline{W}(t))$ is a Markov process with generator $\Omega(f)(x) = f'(x) + x(f(rx) - f(x))$

The throughput W(t) = w of a single connection

- *a* rate of increase.
- -bw loss rate at time t.

The throughput W(t) = w of a single connection

— *a* rate of increase. Example: $a = \frac{1}{C + RTT}$

-bw loss rate at time t.

The throughput W(t) = w of a single connection

- *a* rate of increase. Example: $a = \frac{1}{C + RTT}$

-bw loss rate at time t.

A Markov process with generator

 $\Omega(f)(x) = af'(x) + bx(f(rx) - f(x))$

Stochastic Differential Equation for (W(t))

 $dW(t) = adt + (1-r)W(t-)\mathcal{N}_{W(t-)b}(dt),$

 \mathcal{N}_x : Poisson process with rate x.

Stochastic Differential Equation for (W(t))

 $dW(t)=adt+(1-r)W(t-)\mathcal{N}_{W(t-)b}(dt),$

 \mathcal{N}_x : Poisson process with rate x.

Throughput λ at Equilibrium: Ott et al. (1996)

$$\lambda = \psi \sqrt{rac{a}{b}}$$

with

$$\psi = \sqrt{rac{2}{\pi}} \prod_{n=1}^{+\infty} rac{1-r^{2n}}{1-r^{2n-1}}.$$

A Dynamic Picture: Network Context

- -J nodes.
- K classes of connections.
- $-N_k$ class k permanent connections.

 $N=N_1+\cdots+N_K.$

 $- W_{k,\ell}(t)$: throughput of ℓ th connection of class k.

 $egin{aligned} &- W_{k,\ell}(t)\colon ext{throughput of }\ell ext{th connection of class }k.\ &- u(t) = (u_j(t), 1\leq j\leq J), ext{ utilization of nodes} \ &u_j(t) = \sum_{k=1}^K A_{k,j} \sum_{\ell=1}^{N_k} W_{k,\ell}(t) \end{aligned}$

where (for example)

 $A_{k,j} = egin{cases} 1 & ext{ if class } k ext{ connections use node } j \ 0 & ext{ otherwise.} \end{cases}$

 $- W_{k,\ell}(t)$: throughput of ℓ th connection of class k. $-u(t) = (u_i(t), 1 \leq j \leq J)$, utilization of nodes $u_j(t) = \sum_{k=1}^K A_{k,j} \sum_{\ell=1}^{N_k} W_{k,\ell}(t)$ where (for example) $A_{k,j} = egin{cases} 1 & ext{if class } k ext{ connections use node } j \ 0 & ext{otherwise.} \end{cases}$

 $u_j(t)$: level of congestion of node j.

Generator of $(W_{k,\ell}(t))$

 $\Omega_k(f)(w_k)=a_kf'(w_k)+w_kb_k(u)(f(r_kw_k)-f(w_k))$

Generator of $(W_{k,\ell}(t))$

 $\Omega_k(f)(w_k)=a_kf'(w_k)+w_kb_k(u)(f(r_kw_k)-f(w_k))$

 $u \rightarrow b_k(u)$ depends of the coordinates u_j for which $A_{k,j} \neq 0$. **A Dynamic Picture: Stochastics**

Stochastic Differential Equation for $(W_{k,\ell}(t))$

 $egin{aligned} dW_{k,\ell}(t) &= a_k W_{k,\ell}(t) \, dt \ &- (1-r_k) W_{k,\ell}(t-) \mathcal{N}^{k,\ell}_{W_{k,\ell}(t-)b_k(U(t-))}(dt), \end{aligned}$

A Dynamic Picture: Stochastics

Stochastic Differential Equation for $(W_{k,\ell}(t))$

$$egin{aligned} dW_{k,\ell}(t) &= a_k W_{k,\ell}(t) \, dt \ &- (1-r_k) W_{k,\ell}(t-) \mathcal{N}^{k,\ell}_{W_{k,\ell}(t-)b_k(U(t-))}(dt), \end{aligned}$$

with $U(t) = (U_j(t), 1 \leq j \leq J)$ and $U_j(t) = \sum_{k=1}^K A_{jk} \sum_{i=1}^{N_k} W_{k,i}(t),$

and $\mathcal{N}_x^{k,\ell}$ Poisson process with rate x.

A Markovian Picture

The process

 $(W(t))=[(W_{k,\ell}(t),1\leq\ell\leq N_k),1\leq k\leq K]$

has the Markov property.

An Example

An Example Y R B 1 23

Evolution of $(W_R(t), W_B(t), W_Y(t))$

Loss Rates:

- For B: $w_B b_B(w_R + w_B, w_R + w_B + w_Y, w_B)$
- For R: $w_R b_R(w_R + w_B, w_R + w_B + w_Y)$
- For Y: $w_Y b_Y (w_R + w_B + w_Y)$

An Example (II) R B 1 3 2

Loss Rates:

- For B: $w_B[b_1(w_R+w_B)+b_2(w_R+w_B+w_Y)+b_3(w_B)]$
- For R: $w_R[b_1(w_R + w_B) + b_2(w_R + w_B + w_Y)]$
- For Y: $w_Y b_2(w_R + w_B + w_Y)$

A Mean Field Setting

$-N = N_1 + \cdots + N_K \rightarrow +\infty.$

$$rac{N_k}{N} o p_k$$

— The functions b_k are scaled by 1/N.

A Mean Field Setting

 $-N = N_1 + \cdots + N_K \rightarrow +\infty.$

$$rac{N_k}{N} o p_k$$

- The functions b_k are scaled by 1/N. Capacity of a node $\sim N$. If $W_{k,\ell} = w$, the loss rate of connection is

$$w\sum_{j=1}^J A_{jk} b_{jk} \left(rac{u_j}{N}
ight)$$

A Multi-Class Mean-Field Convergence Result

 $(W^N(t)) = [(W^N_{k,\ell}(t), 1 \leq \ell \leq N_k), 1 \leq k \leq K]$

A Multi-Class Mean-Field Convergence Result

 $(W^N(t))=[(W^N_{k,\ell}(t),1\leq\ell\leq N_k),1\leq k\leq K]$

Theorem [Graham and Robert (2008)] As $N \to +\infty$ $(W_{k,*}^N(t), 1 \leq k \leq K)$ converges in distribution to $(\overline{W}_k(t), 1 \leq k \leq K).$

The $(\overline{W}_k(t), t \ge 0), k = 1, \dots K$ are independent.

A Multi-Class Mean-Field Convergence Result

 $(W^N(t))=[(W^N_{k,\ell}(t),1\leq\ell\leq N_k),1\leq k\leq K]$

Theorem [Graham and Robert (2008)] As $N \to +\infty$ $(W_{k,*}^N(t), 1 \leq k \leq K)$ converges in distribution to $(\overline{W}_k(t), 1 \leq k \leq K).$

The $(\overline{W}_k(t), t \ge 0), k = 1, \dots K$ are independent. Proofs:

- Iterative scheme for estimation.
- Decomposition in boxes for local averaging.

The limiting process $(\overline{W}_k(t), 1 \leq k \leq K)$

Solution of a SDE such that

 $d\overline{W}_k(t)) = a_k\,dt + (1-r_k)\overline{W}_k(t)\mathcal{N}_{\overline{W}_k(t)b_k(-)}(dt)$

 \mathcal{N}_x Poisson with rate x.

The limiting process $(\overline{W}_k(t), 1 \leq k \leq K)$

Solution of a SDE such that

 $egin{aligned} &d\overline{W}_k(t)) = a_k\,dt + (1-r_k)\overline{W}_k(t)\mathcal{N}_{\overline{W}_k(t)b_kig(u_{\overline{W}}(t)ig)}(dt)\ &\mathcal{N}_x ext{ Poisson with rate } x. \end{aligned}$

 $u_{\overline{W}}(t) = (u_{\overline{W},j}(t), 1 \leq j \leq J)$

$$u_{\overline{W},j}(t) = \sum_{k=1}^K A_{jk} p_k \mathbb{E}(\overline{W}_k(t)),$$

The limiting process $(\overline{W}_k(t), 1 \leq k \leq K)$

Solution of a SDE such that

 $egin{aligned} &d\overline{W}_k(t)) = a_k\,dt + (1-r_k)\overline{W}_k(t)\mathcal{N}_{\overline{W}_k(t)b_kig(u_{\overline{W}}(t)ig)}(dt)\ &\mathcal{N}_x ext{ Poisson with rate } x. \end{aligned}$

$$egin{aligned} u_{\overline{W}}(t) &= (u_{\overline{W},j}(t), 1 \leq j \leq J) \ u_{\overline{W},j}(t) &= \sum_{k=1}^K A_{jk} p_k \mathbb{E}(\overline{W}_k(t)), \end{aligned}$$

Theorem:

A unique solution to (unconventional) SDE.

The Limiting process $(\overline{W}_k(t), 1 \leq k \leq K)$

 $\overline{W}_k(t)$ depends

— on the past $\overline{W}_k(s), s \leq t$

The Limiting process $(\overline{W}_k(t), 1 \leq k \leq K)$

 $\overline{W}_k(t)$ depends

- on the past $\overline{W}_k(s), s \leq t$
- $\begin{array}{l} \text{ in a non-linear way of expected values} \\ \mathbb{E}(\overline{W}_{\ell}(s)), 1 \leq \ell \leq K, s \leq t \end{array}$

The Limiting process $(\overline{W}_k(t), 1 \leq k \leq K)$

 $\overline{W}_k(t)$ depends

- on the past $\overline{W}_k(s), s \leq t$
- $\begin{array}{l} \text{ in a non-linear way of expected values} \\ \mathbb{E}(\overline{W}_{\ell}(s)), 1 \leq \ell \leq K, s \leq t \end{array}$

A Markov process non-homogeneous with respect to time.

The Equilibrium of the Limiting process

Theorem Equilibrium Distributions

are in one to one correspondence with $u = (u_j)$ solution of fixed point equation:

$$u_j = \sum_{k=1}^K A_{jk} \psi_k p_k \sqrt{rac{a_k}{b_k(u)}}, \quad 1 \leq j \leq J,$$

The Equilibrium of the Limiting process

Theorem Equilibrium Distributions

are in one to one correspondence with $u = (u_j)$ solution of fixed point equation:

$$u_j = \sum_{k=1}^K A_{jk} \psi_k p_k \sqrt{rac{a_k}{b_k(u)}}, \quad 1 \leq j \leq J,$$

Interaction of flows at equilibrium \Rightarrow Fixed Point Equation.

Throughput at Equilibrium

Throughput λ_k for class k connection

$$\lambda_k = \mathbb{E}(\overline{W}_k) = \psi_k \sqrt{rac{a_k}{b_k(u)}}.$$

with u solution of H(u) = 0.

Back to Kelly's Picture

A route of class $k \in 1, ..., K$: receives throughput λ_k^0 , such that (λ_k^0) achieves

$$\max_{\lambda \in \mathcal{C}} \sum_{k=1}^{K} p_k U_k (\lambda_k / p_k)$$

or equivalently (under some conditions)

 $abla G(\lambda^0/p)=0,$

for some convenient function G.

How Many Solutions for Fixed Point Equations ?

Uniqueness holds for several topologies

- Linear Network
- Torus
- Trees

under some assumptions.

Trees

Proposition:

If the functions b_H , $H \in \mathcal{T}$, are continuous and non-decreasing, then there exists a unique solution for fixed point equations.

Proof:

Recursion (starting from leaves).

Ring Topologies

General Result:

If the functions b_k , $1 \leq k \leq K$, are Lipschtiz and non-decreasing, then there exists a unique solution for fixed point equations.

Two Methods for Proof: Contraction Arguments.

Monotonicity Properties.

Uniqueness

Always true as long as $u \to b_k(u)$ is non-decreasing ?

Uniqueness

Always true as long as $u \rightarrow b_k(u)$ is non-decreasing ?

Counter-example of Raghunathan and Kumar (2007) in a wireless context.

Uniqueness

Always true as long as $u \rightarrow b_k(u)$ is non-decreasing ?

Counter-example of Raghunathan and Kumar (2007) in a wireless context.

If it fails: Multi-stability phenomenon in these networks ? Non-stable phenomena in IP networks

Bandwidth allocation algorithms

Non-stable phenomena in IP networks

Bandwidth allocation algorithms

may exhibit

- Multiple Stable points ?
- Oscillations ?

Non-stable phenomena in IP networks

Bandwidth allocation algorithms

may exhibit

- Multiple Stable points ?
- Oscillations ?

How to prove with rigorous scaling results ?

Multiple stable phenomena in networks

Known for

- Loss Networks,
 Gibbens et al. (1990), Marbukh (1993).
- Wireless Networks, Antunes *et al.* (2008).

A Conclusion

Representation of the interaction of flows:

Instantaneous fluid picture of Kelly et al.:
 An optimisation problem
 Data for Model: Utility function.

A Conclusion

Representation of the interaction of flows:

Instantaneous fluid picture of Kelly et al.:
 An optimisation problem
 Data for Model: Utility function.

Starting from microscopic dynamics
 A fixed point equation
 Data for Model: Function for loss rates.

— A more dynamic setting: non-permanent connections.

- A more dynamic setting: non-permanent connections.
 - A different scaling.

- A more dynamic setting: non-permanent connections.
 - A different scaling.

— Convergence to equilibrium.

- A more dynamic setting: non-permanent connections.
 - A different scaling.

Convergence to equilibrium.
 A difficult technical question.

The End