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Sherrington-Kirkpatrick model:

o=(01,...,0n0) ESy < {—1,1}".

Random interactions: Independent centered Gaussians g;;, ¢« < j, with variance 1/N,
9ii = Gij, Gii déf O, defined on (Q, f, IP)) .

Inverse temperature 3 > 0, strength 7 > 0 of the external field.

Hamiltonian:

. B N N
—HNw 252 O'Z'O'j—i—hzgi.
Partition function:

Znw SN 2 Nexp [~ Hy,, (0)].
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Gibbs measure:

~N
gN,(,u (O') déf 2 eXpéNfNaw (0->] .
Free energy:
f(B,h) “ Jim ilogZN = lim iIE‘Z?logZN.
N—oco N N—oo N

The replica symmetric “solution”, given by SK:

RS (B,h) = /logcosh (h+ B/qz) ¢ (dz)

2
+%(1—Q)27

¢ (dz): the standard normal distribution. ¢ = ¢ (53, h) satisfies:

q= / tanh? (h + 8y/q2) 6 (dz) .

h>0, V8, and h=0, 3 <1 :uniqueq. h =0, 8 > 1, there is positive solution.
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Theorem 1 (Talagrand, Guerra-Toninelli) For small enough [

f(B,h) =RS(B,h)

Remark 1 The equation is believed to be correct for 5 below the de Almayda—Thouless-
line

def 02 gb(dz)
AT (h) = sup {B . 5 /COSh4 (h+ﬁ\/§z) < 1}
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h=0: AT (0)=1. f(B,0) =RS(B,0) = 5%/4 for 3 < 1 by a 2nd moment computation:

EZy = exp [52 WV - 1)] ,

4
and one easily checks for 5 < 1that EZ% < C (3) (EZ

N
BZ3 = 3 2P Bep [3Y gy (00, + 0] ;>}

o0’

_ 3
— ZQ 2N6Xp [ﬂzi<] O'ZO'j‘|‘O'O'

o,0'
2

(EZx)’ ZQ 2N exp [fN (Z 0'7;0';> - ?] < C(B)(EZy)

by Curie-Weiss. By Gaussian isoperimetry.

2

f(8,0) = fun (8,00 < A}Eﬂ@@%logEZN = %
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However: For h > 0, V5 > 0
RS(B,h) # fan (B, 1) .
Talagrand’s first proof: Based on
& (COVg(O'Z‘,O'j>2) <C/N,i#j
proved by induction on N. Then prove that the m; become uncorrelated and satisfy

lim K (m%mQ) = q¢°.

N—o00
Finally using this, derive an asymptotic differential equation
1 _C (1 — ¢ (B, h ) |

and from that, the claim follows.

Guerra-Toninelli: Use of the Guerra interpolation method and a clever “replica cou-
pling”.

Simplest proof: Recent one by Talagrand (to appear in PTRF). Clever extension of the
class of considered models + interpolation, and recursion.



On the TAP equations, and a Morita type derivation of the RS-solution for the SK model 7

Morita type correction: Random Hamiltonian Hy,, (o), where f < f., : Sometimes,
it is possible to subtract a o-independent sequence

[:[N,w (0') = HN,w (0') — wN,w

for which:

1

NW’“’ — (o a.s.,
then

f= lim —1og22 Neo=Hyulo ):f—a.

N—oo IV

Therefore, if we can prove f = f,,, and we can evaluate the latter, we are done.
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Thouless-Anderson-Palmer equations: Consider the Gibbs-expectations of the o; :

mi (W) = (0i)y,-

m; = tanh (h + Z]_ gijm; — 5% (1—q) mi) :

Can be true only in an asymptotic sense N — <.
Physicists claim:
e True for all 3.

e Solutions encode for the “pure states”.

e High temperature: One solution.

Mathematical proofs only for high temperature: Talagrand, Chatterjee.
1 = N : Write mgN_l) for the mean of 0, « < N —1inthe N —1-system with Hamiltonian

HW=Y putting oYV = (04,...,0n.1) ,y (™) SN g oy

—H(o)=—-HYY (O'(N_l)) + hon + By (O'(N_l)) oN,
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) <sinh (h + By (U(N_l))>>N—1
= (cosh (h+ By (eV=V))) v,

Using E (covg(o;, 0;)?) < C/N, a not too difficult argument gives

(sinh (1 + By (o™ 1))),, sk (et By ((0°0), 1))
<COSh (h + by (O'(N_l)))>zv—1 - cosh (h + By (<0'<N_1)>N_1))

N-1
= tanh (h + Z gN,jm§N1)> +0(1),

J=1

+0(1)

my = tanh (h + Z gNyijND) +o0(1).

JSN-1

Replacing mEN_1> by m; leads to a correction as given in the TAP equations.
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Direct construction of TAP without reference to the Gibbs measure: Define recur-

sively mgk) by

O SO
defh+/329w BE(1—qym? k> 2

m®) 4 anh (hz(-k)) , k> 2.

Not too difficult to prove that the scheme converges for small enough 3, maybe up to
the Al-line.
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Proposition 1 a)

l1m—zw /w (h + B\/qz) ¢ (dz), 1 nice, k > 2

b)

— = 8. > 1.
j\}znmNZm =q, a.s., Vk >

c) 8 small enough— 3 C(5) >0, 0 < p(f) < 1, s.th.

1 N2
lim Sup Z (mgk) — mgk 1)) < Cp".

N=oo 201

d)

— y ) — 980 (1 —
i 7 > gl = 23001-0).
ihj=

11
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Proof by an alternative representation of h(k) ;

h+6\/7€27 f dﬁf Zgwa
J

Y =h+8Y " gitanh (b + 8/a€;) — B/a (1 —q).
J

Idea: Replace g;; by ones which are independent of the &; :
(2) def i +&;

9i;° = 9ij — N
~ independent of the &, (up to corrections which are negligible for N — o).

12

Then correct gg) s.th. £ = L ({g;;}) : Independent &, with £ ({¢,}) = £ ({£,}) , and put

_(2) def f +¢;
37 = g2+ ~
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W ah+ 5y g? (mgm _ <m(2>7 1>) +8 <m<2>7 1>§i7
J

where m® & (m(12), . ,mg\?)) , (X, y) o % i\il TV;.
~ means equality up to terms which are negligible in the N — oo limit.
General scheme: mY, m®, ... 1™ : RY — span (mW, ... m"W)) projections.
(k) _ 11(6=1) (1 (%)
g d WY T (m) e

Y

B [m® — 6= (m®)

Recursive construction of o-fields G;, Go, . . ., gg), gg), .

fgk) déf Z g(f)mgk)7 gk déf o (5(1)7 s 7€(k)) )

k) ~ (k L) ~ (k
(+1) def (k) e + P

13
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Conditionally on G;._, {gi(fﬂ)} and {g§’“>} are ~ independent.
Recovering the “correct” distribution:

=(k) (k) | (k) . (k
_(k+1) def _(k) S m§ ) + gj ml( )

9i; = Ui N 3
where conditionally on G;._1, {gﬁ’”}‘ and {gg‘”} are independent, and have the same

conditional Gaussian law.
Then

Vah+8) g (mg.‘“‘” — 11 (m(+) ) +5Z<m =0y e,
J

Using this representation, the proposition follows.
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The transformation: New :-th spin distribution

( ) def 1 ehio-z

i\0i) =

b 2 cosh (h;)
def 7TV

p(o) = . Pi (03) -

(k—1)

h; should be hz(-k) for large k such that that h!" is close to h

Zy = Y2 N expl-Hy (o)

= exp [ZZ log cosh (hl)} Zp(a) exp {—H (o) — ZZ hiai] .

o

Zi log cosh (h;) =~ N / log cosh (h + 8+/qz) ¢ (dz).

15
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_ Zihiai = BZQZ](TZO] 4—/123(7Z — hZaZ
— z:gwazm7 - 5 (1—g¢q ZJZmZ
_F Z gijoi0; — Z gimim; + 5% (1 — q) Z oM
] i
s 529@75@'(3;' — N3%q(1—q)+ 5% (1 _Q>Zgimz’
ij i

g;gz’j6z’6j +8(1—q) z@:ﬁimz‘,

Q

where

16
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On the other hand c}f = (0} — mi)Q =1 — m? — 26,m;, and therefore

P B W0 2
v 200 = g 2 (o) (L= ‘—Z“@mzl‘ oy (2o

)2
Combining:
2 2
—H(o Z hOZNﬁTﬂ_q 529@70%0] fNZ(3ZQ(33+%<Zim¢@)2,

The last term is annoying, but harmless for small 5 :CW-type term. Leaving it out:

&
P.;‘Qw
=
—_
|
=
[\
|
X
Lo
—_
|
=
S>
3
_|_
|
(]
S>
3

: 1 - 3 .
PO =RS (3. 1)+ fim 1o 2_plo)ewp |53 ) 0500 = 15 2 07,

Claim: The second summand vanishes by a 2nd moment computation, if 5 is small.
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Problem: p (o) depends on {g;;} .

iJ
The replacement introduces CW-type summands which are handled quenched. The
CW-computation is quite messy here.

Solution: Conditional second moment, given G;, by a replacement of {g;;} by {g(@}

Other possible applications:
Generalized SK-model: o; with values in an arbitrary finite set S, with an arbitrary a
priori measure 7.

def
—Hy ()= ) gi(01,0)),

where {g;; (s,?)},_; ,:cq IS @ Gaussian field, independent for different (i, j) . For that,
we know what the correct TAP equations should be. The TAP equations are for the full
(quenched) Gibbs distribution of o; on 5. (joint work with Philipp Thomann).
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Most general perceptron model: o = (01,...,0y5) € {—1,1}N, gij, 1 < 1,7 < N,
I.i.d. standard Gaussians.

e Pl e
de de
Yo,i = E 9ij0 4, LN,U — ﬁ E :53/0@

We search for a rate function J : M7 (R) — [0, o], such that

1
limsup —log# {0 : Ly, € A} —log2 < —inf J(u), A closed,
N—o00 N ’ peA

1
im inf — ; — > .
%vm_}o%f N log# {0 : Ly, € A} —log2 > A1L:r€11{‘;1<](,u), A open
The “annealed” rate function is the relative entropy I (u|¢) w.r.t. standard Gaussian ¢,
because by Sanov
E#{oc: Ly, c A} =2"P(Ly, € A) =~ 2" exp [~ N1 (1|9)]

Up to now, we have not been able to find the correct TAP equation.
| expect that J (1) = I (u|¢) on a hypersurface in M7 (R) of codimension 1, and y close
to ¢.



