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A single long TCP flow

Congestion:
Adaptive Algorithm to regulate data transfers
Evolution of Throughput:

— Linear Increase

— Multiplicative Decrease

Literature
Various asymptotic formulas for throughput

The Internet with ONE node is fully understood !
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Coexistence of TCP Flows

Literature

Mathematical Description of Coexistence:
Few rigorous results.

Deterministic Models



Coexistence of TCP Flows: an approach

As an optimisation problem

x) routes of class kL € 1,..., K:
receive throughput A}, such that (A}) achieves
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U, utility function.



Coexistence of TCP Flows: an approach

As an optimisation problem

x) routes of class kL € 1,..., K:
receive throughput A}, such that (A}) achieves

K

U, utility function.

Kelly, Maulloo and Tan (1998)
Massoulié and Roberts (1999)
Kelly and Williams (2004), Massoulié (2007).
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Limits from Microscopic Dynamics

— (W,,) successive congestion window sizes
of a single flow

— « loss rate.

Theorem Dumas et al.(2002)

oa—0

(W (t)) is a Markov process with generator
Q) () = () + z(f(rz) — f(z))



A Dynamic Picture of a Single Connection

The throughput W (t) = w of a single connection

— a rate of increase.

— bw loss rate at time t¢.



A Dynamic Picture of a Single Connection

The throughput W (t) = w of a single connection

— a rate of increase. Example:
1
a =
C + RTT

— bw loss rate at time ¢.
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The throughput W (t) = w of a single connection

— a rate of increase. Example:
1
a =
C + RTT

— bw loss rate at time ¢.

A Markov process with generator

Q(f)(z) = af'(x) + bx(f(rz) — f(x))
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A Dynamic Picture of a Single Connection

Stochastic Differential Equation for (W (t))
dW (t) = adt + (1 — r)W (t—)Nw -y (dt),
N,: Poisson process with rate .

Throughput A at Equilibrium: Ott et al. (1996)

with




A Dynamic Picture: Network Context

— J nodes.
— K classes of connections.

— NN} class k permanent connections.

N =N;+.--+ Ngk.
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A Dynamic Picture

— Wye(t): throughput of /th connection of class k.
— u(t) = (u;(t),1 < 3 < J), utilization of nodes

w®) =3 Ay > Wit

=l

where (for example)

{1 if class k connections use node j
k,j —

0 otherwise.

u;(t): level of congestion of node j.
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A Dynamic Picture

Generator of (W, (t))
Qe (f)(wr) = arf’(wi) + wibk(uw) (f (rewe) — f (we))

— u — by (u) depends of the coordinates u;
for which A; ; # 0.
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A Dynamic Picture: Stochastics

Stochastic Differential Equation for (W ,(t))

de,g(t) = aka,g(t) dt
.
= (1 = ) Wit C=)NW, -y w - (48

with U(t) = (U;(t),1 < j < J) and
K Ny,
U;(t) = Z A Z Wi.i(t),
k=1 i=1

and N/ w’“’e Poisson process with rate x.



A Markovian Picture

The process
(W (1) = [(Wie(t),1 < £< Ni),1 < k < K]

has the Markov property.
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An Example

oo

1 2 3
Evolution of (Wg(t), Wg(t), Wy (t))

Loss Rates:
— For B: wpbp(wgr + wp, wr + wp + wy, wp)

— For R: wrbr(wgr + wp, wr + wp + wy)

— For Y: wyby (wgr + wp + wy)



An Example (II)

Loss Rates: 1 2 3

— For B:
wplbi(wr + wp) + b2(wr + wp + wy) + bs(wp)]

— For R: wg[bi(wgr + wp) + b2(wr + wp + wy)]

— For Y: wybsy(wgr + wp + wy)
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A Mean Field Setting

— N=N;+-+-+ Ng — +oo.

Ng,

N ™

— The functions b, are scaled by 1/IN.
Capacity of a node ~ V.

If Wi, = w, the loss rate of connection is

Wi
w Z A]kb]k (]\;)

71=1
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A Multi-Class Mean-Field Convergence Result
(W) = [(W(t),1 < £ < Ny),1 <k < K]

Theorem [Graham and Robert (2008)] As N — +oo
(W,Q;(t),l < k < K) converges in distribution to
(Wk(t)a 1 S k S K)

The (W (t),t > 0), k= 1,... K are independent.

Proofs:

— Iterative scheme for estimation.

— Decomposition in boxes for local averaging.



The limiting process (W(t),1 < k < K)

Solution of a SDE such that
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N, Poisson with rate x.
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The limiting process (W(t),1 < k < K)

Solution of a SDE such that
dW(t)) = ardt + (1 — Tk)Wk(t)NWk(t)bk(uW(t))(dt)

N, Poisson with rate x.

uy () = (uw ;(t),1 < g < J)

uyy ;i (t) = Z AjiprE(Wi(t)),

Theorem:
A unique solution to (unconventional) SDE.
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The Limiting process (W(t),1 < k < K)
W (t) depends

— on the past W (s),s <t
— in a non-linear way of expected values

E(We(s)),1 < £ < K, s < t

A Markov process
non-homogeneous with respect to time.
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Theorem

Equilibrium Distributions
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The Equilibrium of the Limiting process

Theorem

Equilibrium Distributions

are in one to one correspondence with u = (u;)
solution of fixed point equation:

ag
br,(u)’

K
u; = Y Ajtbipr 1<735<J,
k=1

Interaction of flows at equilibrium
— Fixed Point Equation.



Throughput at Equilibrium

Throughput A\, for class k£ connection

ag

e = E(W}) = 4y ()’

with u solution of H(u) = 0.



Back to Kelly’s Picture

A route of class k € 1,..., K:
receives throughput A}, such that (A}) achieves

K
rggg;pkUk(Ak/pk)

or equivalently (under some conditions)
VG(\’/p) = 0,

for some convenient function G.



How Many Solutions for Fixed Point Equations 7

Uniqueness holds for several topologies

— Linear Network

— Torus

— Trees

under some assumptions.
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Trees

Proposition:

If the functions by, H € 7, are continuous and
non-decreasing, then there exists a unique solution
for fixed point equations.

Proof:
Recursion (starting from leaves).
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Ring Topologies

General Result:

If the functions b, 1 < k < K, are Lipschtiz and
non-decreasing, then there exists a unique solution
for fixed point equations.

Two Methods for Proof:
Contraction Arguments.

Monotonicity Properties.
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Uniqueness
Always true
as long as u — bi(u) is non-decreasing ?

Counter-example of Raghunathan and Kumar (2007)
in a wireless context.

If it fails:
Multi-stability phenomenon in these networks 7
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Bandwidth allocation algorithms
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Non-stable phenomena in IP networks

Bandwidth allocation algorithms

may exhibit

— Multiple Stable points ?

— QOscillations ?

How to prove with rigorous scaling results 7



Multiple stable phenomena in networks

Known for

— Loss Networks,

Gibbens et al. (1990), Marbukh (1993).

— Wireless Networks,
Antunes et al. (2008).
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Representation of the interaction of flows:

— Instantaneous fluid picture of Kelly et al.:
An optimisation problem
Data for Model: Utility function.



A Conclusion

Representation of the interaction of flows:

— Instantaneous fluid picture of Kelly et al.:
An optimisation problem
Data for Model: Utility function.

— Starting from microscopic dynamics
A fixed point equation
Data for Model: Function for loss rates.
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On going work and open questions

— A more dynamic setting:
non-permanent connections.

A different scaling.

— Convergence to equilibrium.

A difficult technical question.



The End



