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I. Introduction
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Heavy traffic diffusion regimes

Consider a queue with multiple servers

Parametrize by letting

λn ≈ n, Nn ≈ nα, µn ≈ n1−α,

where 0 ≤ α ≤ 1, so that λn ≈ Nnµn.

Obtain:
α = 0 α = 1

Conventional Halfin-Whitt

Define slowdown=sojourn time / service time

Slowdown is degenerate at both endpoints
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When is the slowdown nondegenerate?

Consider α = 1/2.

λn ≈ n, Nn ≈ n1/2, µn ≈ n1/2

Clearly the service time ≈ n−1/2

Obtain

DELAY ∼ SERVICE TIME
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Earlier work (the case of M/M/N):

* Whitt (Oper. Res., 2003): Convergence of queuelength and delay
processes to a RBM (α = 1/2)

* Mandelbaum and Shaikhet (Mandelbaum’s EURANDOM lecture
notes, 2003): independently, a similar result, (α = 1/2); observe
that the delay and the time in service are of the same order

* Gurvich (M.Sc. Thesis, 2004): Convergence of queuelength/
delay processes to a RBM for α ∈ [ 12 , 1).

The above works regard this as a part of the Efficiency Driven regime
(the diffusion being RBM, the probability of delay being close to 1)
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Our point of view

* The joint law of delay and time in service is interesting

* α = 1/2 is the only case where the limit is a
nondegenerate pair of processes

* The limiting joint law (and in particular the limiting sojourn
time law) is distinct from that under the other two diffusion
regimes

We will refer to it as the Non-Degenerate Slowdown (NDS)
regime
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II. Some diffusion limit
results
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Model

renewal arrivals
each requiring a single

non-interruptible service

µ1 µ2 · · · µNn

routing mechanism

Nn heterogenous
exponential
servers
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Assumptions. The NDS Regime (α = 1/2)

• Arrivals: λn = λn + λ̂n1/2 + o(n1/2)

• Number of servers Nn = n1/2 + o(n1/2)

• Individual service rates µ1n, µ2n, . . . , µNn n

• With µn =
∑Nn

k=1 µkn, n−1µn → µ ∈ (0,∞)

µ̂n = n−1/2(µn − nµ) → µ̂ ∈ (−∞,∞)

• Critical load condition: λ = µ
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Assumptions (cont.)

• The empirical measure of {µ̂kn := µknn−1/2} converges weakly,
namely

1

Nn

Nn∑

k=1

δµ̂kn
→ m,

for some probability measure m on R+
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Assumptions on the routing policy

• Work conserving
• Nonanticipating

Includes, for example,

• Always route to the slowest available server
• Always route to the fastest available server
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Processes of interest

∆n(t)= delay experienced by the first customer to arrive at or after
time t

Σn(t)= time in service of the same customer

Diffusion scaling:

∆̂n = n1/2∆n Σ̂n = n1/2Σn
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AT = Arrival Time
RT = Routing Time
DEP = Departure Time
AB = Abandonment Time
∆ = Delay
Σ = Service Time
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Diffusion-scale limit result

THEOREM: The joint law of (∆̂n, Σ̂n) converges to

(RBM, f -White noise)

in finite dimensional distributions.
That is, given j and 0 < t1 < · · · < tj < ∞, we have

(∆̂n(t1), Σ̂n(t1), . . . , ∆̂n(tj), Σ̂n(tj)) ⇒ (ξ̄(t1), η1, . . . , ξ̄(tj), ηj),

were, ξ̄ = ξ/µ, ξ is the RBM

ξ(t) = ξ0 + (λ̂ − µ̂)t + σw(t) + l(t),

and ηi are independent of ξ, i.i.d., with p.d.f.

f(x) =
1

µ

∫
y2e−yxm(dy), x ∈ [0,∞).
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Interpretation of f

* Draw a random variable Y from the distribution

ym(dy)∫
zm(dz)

,

* Let η be exponentially distributed with mean Y .
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Extension to case with abandonment

Customers abandon the queue while waiting to be served, at fixed rate
γ (according to an exponential clock).

The result holds, with

ξ(t) = ξ0 + (λ̂ − µ̂)t − γ

∫ t

0

ξ(s)ds + σw(t) + l(t)
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Expressions for slowdown (formal)

Without abandonment (γ = 0) need to assume λ̂ − µ̂ < 0, and then

slowdown = 1 +
σ2

2(µ̂ − λ̂)

With abandonment (γ > 0)

slowdown = 1 +

∫ ∞

0
xe−(x−b)2/2c2

dx
∫ ∞

0
e−(x−b)2/2c2dx

where (b, c2) = ( λ̂−µ̂
γ , σ2

2γ ).
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III. Control formulations
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Control to minimize sojourn time

- As a diffusion-limited control problem, this set us is meaningful only in
the NDS regime
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The heavy traffic condition

Following Harrison and Lopez (1999), consider the linear program

Minimize ρ ∈ [0, 1] s.t.
∑

j

µijξij = λi, ∀i, ξij ≥ 0, ∀(i, j),
∑

i

ξij ≤ ρ, ∀j

The HT condition: There exists a unique optimal solution (ξ∗, ρ∗),
ρ∗ = 1. Moreover,

∑
i ξ∗ij = 1
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The complete resource pooling condition

i ∼ j — an activity
ξ∗ij > 0 — a basic activity

The CRP condition:
* Uniqueness of solutions to a dual program (Harrison and Lopez
1999)
* The graph Gb, of basic activities, is connected (Harrison and Lopez
1999)
* The graph Gb is a tree (Williams 2000)

Significance:

* High level of cooperation between service stations, so stations work
like a single super-server

* Workload is one-dimensional
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The diffusion scaling

Denote

Qn
i (t) = number of class-i customers in the queue at time t

Xn
i (t) = number of class-i customers in the system at time t

Q̂n
i (t) = n−1/2Qn(t), i = 1, 2, . . . , I

X̂n
i (t) = n−1/2

(
Xn

i (t) −
∑

j

ξ∗ijN
n
j

)
, i = 1, 2, . . . , I
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The diffusion control problem (Harrison-Lopez 1999)

The DCP consists of r.v.s X0,i, BMs Wi, and processes Xi, Ij , Yij :

Xi(t) = X0,i + Wi(t) +
∑

j

µijYij(t) ≥ 0, t ≥ 0, i = 1, 2, . . . , I,

Ij :=
∑

i

Yij is non-decreasing and Ij(0) ≥ 0, j = 1, 2, . . . , J,

Yij is non-increasing and Yij ≤ 0, (i, j) ∈ Enb.

REM: Yij are further required in Harrison-Lopez to be adapted; one
can drop this requirement (Bell-Williams 2000)
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An equivalent DCP

Harrison-Lopez 1999, Mandelbaum-Stolyar 2004

X(t) = X0 + W (t) + Z(t) ∈ R
I
+, t ≥ 0,

θ′Z is nondecreasing, and θ′Z(0) ≥ 0

Here, θ ∈ R
I
+ is a fixed vector (the workload vector).

THEOREM (with Itai Gurvich): The two diffusion control problems are
equivalent.
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IV. DCP for sojourn time -
an explicit solution
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DCP for sojourn time

CASE OF A SINGLE POOL

* Nonlinear cost is of interest

We will consider COST =
∑

i ciE

[(
Xi(t)

µi

+ Σi

)2]

Σi -r.v.s representing service time

* Easy to reduce to E[C(X(t))]
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Solution of DCP

Denote

ρi =
λi

µi
, βi =

ρ2
i

ci
, i = 1, 2, . . . , I

THEOREM (with Nir Solomon): The DCP is solved by bringing X(t) to
X∗(t) s.t.

X∗
i + ρi

µi
=

βi∑
k βk

∑

k

X∗
k + ρk

µk
, for all i
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V. Asymptotics
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Asymptotics, the conventional regime

BACK TO THE GENERAL CASE (general number of pools, J ≥ 1;
general cost C)

In conventional heavy traffic:

* Ata-Kumar (2005) - a discretization approach

* Bell-Williams (2001, 2005) - a threshold policy

* Mandelbaum-Stolyar (2004) - a generalized cµ rule
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Asymptotics, the NDS regime

Let C : R
I
+ → R+ be a continuous function, increasing wrt usual partial

order
C∗(a) = min{C(q) : q ∈ R

I
+, θ′q = a}

Let q(a) be a minimizer. Assumption: q is Lipschitz continuous.

PROPOSED POLICY:

X1 −−−−−− ∗
X2 −−−−− ∗ −−−−−
X3 −−−−−−−− ∗ − −−−
X4 −−−−−−−− ∗ LEGEND: X −−− q(X) ∗

Priority to overloaded classes

In addition, (i) No use of nonbasic activities, (ii) Work conservation.
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Asymptotics, the NDS regime

THEOREM (with Itai Gurvich): Assume C is convex. Fix a finite T .
Then under any policy,

lim inf
n→∞

∫ T

0

C(Q̂n(t))dt ≥

∫ T

0

C∗(Q∗(t))dt,

where Q∗ is the RBM Γ (θ′X0 + θ′W ).

Moreover, under the proposed policy,

lim sup
n→∞

∫ T

0

C(Q̂n(t))dt =

∫ T

0

C∗(Q∗(t))dt
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About the lower bound

The LB does not hold in non-integral form.

* Minimality of the Skorohod map is well-known:

Let ζ ∈ D. Let η ∈ D be non-decreasing, η(0) ≥ 0. Assume
ζ(t) + η(t) ≥ 0, for all t ≥ 0. Then

ζ(t) + η(t) ≥ Γ [ζ](t) ≡ ζ(t) + sup
s≤t

[ζ(s)−], t ≥ 0.
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About the lower bound

The integral LB uses the following perturbation lemma about the
Skorohod map:

LEMMA (with Itai Gurvich): Let T > 0 and ε > 0, ε < T , be given. Let
ζ ∈ D and assume ζ(0) ≥ 0. Let

α = ζ + η + β,

where η ∈ D is non-decreasing, η(0) ≥ 0, β ∈ D satisfies

−ε2 ≤

∫ t

0

β(s)ds ≤ ε2 t ∈ [0, T ],

and α(t) ≥ 0, t ∈ [0, T ]. Then

α(t) ≥ Γ [ζ](t) + β(t) − Osc(ζ|[0,T ], ε) − 3ε, t ∈ [0, T ].

NETCOOP, EINDHOVEN, NOVEMBER 2009 RAMI ATAR NONDEGENERATE SLOWDOWN REGIME – p. 33/34



Thank you!
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