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1. Motivation: biased RW on perc. clusters

Consider i. i. d. bond percolation with parameter p

on Z
2. We will always assume that p > pc = 1

2
.

Take β > 1.

Condition on the event that (0, 0) is in the (unique)

infinite cluster.

Put on each bond (z, z̃) the weight βx∧ex (where

z = (x, y), z̃ = (x̃, ỹ)).

The random walk Zn = (Xn, Yn) is the biased random

walk with Z0 = (0, 0) and transition probabilities

proportional to the weights.

Behaviour of Zn = (Xn, Yn)?
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1. Motivation: biased RW on perc. clusters

M. Barma, D. Dhar (1982)

Directed Diffusion in a percolation network.

J. Phys. C: Solid state Physics.

A. Bunde, S. Havlin (1991)

Fractals and Disordered Systems.

Variants of the model:

– different weights

– site - instead of bond percolation.
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1. Motivation: biased RW on perc. clusters

Transience to the right:

Theorem

For all β > 1 and all p ∈ (1
2
, 1),

Xn → ∞, P β − a.s.

Theorem

(N. Berger, NG, Y. Peres, 03, A. S. Sznitman 03)

For each p ∈ (1
2
, 1) there are two constants βℓ = βℓ(p)

and βu = βu(p) such that

1 < βℓ(p) ≤ βu(p) < ∞ and

(i) Xn

n
→ 0 P β-a.s. if β > βu,

(ii) Xn

n
→ vβ,p > 0 P β-a.s. if β < βℓ.

(iii) There is a CLT for β close enough to 1. See

A. S. Sznitman, “On the anisotropic walk on the

supercritical percolation cluster”.
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1. Motivation: biased RW on perc. clusters

Remark

We took i.i.d. bond percolation but of course the

results is believed to hold for variants of this mo-

del. However, as a new result of M. Deijfen and

O. Häggström shows, the theorem does not hold for

any translation invariant percolation!

Consider “dead ends” A in the right half plane.

Compute Eβ(TA) = expected time spent in A

before return to the line {(0, y) : y ∈ Z}. Let

Γ(β, p) :=
∑
A

pAEβ(TA) and define βu such that

Γ(β, p) < ∞ for β < βu,

Γ(β, p) = ∞ for β > βu.

Then, (i) is satisfied with this value of βu.
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1. Motivation: biased RW on perc. clusters

5. Open questions

(1) Existence of the critical value:

Conjecture: βℓ = βu = βc.

(2) Conjecture: For β fixed, p → vβ,p is continuous

and increasing.

New results by Alex Fribergh for p close to 1.

(3) Conjecture: For p fixed, β → vβ,p is continuous

and unimodular.

(4) Distribution of Zn if β > βu ??

Want to address Question (4).
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2. Tree instead of lattice

Take a regular tree, consider i. i. d. bond percolation

with parameter p > pc and condition on the event

that the root is in an infinite cluster.

More general, consider a supercritical Galton-Watson

tree with p0 = P [Z = 0] > 0, conditioned on survival.

Run a β-biased random walk on this tree.
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5. Tree instead of lattice

In this case, the critical value can be computed,

see R. Lyons, R. Pemantle, Y. Peres: Let f be the

generating function of the Galton-Watson tree and

q = f(q) its extinction probability. Then βc = 1/f ′(q).

Let |Xn| denote the distance of the walker to the

root.

Theorem R. Lyons, R. Pemantle, Y. Peres 96

Let βc = 1/f ′(q). Then

(i) |Xn|
n

→ 0 P β-a.s. if β ≥ βc,

(ii) |Xn|
n

→ vβ,p > 0 P β-a.s. if β < βc.
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5. Tree instead of lattice

Reason: Decomposition of the supercritical Galton-

Watson tree conditioned on survival: it consists of

a backbone, which is a Galton-Watson tree with

generating function g, and independently attached

traps, which are (subcritical) Galton-Watson trees

with generating function h.

g and h are given by

g(s) =
f((1 − q)s + q) − q

1 − q
, h(s) =

f(qs)

q
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5. Tree instead of lattice

Indeed, the expectation of the time spent in a trap is

- infinite if β ≥ βc

- finite if β < βc.

Note that the traps have generating function h and

hence their expected k-th generation size is f ′(q)k.

What about the distribution of |Xn| in case (i) ?

11



5. Tree instead of lattice

Let γ = log βc

log β
. Let Z be the number of children of the

root. Denote Tn the hitting time of the n-th level:

Tn := min{k ≥ 1 : |Xn| = n}.

Theorem

G. Ben Arous, F. Fribergh, NG, A. Hammond 08

Assume E[Z2] < ∞ and β > βc. Then

lim
n→∞

log |Xn|

log n
= γ, P β − a.s

Further, the sequence (|Xn|/n
γ) is tight, but does not

converge in distribution (at least if β is large enough).

For λ > 0, considering the subsequences nλ(k) =

⌊λβγk⌋, Tnλ(k)/nλ(k)1/γ converges in distribution to

an infinitely divisible law Lλ.
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2. Tree instead of lattice

To explain that convergence in distribution only takes

place along subsequences, consider the following toy

example:

Remark

Let Gi, i = 1, 2, . . . be i. i. d. random variables,

geometrically distribution with parameter α, and

β > 1. Let

Sn :=
n∑

i=1

βGi

Then, taking γ = | log(1 − α)|/ log β, if γ < 2,

Sn/n
1/γ is tight, but does not converge in distributi-

on.

The reason is that βG1 is not in the domain of

attraction of a stable law.
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2. Tree instead of lattice

Remark

The model is reminiscent of Bouchaud’s trap model

or of 1-dimensional RWRE. Recall that in the limit

theorems for 1-dimensional RWRE (due to H. Kesten,

M. V. Kozlov and F. Spitzer), there is a non-lattice

assumption!
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