Slowdown estimates for certain ballistic random walk in random environment

Noam Berger

http://www.math.huji.ac.il/~berger

Department of Mathematics, The Hebrew University of Jerusalem Givat Ram, Jerusalem, Israel

Presented at Eurandom, Holland. Order, disorder and double disorder

September 2009

Background

Random walk in random environment (RWRE) is a standard model for motion in random medium.

Some physical instances:

- 1. Movement of an electron in an alloy.
- 2. Movement of an enzyme along a DNA sequence.

Definition

Fix d > 1.

Let \mathcal{M}^d denote the space of all probability measures on $\mathcal{E}_d = \{0\} \cup \{\pm e_i\}_{i=1}^d$

Let
$$\Omega = (\mathcal{M}^d)^{\mathbb{Z}^d}$$
.

An environment is a point $\omega = \{\omega(x, e)\}_{x \in \mathbb{Z}^d, e \in \mathcal{E}_d} \in \Omega$.

Let P be a translation invariant (ergodic) probability measure on Ω .

Definition

For $\omega \in \Omega$ and $z \in \mathbb{Z}^d$ define:

 P^z_ω is the distribution of a Markov process $\{X_n\}$ with

$$X_0 = z$$

and

$$P_{\omega}^{z}(X_{n+1}=x+e|X_{n}=x)=\omega_{x}(e)$$

for all $e \in \mathcal{E}_d$.

Notation

 P_{ω}^{z} is called the **quenched** law

$$\mathbb{P} = P \otimes P_{\omega}^{z}$$

Is the joint distribution of the environment and the walk.

$$\mathbf{P}^{z}(\cdot) = \int_{\Omega} P_{\omega}^{z}(\cdot) dP(\omega)$$

is the annealed law.

If z = 0 we omit the superscript.

Further assumptions

- 1. The distribution P on the environment is i.i.d.
- 2. Uniform ellipticity: there exists some $\kappa > 0$ such that for every neighbor e of the origin, with probability 1, $\omega(0, e) \ge \kappa$.

Example: Arrow model

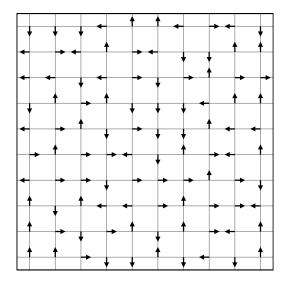
Fix $0 < \epsilon < 1$.

Let $\eta: \mathbb{Z}^d \to \mathcal{E}_d$ be i.i.d. uniform.

We take

$$\omega_z(e) = \begin{cases} \epsilon & \text{if } e = \eta(z) \\ \frac{1-\epsilon}{2d-1} & \text{otherwise} \end{cases}$$

Arrow model



Questions of interest

Some questions of interest are:

- 1. Law of large numbers: Does the limit $\lim_{n\to\infty}\frac{X_n}{n}$ exist? What can be said about its value?
- Central limit theorem:
 What is the typical size of the fluctuations X_n nv?
 Which distribution does it converge to after scaling (if any)?
- 3. Large deviation: What is the probability that X_n is at linear distance from its expectaion?

Definition

We say that the system is *ballistic* if there exists $v \neq 0$ in \mathbb{R}^d such that

$$\mathbf{P}\left(\lim_{n\to 0}\frac{X_n}{n}=\nu\right)=1.$$

There is no known effective characterization of ballisticity.

Question

We ask the following large deviation type question:

For $a \neq v$ and large n, what is the probability that

$$X_n \approx na$$
?

Nestling

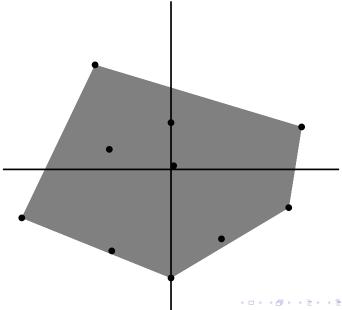
The *local drift* at z is defined to be

$$E_{\omega}^{z}(X_1)-z.$$

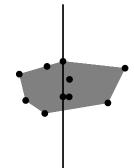
We say that the system is *nestling* if 0 is in the convex hull of the support of the local drift,

and that it is non-nestling otherwise.

Nestling



Non-nestling



Large deviations for the non-nestling case

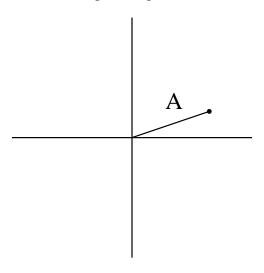
Theorem (Sznitman, Varadhan): There exists a convex function $F: \mathbb{R}^d \to \mathbb{R}^+$, such that F(v) = 0 and F > 0 outside v, such that

$$\mathbf{P}(X_n \approx an) \approx e^{-nF(a)}$$
.

i.e. for every $a \neq v$, the decay is exponential.

Large deviations for the nestling case

Let A be the line connecting the origin to v.



Large deviations for the nestling case

Theorem: (Sznitman, Varadhan) Let A be the line connecting the origin to v.

Then,
$$F^{-1}(0) = A$$
.

In other words, the probability of slowdown of the walk decays slower than exponentially.

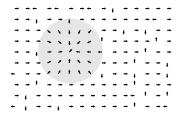
Question: What is the rate of the decay of the probability of slowdown?

Lower bound

For every $a \in A$ there exists C such that

$$\mathbf{P}(X_n \approx an) > e^{-C(\log n)^d}.$$

Lower bound - proof



Assume that the "trap" is of radius $\alpha \log n$, with α being a large constant.

With high probability, the trap holds the walker for (at least) a linear amount of time.

The probability of existence of such a trap is exponential in its volume, $(\log n)^d$.

So, the probability of a linear slowdown is at least $\exp(-C(\log n)^d)$.

Sznitman's condition (T)

The following condition, named condition (T), is conjectured to be equivalent to ballisticity.

Notation: For $\ell \in S^{d-1}$ and $L \in \mathbb{R}^+$, we define

$$T_L^{(\ell)} := \min\{n : \langle X_n, \ell \rangle > L.$$

Condition: There exist a non-empty open set of directions, $G \in S^{d-1}$, such that for every $\ell \in G$ there exists $\gamma > 0$ such that for all large L

$$\textbf{P}\big(T_L^{(\ell)} > T_L^{(-\ell)}\big) < e^{-\gamma L}.$$

Known upper bound

Assume Condition (T), and $d \ge 2$.

For every $a \in A$ and $\alpha = \frac{2d}{d+1}$, if n is large enough, then

$$\mathbf{P}(X_n \approx an) < e^{-(\log n)^{\alpha}}.$$

Sztitman 2001.

Main result

Assume Condition (T), and $d \ge 4$.

For every $a \in A$ and every $\epsilon > 0$, if n is large enough, then

$$\mathbf{P}(X_n \approx an) < e^{-(\log n)^{d-\epsilon}}.$$

Regeneration times

Figure: Regeneration

t is said to be a regeneration time if:

- 1. $\langle X_s, \ell \rangle < \langle X_t, \ell \rangle$ for all s < t.
- 2. $\langle X_s, \ell \rangle > \langle X_t, \ell \rangle$ for all s > t.

Regeneration times

Facts (Sznitman + Zerner 2000):

- 1. Almost surely, there are infinitely many regeneration times. we call them $\tau_1 < \tau_2 < \dots$
- 2. The ensemble

$$\{(\tau_{n+1}-\tau_n),(X_{\tau_{n+1}}-X_{\tau_n})\}_{n=1}^{\infty}$$

is an i.i.d. ensemble.

Proposition

For all $\epsilon > 0$ and u large enough,

$$\mathbf{P}(\tau_1 > u) \le e^{-(\log u)^{d-\epsilon}}.$$

Proof of main result assuming proposition

Let

$$\rho = \mathbf{E}(\tau_2 - \tau_1)$$

and

$$\alpha = \mathbf{E}\left(\langle X_{\tau_2} - X_{\tau_1}, e_1 \rangle\right).$$

Let

$$\eta = \frac{\alpha}{\rho},$$

let b = a/v and let $m = \left\lceil n \cdot \frac{1+b}{2} \cdot \frac{1}{\rho} \right\rceil$.

Proof of main result assuming proposition

Then,

$$\mathbf{P}(X_n \approx an) \leq \mathbf{P}(\tau_m > n) + \mathbf{P}(\langle X_{\tau_m}, e_1 \rangle < b\alpha).$$

By condition (T),

$$\mathbf{P}(\langle X_{\tau_m}, e_1 \rangle < b\alpha)$$

decays exponentially,

and thus we need to control

$$P(\tau_m > n)$$
.

Proof of main result assuming proposition

By the proposition, for every k,

$$P(\tau_k - \tau_{k-1} > n^{1/8}) \le \frac{1}{2n} e^{-(\log n)^{\alpha}},$$

and by Azuma's inequlity

$$P(\tau_m > n \mid \forall_{k \le m} \tau_k - \tau_{k-1} \le n^{1/8}) \le e^{-n^{1/2}}.$$

Therefore, all we need to do is to prove the proposition,

namely, that for all $\epsilon > 0$ and u large enough,

$$\mathbf{P}(\tau_1 > u) \le e^{-(\log u)^{d-\epsilon}}.$$

Let $L = (\log u)^d$.

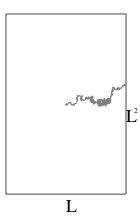
Using condition (T),

$$\mathbf{P}(\tau_1 > u) \le \mathbf{P}(T_L > u) + e^{-O((\log u)^d)}$$

Thus all we need is to estimate $P(T_L > u)$.

This enables us to estimate the amount of time to a stopping time.

Let B_L be the box of side-length 2L and width L^2 around the origin.



Now,

$$\mathbf{P}(T_L > u) \le \mathbf{P}(T_{B_L} > u) + e^{-O\left((\log u)^d\right)}$$

and

$$\mathbf{P}(T_{B_L} > u) \leq \mathbf{P}(\exists_{x \in B_L} \text{ such that } x \text{ is visited } \frac{u}{|B_L|} \text{ times before } T_{B_L}).$$

So all we need is to bound

$$P(\exists_{x \in B_L} \text{ such that } x \text{ is visited } \frac{u}{|B_L|} \text{ times before } T_{B_L}).$$

For every x and every event $G \subseteq \Omega$ on the environments,

$$\begin{aligned} \mathbf{P}(x \text{ is visited } \frac{u}{|B_L|} \text{ times before } T_{B_L}) \\ \leq P(G^c) + \sup_{\omega \in G} P_\omega(x \text{ is visited } \frac{u}{|B_L|} \text{ times before } T_{B_L}). \end{aligned}$$

and by the Markov property,

$$P_{\omega}(x \text{ is visited } \frac{u}{|B_L|} \text{ times before } T_{B_L})$$

$$\leq P_{\omega}^{\mathsf{x}}(x \text{ is visited } \frac{u}{|B_L|} \text{ times before } T_{B_L})$$

$$= \left(P_{\omega}^{\mathsf{x}}(\text{ return to } x \text{ before } T_{B_L})\right)^{\frac{u}{|B_L|}}.$$

Therefore, we need to find an event $G \subseteq \Omega$ such that

1.
$$P(G) > 1 - e^{-(\log u)^{d-\epsilon}}$$
.

2. For every $\omega \in G$,

$$1 - P_{\omega}^{x}($$
 return to x before $T_{B_{L}}) >> \frac{1}{\mu}$.

The event *G*

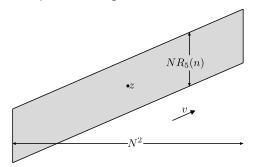
For n > 0, let $A_n \subseteq \Omega$ be the following event:

- 1. $P_{\omega}(T_{-n} < T_n) < e^{-cn}$.
- 2. The quenched distribution of X_{T_n} is very closed to the annealed in the following sense: There exists a coupling between the two distributions, such that with probability λ their distance is less than n^{ϵ} , and $\lambda = \lambda(n)$ is very small.

Lemma: $1 - P(A_n)$ decays faster than any polynomial.

The event *G*

For every n, partition the lattice into parallelograms in the direction of the speed, of length n^2 and width a little more than n.



We can now define the event G.

The event *G*

We say that a parallelogram of length n^2 is **good** if the event A_n holds for the walk starting from its center.

Note that these events are almost independent for disjoint blocks.

Now, let
$$n_1 = L^{\epsilon}, n_2 = L^{2\epsilon}, \dots$$

The event G is the event that in every such scale, the number of bad parallelograms in B_L is no more than $(\log u)^{d-\epsilon}$.

It is easy to see that $P(G)>1-e^{-\log(u)^{d-\epsilon}}$. Therefore all we need to show is that for every $\omega\in G$,

$$1 - P_{\omega}^{\mathsf{x}}(\text{ return to } \mathsf{x} \text{ before } T_{\mathsf{B}_{\mathsf{L}}}) >> \frac{1}{\mathsf{u}}.$$

We need to show that for $\omega \in G$,

$$1 - P_{\omega}^{x}($$
 return to x before $T_{B_{L}}) >> \frac{1}{u}$.

To see this we define an event A, and show that

- 1. $P_{\omega}^{x}(A) >> \frac{1}{u}$, and
- 2. On the event A, the walker leaves B_L before returning to x.

We first define an event B as follows:

The event B is the event that for every parallelogram that the walker visits, it exits through the front, and that whenever it goes through a bad parallelogram, at the exit it "corrects" its position to be similar to the annealed. The correction is done using ϵ -coins.

Conditioned on the event B, the walker does not return to x, and its path looks like Brownian Motion.

We now define the event A as follows:

Let w be a random variable, uniform in the set $[-1,1]^{d-1}$ and independent of the walk.

The event *A* is the following event:

$$A = B \cap \left\{ \forall_k, X_{T_{J_k}} - X_{T_{J_{k-1}}} - e_1(J_k - J_{k-1}) - w(J_k - J_{k-1})n_k < n_k \right\}$$
where $J_1 = n_1(\log u)^{d-\epsilon}$ and $J_k = J_{k-1} + n_k(\log u)^{d-\epsilon}$.

Conditioned on the event A, with high probability the walks visit no more than $(\log u)^{1-\epsilon}$ bad blocks.

Therefore, under this event it needs no more than $(\log u)^{1-\epsilon}$ ϵ -coins.

$$P(A|B) > u^{\epsilon-1}$$
.

Combined, we get that

$$P\omega(A) >> \frac{1}{u}$$
.

THANK YOU