Biased random walks on percolation clusters of trees

Nina Gantert

EURANDOM 26. 8. 2009

based on joint work with Gérard Ben Arous, Alexander Fribergh and Alan Hammond

- 1. Motivation: Biased RW on perc. clusters
- 2. Tree instead of lattice

Consider i. i. d. bond percolation with parameter p on \mathbb{Z}^2 . We will always assume that $p > p_c = \frac{1}{2}$. Take $\beta > 1$.

Condition on the event that (0,0) is in the (unique) infinite cluster.

Put on each bond (z, \tilde{z}) the weight $\beta^{x \wedge \tilde{x}}$ (where $z = (x, y), \ \tilde{z} = (\tilde{x}, \tilde{y})$).

The random walk $Z_n = (X_n, Y_n)$ is the biased random walk with $Z_0 = (0, 0)$ and transition probabilities proportional to the weights.

Behaviour of $Z_n = (X_n, Y_n)$?

M. Barma, D. Dhar (1982)Directed Diffusion in a percolation network.J. Phys. C: Solid state Physics.

A. Bunde, S. Havlin (1991)Fractals and Disordered Systems.

Variants of the model:

- different weights
- site instead of bond percolation.

Transience to the right: <u>Theorem</u>

For all $\beta > 1$ and all $p \in (\frac{1}{2}, 1)$,

$$X_n \to \infty, \quad P^\beta - a.s.$$

Theorem

(N. Berger, NG, Y. Peres, 03, A. S. Sznitman 03) For each $p \in (\frac{1}{2}, 1)$ there are two constants $\beta_{\ell} = \beta_{\ell}(p)$ and $\beta_u = \beta_u(p)$ such that

$$1 < \beta_{\ell}(p) \le \beta_u(p) < \infty$$
 and

(i)
$$\frac{X_n}{n} \to 0$$
 P^{β} -a.s. if $\beta > \beta_u$,

(ii)
$$\frac{X_n}{n} \to v_{\beta,p} > 0$$
 P^{β} -a.s. if $\beta < \beta_{\ell}$.

(iii) There is a CLT for β close enough to 1. See A. S. Sznitman, "On the anisotropic walk on the supercritical percolation cluster".

Remark

We took i.i.d. bond percolation but of course the results is believed to hold for variants of this model. However, as a new result of M. Deijfen and O. Häggström shows, the theorem does **not** hold for any translation invariant percolation!

Consider "dead ends" A in the right half plane. Compute $E^{\beta}(T_A) =$ expected time spent in Abefore return to the line $\{(0, y) : y \in \mathbb{Z}\}$. Let $\Gamma(\beta, p) := \sum_A p_A E^{\beta}(T_A)$ and define β_u such that $\Gamma(\beta, p) < \infty$ for $\beta < \beta_u$, $\Gamma(\beta, p) = \infty$ for $\beta > \beta_u$. Then, (i) is satisfied with this value of β_u .

5. Open questions

(1) Existence of the critical value:

Conjecture: $\beta_{\ell} = \beta_u = \beta_c$.

(2) Conjecture: For β fixed, $p \to v_{\beta,p}$ is continuous and increasing.

New results by Alex Fribergh for p close to 1.

(3) Conjecture: For p fixed, $\beta \to v_{\beta,p}$ is continuous and unimodular.

(4) **Distribution** of Z_n if $\beta > \beta_u$??

Want to address Question (4).

Take a regular tree, consider i. i. d. bond percolation with parameter $p > p_c$ and condition on the event that the root is in an infinite cluster.

More general, consider a supercritical Galton-Watson tree with $p_0 = P[Z = 0] > 0$, conditioned on survival. Run a β -biased random walk on this tree.

In this case, the critical value can be computed, see R. Lyons, R. Pemantle, Y. Peres: Let f be the generating function of the Galton-Watson tree and q = f(q) its extinction probability. Then $\beta_c = 1/f'(q)$. Let $|X_n|$ denote the distance of the walker to the root.

<u>**Theorem</u>** R. Lyons, R. Pemantle, Y. Peres 96 Let $\beta_c = 1/f'(q)$. Then</u>

(i)
$$\frac{|X_n|}{n} \to 0$$
 P^{β} -a.s. if $\beta \ge \beta_c$,
(ii) $\frac{|X_n|}{n} \to v_{\beta,p} > 0$ P^{β} -a.s. if $\beta < \beta_c$.

Reason: **Decomposition** of the supercritical Galton-Watson tree conditioned on survival: it consists of a **backbone**, which is a Galton-Watson tree with generating function g, and independently attached **traps**, which are (subcritical) Galton-Watson trees with generating function h.

g and h are given by

$$g(s) = \frac{f((1-q)s+q) - q}{1-q}, \quad h(s) = \frac{f(qs)}{q}$$

Indeed, the expectation of the time spent in a trap is - infinite if $\beta \ge \beta_c$

- finite if $\beta < \beta_c$.

Note that the traps have generating function h and hence their expected k-th generation size is $f'(q)^k$.

What about the **distribution** of $|X_n|$ in case (i) ?

Let $\gamma = \frac{\log \beta_c}{\log \beta}$. Let Z be the number of children of the root. Denote T_n the hitting time of the *n*-th level: $T_n := \min\{k \ge 1 : |X_n| = n\}.$

Theorem

G. Ben Arous, F. Fribergh, NG, A. Hammond 08 Assume $E[Z^2] < \infty$ and $\beta > \beta_c$. Then

$$\lim_{n \to \infty} \frac{\log |X_n|}{\log n} = \gamma, \quad P^\beta - \text{ a.s}$$

Further, the sequence $(|X_n|/n^{\gamma})$ is tight, but does **not** converge in distribution (at least if β is large enough). For $\lambda > 0$, considering the subsequences $n_{\lambda}(k) = \lfloor \lambda \beta^{\gamma k} \rfloor$, $T_{n_{\lambda}(k)}/n_{\lambda}(k)^{1/\gamma}$ converges in distribution to an infinitely divisible law \mathcal{L}_{λ} .

To explain that convergence in distribution only takes place along subsequences, consider the following toy example:

Remark

Let $G_i, i = 1, 2, ...$ be i. i. d. random variables, geometrically distribution with parameter α , and $\beta > 1$. Let

$$S_n := \sum_{i=1}^n \beta^{G_i}$$

Then, taking $\gamma = |\log(1 - \alpha)| / \log \beta$, if $\gamma < 2$, $S_n/n^{1/\gamma}$ is tight, but does **not** converge in distribution.

The reason is that β^{G_1} is not in the domain of attraction of a stable law.

<u>Remark</u>

The model is reminiscent of Bouchaud's trap model or of 1-dimensional RWRE. Recall that in the limit theorems for 1-dimensional RWRE (due to H. Kesten, M. V. Kozlov and F. Spitzer), there is a non-lattice assumption!