FP7 ICT-SOCRATES

Self-organisation in future mobile cellular networks

Hans van den Berg, Remco Litjens TNO ICT, Delft, The Netherlands

NET-COOP 2009, Eindhoven, 23-25 November 2009

SELF-ORGANISATION IN FUTURE MOBILE CELLULAR NETWORKS

OUTLINE

- Introduction
- Drivers
- Vision
- Expected gains
- Use cases
 - Packet scheduling
 - Admission control
 - Cell outage management
 - Reduction of energy consumption

atesio ericsson ≶ 🔢 🖬 IBBT = 🖬 🖬 🕅

- Challenges
- Approaches
- Who is who?
- Concluding remarks

Introduction

- Drivers
- Vision
- Expected gains
- Use cases
 - Packet scheduling
 - Admission control
 - Cell outage management
 - Reduction of energy consumption
- Challenges
- Approaches
- Who is who?
- Concluding remarks

INTRODUCTION

Wikipedia

Self-organisation is a process of attraction and repulsion in which the internal organization of a system, normally an open system, increases in complexity without being guided or managed by an outside source.

Another attempt

(in the specific context of communication networks)

Self-organisation is the automated (without human intervention) adaptation or configuration of network parameters (in a broad sense), in response to observed changes in the network, traffic, environment conditions and/or experienced performance.

Some examples may help ...

atesio ericsson 💋 III IIII IIII IIII

- Example 1: TCP (Transmission Control Protocol)
 - Operates end-to-end on the transport layer
 - Automatically adapts source transfer rate to end-to-end congestion level
 - Slow start phase is followed by congestion avoidance phase
 - AIMR → Additive Increase, Multiplicative Decrease
 - \rightarrow 'Optimal', fair bandwidth sharing

- Example 3: 'Uplink transmit power control in UMTS networks'
 - 1st Self-optimisation loop
 - Adjust transmit power to meet SINR target
 - Responds to e.g. multipath fading variations
 - 2nd Self-optimisation loop
 - Adjust SINR target to meet BLER target
 - Adapts to e.g. user velocity

Example 3: 'Uplink transmit power control in UMTS networks'

INTRODUCTION

- Mobile cellular communications networks
- LTE access technology
 - Long Term Evolution (E-UTRAN)
 - Currently under standardisation

20113

LTE

INTRODUCTION

- Current networks are largely manually operated
 - Manual configuration of sites
 - Radio (resource management) parameters updated weekly/monthly
 - Time-intensive experiments with limited operational scope
 - Delayed, manual and poor handling of cell/site failures
 - (Non-)automated planning tools used to select sites, radio parameters
 - 'Over-abstraction' of applied technology models
- Future wireless access networks will exhibit a significant degree of self-organisation
 - Self-configuration, self-optimisation, self-healing, ...
- Broad attention
 - 3GPP, NGMN, EU projects (e.g. Gandalf, E³, SOCRATES), literature ...
 - Evolutionary vs. revolutionary approach

- Introduction
- Drivers for self-organisation
- Vision
- Expected gains
- Use cases
 - Packet scheduling
 - Admission control
 - Cell outage management
 - Reduction of energy consumption
- Challenges
- Approaches
- Who is who?
- Concluding remarks

DRIVERS

- Technogical perspective
 - Complexity of future/contemporary wireless access networks
 - Multitude of tuneable parameters with intricate dependencies
 - Multitude of radio resource management mechanisms on different time scales
 - Complexity is needed to maximise potential of wireless access networks
 - Higher operational frequencies
 - Multitude of cells to be managed
 - Growing suite of services with distinct char'tics, QoS req'ments
 - Heterogeneous access networks to be cooperatively managed
 - \rightarrow labour-intensive operations delivering suboptimal solutions!
- Enabler
 - The multitude and technical capabilities of base stations and terminals to perform, store, process and act upon measurements increases sharply

DRIVERS

- Market perspective
 - Increasing demand for services
 - Increasing diversity of services
 - Traffic characteristics, QoS requirements
 - Need to reduce time-to-market of innovative services
 - More 'flexibility'
 - Reduce operational hurdles of service introduction

atesio ericsson 💋 III III IIII IIII 🖉

- Pressure to remain competitive
 - Reduce costs (OPEX/CAPEX)
 - Enhance resource efficiency
 - Keep prices low

- Introduction
- Drivers
- Vision
- Expected gains
- Use cases
 - Automatic neighbour cell list generation
 - Admission control
 - Cell outage management
 - Reduction of energy consumption
- Challenges
- Approaches
- Who is who?
- Concluding remarks

VISION

- Minimise human involvement in network operations
- Significant automation of network operations
- Key components
 - Self-configuration
 - Self-healing
 - Self-optimisation

VISION

- Self-configuration
 - Incidental, intentional events
 - 'Plug and play' installation of new base stations and features
 - Download of initial radio network parameters, neighbour list generation, transport network discovery and configuration, ...
 - Starting point for self-optimisation
- Self-healing
 - Incidental, non-intentional events
 - Cell outage detection
 - Alarm bells
 - Triggers compensation
 - Cell outage compensation
 - Automatic minimisation of coverage/capacity loss

17/∞

VISION

- Self-optimisation
 - Continuous loop
 - Measurements
 - Performance indicators
 - Network, traffic, mobility, propagation conditions
 - Gathering via UEs, eNodeBs, probes
 - Automatic tuning
 - Smart algorithms process measurements into parameter adjustments
 - E.g. tilt, power, RRM param's, ...
 - In response to observed changes in conditions and/or performance
 - In order to provide service availability/quality most efficiently

- Triggers/suggestions in case capacity expansion is unavoidable

- Introduction
- Drivers
- Vision
- Expected gains
- Use cases
 - Packet scheduling
 - Admission control
 - Cell outage management
 - Reduction of energy consumption
- Challenges
- Approaches
- Who is who?
- Concluding remarks

EXPECTED GAINS

- OPEX reductions ...
 - Primary objective!
 - Less human involvement in
 - Network planning/optimisation
 - Performance monitoring, drive testing
 - Troubleshooting

- About 25% of OPEX is related to network operations

• x00 million € savings potential per network

atesio ericsson 💋 III 🔤 IBBT = E E FIN

EXPECTED GAINS

21/∞

- and/or CAPEX reductions ...
 - Via delayed capacity expansions
 - Smart eNodeBs may however be more expensive
- ... and/or performance enhancements
 - Enhanced service availability, service quality

OCRATE:

CRATE

EXPECTED GAINS

- ... and/or CAPEX reductions ...
 - Via delayed capacity expansions
 - Smart eNodeBs may however be more expensive
- ... and/or performance enhancements
 - Enhanced service availability (robustness, resilience), service quality

IMPACT OF 'SELF-HEALING'

-OCRATES

CRATES

- Introduction
- Drivers
- Vision
- Expected gains
- Use cases
 - Packet scheduling
 - Admission control
 - Cell outage management
 - Reduction of energy consumption
- Challenges
- Approaches
- Who is who?
- Concluding remarks

USE CASES

FP 7 SOCRATES

- Self-Optimisation and Self-Configuration in Wireless Networks

Evolutionary approach towards self-organisation

- Take current architecture as starting point
 - Works quite well, when parameters are properly tuned ...
- 'Make' existing functionalities self-*
 - E.g. RRM mechanisms, cell outage management, ...
 - Determine actual need for self-* by sensitivity analysis
 - Algorithms for 'automatic' adaptation of parameters
- Required architectural modifications → impact on standardisation
 - Measurements, interfaces, signaling, ...

atesio ericsson ≶ 🔢 🖬 IBBT = 🖬 🖬 🕅

- Many 'use cases' defined
 - Stand alone functionalities
 - Interacting functionalities

USE CASES

- Non-exhaustive use case list
 - Self-optimisation
 - Radio network optimisation
 - Interference coordination
 - Self-optimisation of physical channels
 - RACH optimisation
 - Self-optimisation of Home eNodeBs

GOS/QoS-related optimisations

AC/CC/PS optimisation

- Link level retx scheme optimisation
- Coverage hole detection/compensation

Handover related optimisation

- Handover parameter optimisation
- Load balancing
- Neighbour cell list

• Others

- -Reduction of energy consumption
- TDD UL/DL switching point
- Management of relays and repeaters

😳 atesio ericsson ≶ 📗 🔤 IBBT = 🖬 🖬 🛍

- Spectrum sharing _
- WWW.FP7-SOCRATES.EU MIMO

- Self-configuration
 - Automatic NCL generation
 - Intell. selecting site locations
 - Automatic generation of default parameters for NE insertion
 - Network authentication
 - Hardware/capacity extension

– Self-healing

- Cell outage prediction
- Cell outage detection
- Cell outage compensation

- Introduction
- Drivers
- Vision
- Expected gains
- Use cases
 - Packet scheduling
 - Admission control
 - Cell outage management
 - Reduction of energy consumption
- Challenges
- Approaches
- Who is who?
- Concluding remarks

- Sensitivity analysis
 - Impact of traffic- and system characteristics on optimal setting of PS parameters
- Reference packet scheduling algorithm:
 - LTE downlink scheduler (time, frequency)
 - Supports real-time (video telephony) and non real-time (data) traffic
 - Contains elements of proportional fairness and packet due dates

- Calculation of packet priority levels (at every TTI)
 - For all users *i* with packets in buffer, for all subchannels *c*:

- R_{i,c}(t): potential bit rate at which user i can be served on subchannel c at TTI t
- T_i: max allowed delay for packets of user i
- W_i(t): delay of HOL packet of user i at TTI t
- <u>R_i(t)</u>: exp. smoothed average bit rate obtained by user *i*

$$\underline{R}_{i}(t) = (1 - \alpha)\underline{R}_{i}(t - 1) + \alpha R_{i}(t - 1)$$

- Two main parameters
 - $-\alpha$: exponential smoothing parameter
 - ξ : parameter to set the importance of the urgency factor

😻 atesio ericsson 🍃 🚺 🔤 IBBT = = 🖬 🕬 🍪

WWW.FP7-SOCRATES.EU Kathleen Spaey, IBBT / University of Antwerp

- LTE system level simulator
- Sensitivity of the optimal settings of α , and ζ with respect to:
 - Data traffic characteristics (file size distribution)
 - Multipath fading environment (users' speed)
 - Differences in the average signal strength (spatial distribution of users)
 - Traffic mix (data / video traffic)
- Performance measure: maximum supportable cell load (Kbit/sec)
 - Given QoS targets for data and video traffic
- Observed sensitivity is minor
 - Depends on QoS targets for both traffic types
 - $-\alpha$ =0.01 and ζ =1 yields (near) optimal system performance

Author, Organisation

- Data only scenario
- Impact of file size distribution (CoV = 0,1,2,4)
- Maximum supportable cell load (Kbit/sec)

- under given QoS targets for data traffic

WWW.FP7-SOCRATES.EU

Author, Organisation

- Data / Video scenarios
- Impact of traffic mix
- Maximum supportable cell load (Kbit/sec)
 - Given QoS constraints for video and data traffic

atesio ericsson 💋 🔢 🖬 IBBT = 🖬 🖬 🕅

Zeta = 0.75 still OK!

CRATES

Results for alpha=0.01

- Introduction
- Drivers
- Vision
- Expected gains
- Use cases
 - Packet scheduling
 - Admission control
 - Cell outage management
 - Reduction of energy consumption
- Challenges
- Approaches
- Who is who?
- Concluding remarks

USE CASE: SELF-OPTIMISATION OF ADMISSION CONTROL

Admission control

- Key radio resource management mechanism
- Objective is to admit as many calls as possible; prevent overload
 - such that service quality requirements can be satisfied
 - otherwise: call is blocked
- Typical admission control rule: admit call iff $\rho(t) + \rho_{pow} < c(t) margin$
 - Margin accounts for handover calls, unexpected propagation effects, ... current load load new call

atesio ericsson 💋 III III IIII IIII IIII

cell capacity c(t) admission threshold for HO/RT admission threshold for ...

FR/RT, FR/NRT, HO/RT, HO/NRT, ...

USE CASE: SELF-OPTIMISATION OF ADMISSION CONTROL

Key challenges

- How to determine cell capacity = non-trivial!!
 - c(t) varies over time and depends on e.g. traffic charac's
- How to set the margins?
 - Too low means inadequate QoS
 - Too high means excessive blocking
 - Give sufficient preference to handover calls
 - 'Sufficient' depends on degree of mobility, which may vary
 - Give sufficient preference to real-time calls
 - Little tolerance w.r.t. (temporary) QoS degradation
 - Optimal margin depends on occasional downgradability of non-real-time traffic

WELCOME

TOLTE

- Optimal margins depend on traffic- and system characteristics
 - Fraction HO calls (degree of mobility), traffic mix (RT/NRT traffic), propagation, ...

- Introduction
- Drivers
- Vision
- Expected gains
- Use cases
 - Packet scheduling
 - Admission control
 - Cell outage management
 - Reduction of energy consumption
- Challenges
- Approaches
- Who is who?
- Concluding remarks

Self-healing use case

36/∞

Cell outage detection

– What? Where?

- ...

Cell outage compensation

- Automatic compensation of failures
 - Optimise 'regional' coverage, capacity and/or quality

atesio ericsson 💋 III III IIII IIII IIII

- Control parameters
 - Power settings
 - Downtilt
 - Beamforming
 - Scheduler's fairness parameter
 - Intra/inter-RAT handover parameters, load balancing
 - Neighbour cell lists

'NORMAL' OPERATION CELL OUTAGE OCCURS

CELL OUTAGE COMPENSATION

Cell outage compensation: impact control parameters

- Scenarios for cell outage compensation
 - Impact of eNodeB density and load
 - More compensation potential in a dense capacity-driven network layout
 - Impact of service type
 - More compensation potential in an area with predominantly low-bandwidth service, e.g. VoIP telephony
 - Impact of outage location
 - More compensation potential if a cell/site outage occurs at the inner part of an LTE island

- Also study impact of
 - user mobility, propagation aspects, spatial traffic distribution, UE class
- Controllability & observability
- Algorithm development
- Impact on 3GPP specifications

CELL OUTAGE AT ISLAND'S CORE

CELL OUTAGE AT ISLAND'S EDGE

- Introduction
- Drivers
- Vision
- Expected gains
- Use cases
 - Packet scheduling
 - Admission control
 - Cell outage management
 - Reduction of energy consumption
- Challenges
- Approaches
- Who is who?
- Concluding remarks

- Traffic load usually varies from hour to hour
- Networks are planned for peak hour performance

atesio ericsson 💋 III III IIII IIII

- Over-capacity in off-peak hours can be turned off to save energy
 - Turn off sites
 - Turn off sectors
 - Turn of channel boards
 - Turn off carriers

— ...

- Reduce transmit power

DAILY TRAFFIC LOAD VARIATIONS

- Assessment of potential savings
 - Consider a data-only HSDPA network
 - Plan 48×3 hexagonal layout for coverage even when only 3 sites are active
 - Consider cases with $k \in \{48, 36, 24, 12, 9, 6, 3\}$ active sites

atesio ericsson 💋 III IIII IIII IIII

Assessment of potential savings

- Consider a data-only HSDPA network
- Plan 48×3 hexagonal layout for coverage even when only 3 sites are active
- Consider cases with $k \in \{48, 36, 24, 12, 9, 6, 3\}$ active sites
- Determine for each k
 - the throughput performance versus the traffic load

Assessment of potential savings

- Consider a data-only HSDPA network
- Plan 48×3 hexagonal layout for coverage even when only 3 sites are active
- Consider cases with $k \in \{48, 36, 24, 12, 9, 6, 3\}$ active sites
- Determine for each k
 - the throughput performance versus the traffic load
 - the maximum supported traffic load such that performance target is met

SUPPORTABLE TRAFFIC LOAD

Assessment of potential savings

- Consider a data-only HSDPA network
- Plan 48×3 hexagonal layout for coverage even when only 3 sites are active
- Consider cases with $k \in \{48, 36, 24, 12, 9, 6, 3\}$ active sites
- Determine for each k
 - the throughput performance versus the traffic load
 - the maximum supported traffic load such that performance target is met
- Set peak hour traffic load equal to the max. supportable traffic load for k = 48
- Derive for each hour of the day the min.
 k needed to support the corresponding traffic load with the set QoS target
- Deduce potential energy reduction
 - average throughput
 - cell edge throughput perc'ile → 39.8%

atesio ericsson 💋 🔢 🖬 IBBT = 🖬 🖬 🕅

→ Self-optimisation!

NUMBER OF REQUIRED ACTIVE SITES

Algorithm development

- Significant demonstrated potential
- Develop algorithm to turn off sites in a dynamic setting
 - Appropriate measurement/filtering of carried traffic load per cell
 - Assess potential for surrounding sites to take over residual load
 - Optimise thresholds, window sizes, smoothing parameters
 - Take into account time/energy cost it takes to turn back on a site
- Develop algorithm to turn back on sites in a dynamic setting
 - Appropriate measurement/filtering of carried traffic load in surrounding cells
 - Estimate traffic load in deactivated site's coverage area
 - Optimise thresholds, window sizes, smoothing parameters
- Develop algorithm to automatically *adjust radio* parameters to match modified configurations

atesio ericsson 💋 🔢 🖬 🖬 🖬 🖬 🖉

 Pilot power, electrical tilt, Beamforming parameters, ...

On-going work

- Introduction
- Drivers
- Vision
- Expected gains
- Use cases
 - Packet scheduling
 - Admission control
 - Cell outage management
 - Reduction of energy consumption
- Challenges
- Approaches
- Who is who?
- Concluding remarks

CHALLENGES

- Development of effective self-organisation methods imposes many challenges
 - Measurements
 - What data? What frequency? Tuned to urgency?
 - Trade-off: signalling costs
 vs achieved performance
 - Appropriate processing to determine 'network state'
 - Detection/handling of erroneous/ malicious reports
 - Effectiveness of self-organisation
 - Multi-objective optimisation
 - Intricate parameter dependencies
 oscillations!
 - Centralised vs distributed control
 - Convergence time of self-opt. algorithms

atesio ericsson 💋 🔢 🖬 🖬 🖬 🖬 🖉

CHALLENGES

- Development of effective self-organisation methods imposes many challenges
 - Dealing with delayed feedback
 - Feedback upon control actions is not immediate
 - Effects of control decisions or due to natural variations
 - Reliability
 - Actions must be reliable
 - No human sanity checks or revision of actions
 - Operator must trust the system when giving up direct control

atesio ericsson 💋 III III IIII IIII IIII

- Gradual introduction

vadafone

- Introduction
- Drivers
- Vision
- Expected gains
- Use cases
 - Packet scheduling
 - Admission control
 - Cell outage management
 - Reduction of energy consumption
- Challenges
- Approaches
- Who is who?
- Concluding remarks

Generic approach

51/∞

SELF-OPTIMISATION APPROACHES

- Approach 1: Off-line 'simulation-based optimisation'
 - Optimisation Algorithm exploits a Network Simulator for 'what if' analyses, i.e. test potential parameter adjustments before application in the Real Network
 - Equivalent to current approach to off-line optimisation
 - Specific problem imposes requirements on speed and accuracy

SELF-OPTIMISATION APPROACHES

Approach 2: 'Off-line optimised real-time controller'

- Real-Time Controller rapidly responds to changes
 - E.g. 'rule-based' optimisation
- Periodic off-line tuning of Real-Time Controller
 - E.g. adaptation and/or extension of rules

SELF-OPTIMISATION APPROACHES

Approach 3: 'On-line optimised real-time controller'

- Periodic/continuous on-line tuning of *Real-Time Controller*
 - Example admission control with Reinforcement Learning
 - Reference CAC scheme with an RL-based self-optimisation layer on top, optimising the CAC parameters
 - Integrated RL-based CAC scheme, directly optimising the mapping of system state to admission/rejection decision

- Involves initialisation and training phase with randomised actions
- Inherent degree of 'black box character' limits 'trustworthiness'

SELF-ORGANISATION METHODOLOGIES

Non-exhautive list of potentially applicable optimisation techniques

	fuzzy				
neural Q-learning		iterative			neural
networks			learning co	ontrol	swarming
neuro-evolution of augmenting topologies		open-loop control	c	genetic programming	
random search		branch & bound	logic	automatic control	reinforcement learning
metamodels	perturbation analysis	Markov	clique detection	no base	n-gradient ed methods
sample	decision processes				
path or expert systems	ordinal ptimisation proportional-inte derivative cont		adient base methods	model predictive control	
www.fp7-socrates.eu 55/∞ tes ates	510 ERICSSON	IBBT	Instant for Nacional Antonio	Nakia Siervans Netwarks	CRATES WISDO

- Introduction
- Drivers
- Vision
- Expected gains
- Use cases
 - Automatic neighbour cell list generation
 - Admission control
 - Cell outage management
 - Self-optimisation of Home eNodeBs
 - Reduction of energy consumption
- Challenges
- Approaches
- Who is who?
- Concluding remarks

CONCLUDING REMARKS

- Self-organisation key approach to …
 - … reduce O/CAPEX
 - ... cost-effective provisioning of high-quality services
 - ... reduce time-to-market of new features, services
- Key components
 - Self-configuration
 - Self-optimisation
 - Self-healing
- Exciting challenges
 - Effectiveness, reliability, stability
 - Measurements, interfaces, protocols, architectures
- Involved parties/projects
 - NGMN, 3GPP, GANDALF, E3, SOCRATES, ...

