Slowdown estimates for certain ballistic random walk in random environment

Noam Berger
http://www.math.huji.ac.il/~berger
Department of Mathematics,
The Hebrew University of Jerusalem
Givat Ram, Jerusalem, Israel
Presented at
Eurandom, Holland.
Order, disorder and double disorder

September 2009

Background

Random walk in random environment (RWRE) is a standard model for motion in random medium.

Some physical instances:

1. Movement of an electron in an alloy.
2. Movement of an enzyme along a DNA sequence.

Definition

Fix $d \geq 1$.
Let \mathcal{M}^{d} denote the space of all probability measures on $\mathcal{E}_{d}=\{0\} \cup\left\{ \pm e_{i}\right\}_{i=1}^{d}$

Let $\Omega=\left(\mathcal{M}^{d}\right)^{\mathbb{Z}^{d}}$.
An environment is a point $\omega=\{\omega(x, e)\}_{x \in \mathbb{Z}^{d}, e \in \mathcal{E}_{d}} \in \Omega$.
Let P be a translation invariant (ergodic) probability measure on Ω.

Definition

For $\omega \in \Omega$ and $z \in \mathbb{Z}^{d}$ define:
P_{ω}^{z} is the distribution of a Markov process $\left\{X_{n}\right\}$ with

$$
X_{0}=z
$$

and

$$
P_{\omega}^{z}\left(X_{n+1}=x+e \mid X_{n}=x\right)=\omega_{x}(e)
$$

for all $e \in \mathcal{E}_{d}$.

Notation

P_{ω}^{z} is called the quenched law

$$
\mathbb{P}=P \otimes P_{\omega}^{z}
$$

Is the joint distribution of the environment and the walk.

$$
\mathbf{P}^{z}(\cdot)=\int_{\Omega} P_{\omega}^{z}(\cdot) d P(\omega)
$$

is the annealed law.
If $z=0$ we omit the superscript.

Further assumptions

1. The distribution P on the environment is i.i.d.
2. Uniform ellipticity: there exists some $\kappa>0$ such that for every neighbor e of the origin, with probability $1, \omega(0, e) \geq \kappa$.

Example: Arrow model

Fix $0<\epsilon<1$.
Let $\eta: \mathbb{Z}^{d} \rightarrow \mathcal{E}_{d}$ be i.i.d. uniform.

We take

$$
\omega_{z}(e)=\left\{\begin{array}{ll}
\epsilon & \text { if } e=\eta(z) \\
\frac{1-\epsilon}{2 d-1} & \text { otherwise }
\end{array} .\right.
$$

Arrow model

Questions of interest

Some questions of interest are:

1. Law of large numbers:

Does the limit $\lim _{n \rightarrow \infty} \frac{X_{n}}{n}$ exist?
What can be said about its value?
2. Central limit theorem:

What is the typical size of the fluctuations $X_{n}-n v$?
Which distribution does it converge to after scaling (if any)?
3. Large deviation:

What is the probability that X_{n} is at linear distance from its expectaion?

Definition

We say that the system is ballistic if there exists $v \neq 0$ in \mathbb{R}^{d} such that

$$
\mathbf{P}\left(\lim _{n \rightarrow 0} \frac{X_{n}}{n}=v\right)=1
$$

There is no known effective characterization of ballisticity.

Question

We ask the following large deviation type question:

For $a \neq v$ and large n, what is the probability that

$$
X_{n} \approx n a ?
$$

Nestling

The local drift at z is defined to be

$$
E_{\omega}^{z}\left(X_{1}\right)-z
$$

We say that the system is nestling if 0 is in the convex hull of the support of the local drift,
and that it is non-nestling otherwise.

Nestling

Non-nestling

Large deviations for the non-nestling case

Theorem (Sznitman, Varadhan):
There exists a convex function $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{+}$, such that $F(v)=0$ and $F>0$ outside v, such that

$$
\mathbf{P}\left(X_{n} \approx a n\right) \approx e^{-n F(a)}
$$

i.e. for every $a \neq v$, the decay is exponential.

Large deviations for the nestling case

Let A be the line connecting the origin to v.

Large deviations for the nestling case

Theorem: (Sznitman, Varadhan)
Let A be the line connecting the origin to v.

Then, $F^{-1}(0)=A$.
In other words, the probability of slowdown of the walk decays slower than exponentially.

Question: What is the rate of the decay of the probability of slowdown?

Lower bound

For every $a \in A$ there exists C such that

$$
\mathbf{P}\left(X_{n} \approx a n\right)>e^{-C(\log n)^{d}}
$$

Lower bound - proof

Assume that the "trap" is of radius $\alpha \log n$, with α being a large constant.

With high probability, the trap holds the walker for (at least) a linear amount of time.

The probability of existence of such a trap is exponential in its volume, $(\log n)^{d}$.
So, the probability of a linear slowdown is at least $\exp \left(-C(\log n)^{d}\right)$.

Sznitman's condition (T)

The following condition, named condition (T), is conjectured to be equivalent to ballisticity.

Notation: For $\ell \in S^{d-1}$ and $L \in \mathbb{R}^{+}$, we define

$$
T_{L}^{(\ell)}:=\min \left\{n:\left\langle X_{n}, \ell\right\rangle>L .\right.
$$

Condition: There exist a non-empty open set of directions, $G \in S^{d-1}$, such that for every $\ell \in G$ there exists $\gamma>0$ such that for all large L

$$
\mathbf{P}\left(T_{L}^{(\ell)}>T_{L}^{(-\ell)}\right)<e^{-\gamma L} .
$$

Known upper bound

Assume Condition (T), and $d \geq 2$.

For every $a \in A$ and $\alpha=\frac{2 d}{d+1}$, if n is large enough, then

$$
\mathbf{P}\left(X_{n} \approx a n\right)<e^{-(\log n)^{\alpha}} .
$$

Sztitman 2001.

Main result

Assume Condition (T), and $d \geq 4$.

For every $a \in A$ and every $\epsilon>0$, if n is large enough, then

$$
\mathbf{P}\left(X_{n} \approx a n\right)<e^{-(\log n)^{d-\epsilon}}
$$

Regeneration times

Figure: Regeneration
t is said to be a regeneration time if:

1. $\left\langle X_{s}, \ell\right\rangle<\left\langle X_{t}, \ell\right\rangle$ for all $s<t$.
2. $\left\langle X_{s}, \ell\right\rangle>\left\langle X_{t}, \ell\right\rangle$ for all $s>t$.

Regeneration times

Facts (Sznitman + Zerner 2000):

1. Almost surely, there are infinitely many regeneration times. we call them $\tau_{1}<\tau_{2}<\ldots$
2. The ensemble

$$
\left\{\left(\tau_{n+1}-\tau_{n}\right),\left(X_{\tau_{n+1}}-X_{\tau_{n}}\right)\right\}_{n=1}^{\infty}
$$

is an i.i.d. ensemble.

Proposition

For all $\epsilon>0$ and u large enough,

$$
\mathbf{P}\left(\tau_{1}>u\right) \leq e^{-(\log u)^{d-\epsilon}}
$$

Proof of main result assuming proposition

Let

$$
\rho=\mathbf{E}\left(\tau_{2}-\tau_{1}\right)
$$

and

$$
\alpha=\mathbf{E}\left(\left\langle X_{\tau_{2}}-X_{\tau_{1}}, e_{1}\right\rangle\right)
$$

Let

$$
\eta=\frac{\alpha}{\rho}
$$

let $b=a / v$ and let $m=\left[n \cdot \frac{1+b}{2} \cdot \frac{1}{\rho}\right]$.

Proof of main result assuming proposition

Then,

$$
\mathbf{P}\left(X_{n} \approx a n\right) \leq \mathbf{P}\left(\tau_{m}>n\right)+\mathbf{P}\left(\left\langle X_{\tau_{m}}, e_{1}\right\rangle<b \alpha\right) .
$$

By condition (T),

$$
\mathbf{P}\left(\left\langle X_{\tau_{m}}, e_{1}\right\rangle<b \alpha\right)
$$

decays exponentially,
and thus we need to control

$$
\mathbf{P}\left(\tau_{m}>n\right) .
$$

Proof of main result assuming proposition

By the proposition, for every k,

$$
\mathbf{P}\left(\tau_{k}-\tau_{k-1}>n^{1 / 8}\right) \leq \frac{1}{2 n} e^{-(\log n)^{\alpha}},
$$

and by Azuma's inequlity

$$
\mathbf{P}\left(\tau_{m}>n \mid \forall_{k \leq m} \tau_{k}-\tau_{k-1} \leq n^{1 / 8}\right) \leq e^{-n^{1 / 2}}
$$

Therefore, all we need to do is to prove the proposition, namely, that for all $\epsilon>0$ and u large enough,

$$
\mathbf{P}\left(\tau_{1}>u\right) \leq e^{-(\log u)^{d-\epsilon}} .
$$

Reduction

Let $L=(\log u)^{d}$.
Using condition (T),

$$
\mathbf{P}\left(\tau_{1}>u\right) \leq \mathbf{P}\left(T_{L}>u\right)+e^{-O\left((\log u)^{d}\right)}
$$

Thus all we need is to estimate $\mathbf{P}\left(T_{L}>u\right)$.
This enables us to estimate the amount of time to a stopping time.

Reduction

Let B_{L} be the box of side-length $2 L$ and width L^{2} around the origin.

Reduction

Now,

$$
\mathbf{P}\left(T_{L}>u\right) \leq \mathbf{P}\left(T_{B_{L}}>u\right)+e^{-O\left((\log u)^{d}\right)}
$$

and
$\mathbf{P}\left(T_{B_{L}}>u\right) \leq \mathbf{P}\left(\exists_{x \in B_{L}}\right.$ such that x is visited $\frac{u}{\left|B_{L}\right|}$ times before $\left.T_{B_{L}}\right)$.
So all we need is to bound

$$
\mathbf{P}\left(\exists_{x \in B_{L}} \text { such that } x \text { is visited } \frac{u}{\left|B_{L}\right|} \text { times before } T_{B_{L}}\right)
$$

Reduction

For every x and every event $G \subseteq \Omega$ on the environments,

$$
\begin{array}{r}
\mathbf{P}\left(x \text { is visited } \frac{u}{\left|B_{L}\right|} \text { times before } T_{B_{L}}\right) \\
\leq P\left(G^{c}\right)+\sup _{\omega \in G} P_{\omega}\left(x \text { is visited } \frac{u}{\left|B_{L}\right|} \text { times before } T_{B_{L}}\right) .
\end{array}
$$

and by the Markov property,

$$
\begin{array}{r}
P_{\omega}\left(x \text { is visited } \frac{u}{\left|B_{L}\right|} \text { times before } T_{B_{L}}\right) \\
\leq P_{\omega}^{x}\left(x \text { is visited } \frac{u}{\left|B_{L}\right|} \text { times before } T_{B_{L}}\right) \\
\quad=\left(P_{\omega}^{x}\left(\text { return to } x \text { before } T_{B_{L}}\right)\right)^{\frac{u}{\left|B_{L}\right|} .}
\end{array}
$$

Reduction

Therefore, we need to find an event $G \subseteq \Omega$ such that

1. $P(G)>1-e^{-(\log u)^{d-\epsilon}}$.
2. For every $\omega \in G$,

$$
1-P_{\omega}^{\times}\left(\text {return to } x \text { before } T_{B_{L}}\right) \gg \frac{1}{u} .
$$

The event G

For $n>0$, let $A_{n} \subseteq \Omega$ be the following event:

1. $P_{\omega}\left(T_{-n}<T_{n}\right)<e^{-c n}$.
2. The quenched distribution of $X_{T_{n}}$ is very closed to the annealed in the following sense: There exists a coupling between the two distributions, such that with probability λ their distance is less than n^{ϵ}, and $\lambda=\lambda(n)$ is very small.

Lemma: $1-P\left(A_{n}\right)$ decays faster than any polynomial.

The event G

For every n, partition the lattice into parallelograms in the direction of the speed, of length n^{2} and width a little more than n.

We can now define the event G.

The event G

We say that a parallelogram of length n^{2} is good if the event A_{n} holds for the walk starting from its center.

Note that these events are almost independent for disjoint blocks.

Now, let $n_{1}=L^{\epsilon}, n_{2}=L^{2 \epsilon}, \ldots$.

The event G is the event that in every such scale, the number of bad parallelograms in B_{L} is no more than $(\log u)^{d-\epsilon}$.

It is easy to see that $P(G)>1-e^{-\log (u)^{d-\epsilon}}$. Therefore all we need to show is that for every $\omega \in G$,

$$
1-P_{\omega}^{\times}\left(\text {return to } x \text { before } T_{B_{L}}\right) \gg \frac{1}{u} \text {. }
$$

The quenched escape probability

We need to show that for $\omega \in G$,

$$
1-P_{\omega}^{\times}\left(\text {return to } x \text { before } T_{B_{L}}\right) \gg \frac{1}{u} .
$$

To see this we define an event A, and show that

1. $P_{\omega}^{X}(A) \gg \frac{1}{u}$, and
2. On the event A, the walker leaves B_{L} before returning to x.

The quenched escape probability

We first define an event B as follows:

The event B is the event that for every parallelogram that the walker visits, it exits through the front, and that whenever it goes through a bad parallelogram, at the exit it "corrects" its position to be similar to the annealed. The correction is done using ϵ-coins.

Conditioned on the event B, the walker does not return to x, and its path looks like Brownian Motion.

The quenched escape probability

We now define the event A as follows:

Let w be a random variable, uniform in the set $[-1,1]^{d-1}$ and independent of the walk.

The event A is the following event:
$A=B \cap\left\{\forall_{k}, X_{T_{J_{k}}}-X_{T_{J_{k-1}}}-e_{1}\left(J_{k}-J_{k-1}\right)-w\left(J_{k}-J_{k-1}\right) n_{k}<n_{k}\right\}$
where $J_{1}=n_{1}(\log u)^{d-\epsilon}$ and $J_{k}=J_{k-1}+n_{k}(\log u)^{d-\epsilon}$.

The quenched escape probability

Conditioned on the event A, with high probability the walks visit no more than $(\log u)^{1-\epsilon}$ bad blocks.

Therefore, under this event it needs no more than $(\log u)^{1-\epsilon}$ ϵ-coins.

$$
P(A \mid B)>u^{\epsilon-1} .
$$

Combined, we get that

$$
P \omega(A) \gg \frac{1}{u} .
$$

THANK YOU

