CONTROL FORMULATIONS IN THE NONDEGENERATE SLOWDOWN DIFFUSION REGIME

Rami Atar

Technion, Israel

atar@ee.technion.ac.il

with

Itai Gurvich Northwestern, USA Nir Solomon Technion, Israel

NETCOOP, EINDHOVEN, NOVEMBER 2009 RAMI ATAR NONDEGENERATE SLOWDOWN REGIME – p. 1/34

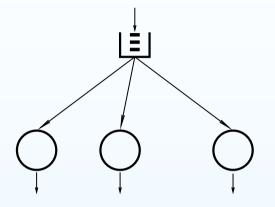
I. Introduction

Heavy traffic diffusion regimes

Consider a queue with multiple servers

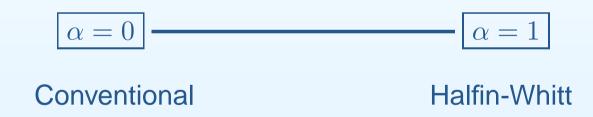
Parametrize by letting

 $\lambda_n \approx n, \qquad N_n \approx n^{\alpha}, \qquad \mu_n \approx n^{1-\alpha},$



where $0 \le \alpha \le 1$, so that $\lambda_n \approx N_n \mu_n$.

Obtain:



Define slowdown=sojourn time / service time

Slowdown is degenerate at both endpoints

When is the slowdown nondegenerate?

Consider $\alpha = 1/2$.

$$\lambda_n \approx n, \qquad N_n \approx n^{1/2}, \qquad \mu_n \approx n^{1/2}$$

Clearly the service time $\approx n^{-1/2}$

Obtain

DELAY \sim SERVICE TIME

Earlier work (the case of M/M/N):

- * Whitt (Oper. Res., 2003): Convergence of queuelength and delay processes to a RBM ($\alpha = 1/2$)
- * Mandelbaum and Shaikhet (Mandelbaum's EURANDOM lecture notes, 2003): independently, a similar result, ($\alpha = 1/2$); observe that the delay and the time in service are of the same order
- * Gurvich (M.Sc. Thesis, 2004): Convergence of queuelength/ delay processes to a RBM for $\alpha \in [\frac{1}{2}, 1)$.

The above works regard this as a part of the Efficiency Driven regime (the diffusion being RBM, the probability of delay being close to 1)

Our point of view

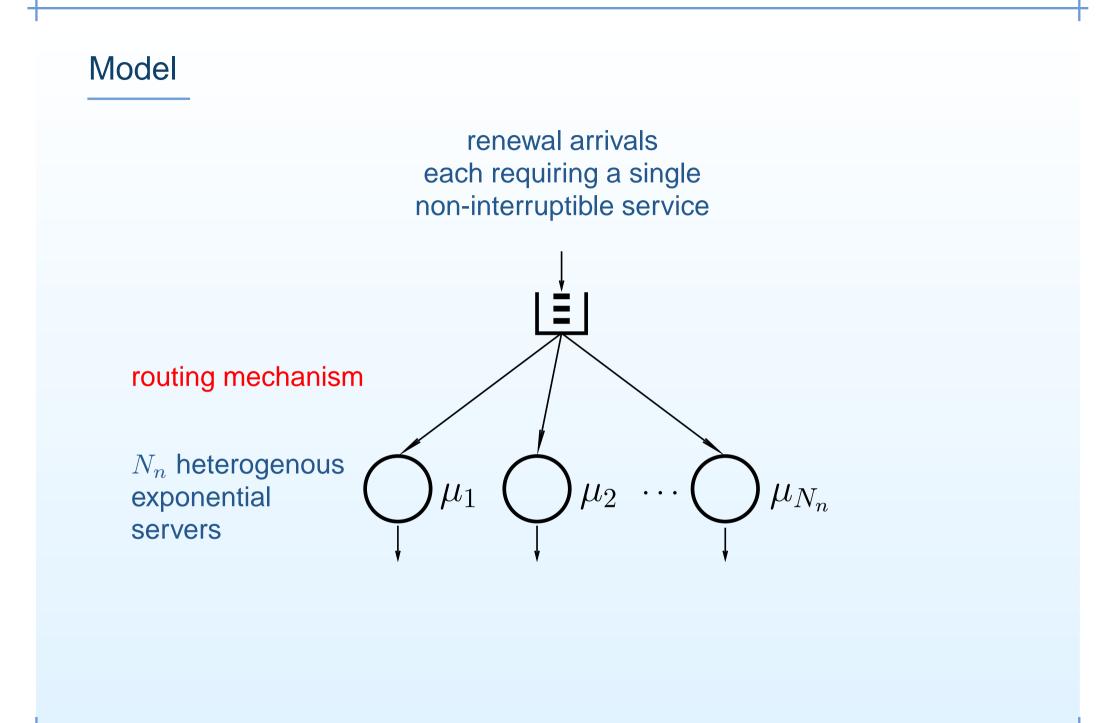
* The joint law of delay and time in service is interesting

* $\alpha = 1/2$ is the only case where the limit is a nondegenerate pair of processes

* The limiting joint law (and in particular the limiting sojourn time law) is distinct from that under the other two diffusion regimes

We will refer to it as the Non-Degenerate Slowdown (NDS) regime

II. Some diffusion limit results



Assumptions. The NDS Regime (lpha=1/2)

- Arrivals: $\lambda_n = \lambda n + \hat{\lambda} n^{1/2} + o(n^{1/2})$
- Number of servers $N_n = n^{1/2} + o(n^{1/2})$
- Individual service rates $\mu_{1n}, \mu_{2n}, \ldots, \mu_{N_n n}$
- With $\mu_n = \sum_{k=1}^{N_n} \mu_{kn}$, $n^{-1}\mu_n \to \mu \in (0,\infty)$ $\hat{\mu}_n = n^{-1/2}(\mu_n - n\mu) \to \hat{\mu} \in (-\infty,\infty)$
- Critical load condition: $\lambda = \mu$

Assumptions (cont.)

• The empirical measure of $\{\hat{\mu}_{kn} := \mu_{kn} n^{-1/2}\}$ converges weakly, namely

$$\frac{1}{N_n} \sum_{k=1}^{N_n} \delta_{\hat{\mu}_{kn}} \to m,$$

for some probability measure m on \mathbb{R}_+

Assumptions on the routing policy

- Work conserving
- Nonanticipating

Includes, for example,

- Always route to the slowest available server
- Always route to the fastest available server

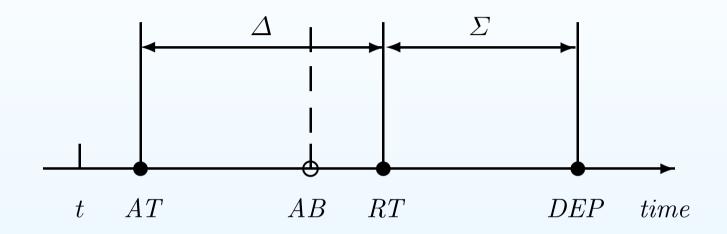
Processes of interest

 $\Delta_n(t)$ = delay experienced by the first customer to arrive at or after time t

 $\Sigma_n(t)$ = time in service of the same customer

Diffusion scaling:

$$\widehat{\Delta}_n = n^{1/2} \Delta_n \qquad \widehat{\Sigma}_n = n^{1/2} \Sigma_n$$



 $\begin{array}{l} \mathsf{AT} = \mathsf{Arrival Time} \\ \mathsf{RT} = \mathsf{Routing Time} \\ \mathsf{DEP} = \mathsf{Departure Time} \\ \mathsf{AB} = \mathsf{Abandonment Time} \\ \boldsymbol{\varDelta} = \mathsf{Delay} \\ \boldsymbol{\varSigma} = \mathsf{Service Time} \end{array}$

Diffusion-scale limit result

<u>THEOREM</u>: The joint law of $(\widehat{\Delta}_n, \widehat{\Sigma}_n)$ converges to

(RBM, *f*-White noise)

in finite dimensional distributions. That is, given j and $0 < t_1 < \cdots < t_j < \infty$, we have

 $(\widehat{\Delta}_n(t_1),\widehat{\Sigma}_n(t_1),\ldots,\widehat{\Delta}_n(t_j),\widehat{\Sigma}_n(t_j)) \Rightarrow (\bar{\xi}(t_1),\eta_1,\ldots,\bar{\xi}(t_j),\eta_j),$

were, $\bar{\xi} = \xi/\mu$, ξ is the RBM

$$\xi(t) = \xi_0 + (\widehat{\lambda} - \widehat{\mu})t + \sigma w(t) + l(t),$$

and η_i are independent of ξ , i.i.d., with p.d.f.

$$f(x) = \frac{1}{\mu} \int y^2 e^{-yx} m(dy), \quad x \in [0, \infty).$$

Interpretation of f

* Draw a random variable Y from the distribution

 $\frac{ym(dy)}{\int zm(dz)},$

* Let η be exponentially distributed with mean Y.

Extension to case with abandonment

Customers abandon the queue while waiting to be served, at fixed rate γ (according to an exponential clock).

The result holds, with

$$\xi(t) = \xi_0 + (\widehat{\lambda} - \widehat{\mu})t - \gamma \int_0^t \xi(s)ds + \sigma w(t) + l(t)$$

Expressions for slowdown (formal)

Without abandonment ($\gamma = 0$) need to assume $\widehat{\lambda} - \widehat{\mu} < 0$, and then

slowdown =
$$1 + \frac{\sigma^2}{2(\widehat{\mu} - \widehat{\lambda})}$$

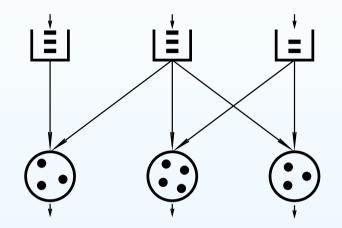
With abandonment ($\gamma > 0$)

slowdown = 1 +
$$\frac{\int_0^\infty x e^{-(x-b)^2/2c^2} dx}{\int_0^\infty e^{-(x-b)^2/2c^2} dx}$$

where $(b, c^2) = (\frac{\widehat{\lambda} - \widehat{\mu}}{\gamma}, \frac{\sigma^2}{2\gamma}).$

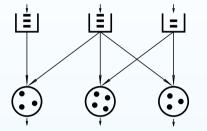
III. Control formulations

Control to minimize sojourn time



- As a diffusion-limited control problem, this set us is meaningful only in the NDS regime

The heavy traffic condition



Following Harrison and Lopez (1999), consider the linear program

Minimize
$$\rho \in [0,1]$$
 s.t. $\sum_{j} \mu_{ij} \xi_{ij} = \lambda_i, \forall i, \quad \xi_{ij} \ge 0, \forall (i,j), \quad \sum_{i} \xi_{ij} \le \rho, \forall j$

The HT condition: There exists a unique optimal solution (ξ^*, ρ^*) , $\rho^* = 1$. Moreover, $\sum_i \xi_{ij}^* = 1$

The complete resource pooling condition

 $i \sim j$ — an activity $\xi_{ij}^* > 0$ — a basic activity

The CRP condition:

* Uniqueness of solutions to a dual program (Harrison and Lopez 1999)

* The graph \mathcal{G}_b , of basic activities, is connected (Harrison and Lopez 1999)

* The graph \mathcal{G}_b is a tree (Williams 2000)

Significance:

* High level of cooperation between service stations, so stations work like a single super-server

* Workload is one-dimensional

The diffusion scaling

Denote

 $Q_i^n(t) =$ number of class-*i* customers in the queue at time t

 $X_i^n(t) =$ number of class-*i* customers in the system at time t

$$\hat{Q}_i^n(t) = n^{-1/2} Q^n(t), \qquad i = 1, 2, \dots, I$$

$$\hat{X}_{i}^{n}(t) = n^{-1/2} \Big(X_{i}^{n}(t) - \sum_{j} \xi_{ij}^{*} N_{j}^{n} \Big), \qquad i = 1, 2, \dots, I$$

The diffusion control problem (Harrison-Lopez 1999)

The DCP consists of r.v.s $X_{0,i}$, BMs W_i , and processes X_i , I_j , Y_{ij} :

$$X_i(t) = X_{0,i} + W_i(t) + \sum_j \mu_{ij} Y_{ij}(t) \ge 0, \qquad t \ge 0, i = 1, 2, \dots, I,$$

 $I_j := \sum_i Y_{ij}$ is non-decreasing and $I_j(0) \ge 0$, j = 1, 2, ..., J, Y_{ij} is non-increasing and $Y_{ij} \le 0$, $(i, j) \in \mathcal{E}_{nb}$.

REM: Y_{ij} are further required in Harrison-Lopez to be adapted; one can drop this requirement (Bell-Williams 2000)

An equivalent DCP

Harrison-Lopez 1999, Mandelbaum-Stolyar 2004

$$X(t) = X_0 + W(t) + Z(t) \in \mathbb{R}^I_+, \qquad t \ge 0,$$

 $\theta' Z$ is nondecreasing, and $\theta' Z(0) \geq 0$

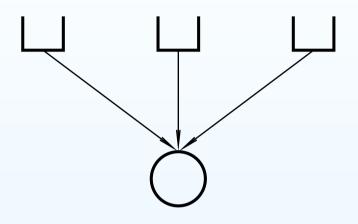
Here, $\theta \in \mathbb{R}^{I}_{+}$ is a fixed vector (the workload vector).

THEOREM (with Itai Gurvich): The two diffusion control problems are equivalent.

IV. DCP for sojourn time an explicit solution

DCP for sojourn time

CASE OF A SINGLE POOL



* Nonlinear cost is of interest

We will consider COST =
$$\sum_{i} c_{i} \mathbb{E}\left[\left(\frac{X_{i}(t)}{\mu_{i}} + \Sigma_{i}\right)^{2}\right]$$

 Σ_i -r.v.s representing service time

* Easy to reduce to $\mathbb{E}[C(X(t))]$

Solution of DCP

Denote

$$\rho_i = \frac{\lambda_i}{\mu_i}, \qquad \beta_i = \frac{\rho_i^2}{c_i}, \qquad i = 1, 2, \dots, I$$

THEOREM (with Nir Solomon): The DCP is solved by bringing X(t) to $X^*(t)$ s.t.

$$\frac{X_i^* + \rho_i}{\mu_i} = \frac{\beta_i}{\sum_k \beta_k} \sum_k \frac{X_k^* + \rho_k}{\mu_k}, \quad \text{for all } i$$

V. Asymptotics

Asymptotics, the conventional regime

BACK TO THE GENERAL CASE (general number of pools, $J \ge 1$; general cost C)

- In conventional heavy traffic:
- * Ata-Kumar (2005) a discretization approach
- * Bell-Williams (2001, 2005) a threshold policy
- * Mandelbaum-Stolyar (2004) a generalized $c\mu$ rule

Asymptotics, the NDS regime

Let $C : \mathbb{R}^I_+ \to \mathbb{R}_+$ be a continuous function, increasing wrt usual partial order

$$C^*(a) = \min\{C(q) : q \in \mathbb{R}^I_+, \, \theta'q = a\}$$

Let q(a) be a minimizer. Assumption: q is Lipschitz continuous.

PROPOSED POLICY:

Priority to overloaded classes

In addition, (i) No use of nonbasic activities, (ii) Work conservation.

Asymptotics, the NDS regime

THEOREM (with Itai Gurvich): Assume C is convex. Fix a finite T. Then under any policy,

$$\liminf_{n \to \infty} \int_0^T C(\hat{Q}^n(t)) dt \ge \int_0^T C^*(Q^*(t)) dt,$$

where Q^* is the RBM $\Gamma(\theta' X_0 + \theta' W)$.

Moreover, under the proposed policy,

$$\limsup_{n \to \infty} \int_0^T C(\hat{Q}^n(t)) dt = \int_0^T C^*(Q^*(t)) dt$$

About the lower bound

The LB does not hold in non-integral form.

* Minimality of the Skorohod map is well-known:

Let $\zeta \in D$. Let $\eta \in D$ be non-decreasing, $\eta(0) \ge 0$. Assume $\zeta(t) + \eta(t) \ge 0$, for all $t \ge 0$. Then

$$\zeta(t) + \eta(t) \ge \Gamma[\zeta](t) \equiv \zeta(t) + \sup_{s \le t} [\zeta(s)^-], \qquad t \ge 0.$$

About the lower bound

The integral LB uses the following perturbation lemma about the Skorohod map:

LEMMA (with Itai Gurvich): Let T > 0 and $\varepsilon > 0$, $\varepsilon < T$, be given. Let $\zeta \in D$ and assume $\zeta(0) \ge 0$. Let

 $\alpha = \zeta + \eta + \beta,$

where $\eta \in D$ is non-decreasing, $\eta(0) \ge 0$, $\beta \in D$ satisfies

$$-\varepsilon^2 \le \int_0^t \beta(s) ds \le \varepsilon^2 \qquad t \in [0, T],$$

and $\alpha(t) \geq 0$, $t \in [0, T]$. Then

 $\alpha(t) \ge \Gamma[\zeta](t) + \beta(t) - \mathsf{Osc}(\zeta|_{[0,T]}, \varepsilon) - 3\varepsilon, \qquad t \in [0,T].$

Thank you!