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Sherrington-Kirkpatrick model:

� = (�1; : : : ; �N) 2 �N def
= f�1; 1gN :

Random interactions: Independent centered Gaussians gij; i < j; with variance 1=N;
gji = gij; gii

def
= 0; de�ned on (
;F ;P) :

Inverse temperature � > 0; strength h > 0 of the external �eld.
Hamiltonian:

�HN;! (�)
def
=
�

2

NX
i;j=1

gij (!)�i�j + h
NX
i=1

�i:

Partition function:

ZN;!
def
=
X
�

2�N exp [�HN;! (�)] :
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Gibbs measure:

GN;! (�) def=
2�N exp [�HN;! (�)]

ZN;!
:

Free energy:

f (�; h)
def
= lim

N!1

1

N
logZN = lim

N!1

1

N
E logZN :

The replica symmetric �solution�, given by SK:

RS (�; h) =

Z
log cosh (h + �

p
qz)� (dz)

+
�2

4
(1� q)2 ;

� (dz): the standard normal distribution. q = q (�; h) satis�es:

q =

Z
tanh2 (h + �

p
qz)� (dz) :

h > 0; 8�; and h = 0; � � 1 : unique q: h = 0; � > 1; there is positive solution.
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Theorem 1 (Talagrand, Guerra-Toninelli) For small enough � :

f (�; h) = RS (�; h)

Remark 1 The equation is believed to be correct for � below the de Almayda�Thouless-
line

AT (h)
def
= sup

(
� : �2

Z
� (dz)

cosh4
�
h + �

p
qz
� � 1)
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h = 0: AT (0) = 1: f (�; 0) = RS (�; 0) = �2=4 for � � 1 by a 2nd moment computation:

EZN = exp
�
�2 (N � 1)

4

�
;

and one easily checks for � < 1 that EZ2N � C (�) (EZN)2

EZ2N =
X
�;�0

2�2NE exp
h
�
X

i<j
gij
�
�i�j + �

0
i�
0
j

�i
=
X
�;�0

2�2N exp

�
�2

2N

X
i<j

�
�i�j + �

0
i�
0
j

�2�
= (EZN)2

X
�;�0

2�2N exp

�
�2

2N

�X
i
�i�

0
i

�2
� �2

2

�
� C (�) (EZN)2

by Curie-Weiss. By Gaussian isoperimetry.

f (�; 0) = fan (�; 0)
def
= lim

N!1

1

N
logEZN =

�2

4
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However: For h > 0; 8� > 0

RS (�; h) 6= fan (�; h) :

Talagrand's �rst proof: Based on

E
�
covG(�i; �j)

2
�
� C=N; i 6= j

proved by induction on N: Then prove that the mi become uncorrelated and satisfy

lim
N!1

E
�
m2
1m

2
2

�
= q2:

Finally using this, derive an asymptotic differential equation

lim
N!1

1

N

@ logZN
@�

=
�

2

�
1� q (�; h)2

�
;

and from that, the claim follows.
Guerra-Toninelli: Use of the Guerra interpolation method and a clever �replica cou-
pling�.
Simplest proof: Recent one by Talagrand (to appear in PTRF). Clever extension of the
class of considered models + interpolation, and recursion.
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Morita type correction: Random Hamiltonian HN;! (�) ; where f < fan : Sometimes,
it is possible to subtract a �-independent sequence

ĤN;! (�) = HN;! (�)�  N;!;

for which:
1

N
 N;! ! � a:s:;

then

f = lim
N!1

1

N
log
X
�

2�Ne�HN;!(�) = f̂ � �:

Therefore, if we can prove f̂ = f̂an; and we can evaluate the latter, we are done.
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Thouless-Anderson-Palmer equations: Consider the Gibbs-expectations of the �i :

mi (!)
def
= h�iiN;! :

mi = tanh
�
h + �

X
j
gijmj � �2 (1� q)mi

�
:

Can be true only in an asymptotic sense N !1:
Physicists claim:
� True for all �:
� Solutions encode for the �pure states�.
� High temperature: One solution.
Mathematical proofs only for high temperature: Talagrand, Chatterjee.
i = N :Writem(N�1)

i for the mean of �i; i � N�1 in theN�1-system with Hamiltonian
H(N�1):Putting �(N�1) = (�1; : : : ; �N�1) ; y

�
�(N�1)

� def
=
PN�1

i=1 gi;N�i:

�H (�) = �H(N�1)
�
�(N�1)

�
+ h�N + �y

�
�(N�1)

�
�N ;
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mN =



sinh

�
h + �y

�
�(N�1)

���
N�1


cosh
�
h + �y

�
�(N�1)

���
N�1

;

Using E
�
covG(�i; �j)

2
�
� C=N , a not too dif�cult argument gives


sinh
�
h + �y

�
�(N�1)

���
N�1


cosh
�
h + �y

�
�(N�1)

���
N�1

=
sinh

�
h + �y

�

�(N�1)

�
N�1

��
cosh

�
h + �y

�

�(N�1)

�
N�1

�� + o (1)
= tanh

0@h + � N�1X
j=1

gN;jm
(N�1)
j

1A + o (1) ;
i.e.

mN = tanh

0@h + � X
j�N�1

gN;jm
(N�1)
j

1A + o (1) :
Replacing m(N�1)

j by mj leads to a correction as given in the TAP equations.
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Direct construction of TAP without reference to the Gibbs measure: De�ne recur-
sively m(k)

i by

m
(0)
i

def
= 0; m

(1)
i

def
=
p
q;

h
(k)
i

def
= h + �

NX
j=1

gijm
(k�1)
j � �2 (1� q)m

(k�2)
i ; k � 2

m
(k)
i

def
= tanh

�
h
(k)
i

�
; k � 2:

Not too dif�cult to prove that the scheme converges for small enough �; maybe up to
the AT-line.
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Proposition 1 a)

lim
1

N

NX
i=1

 
�
h
(k)
i

�
=

Z
 (h + �

p
qz)� (dz) ;  nice; k � 2

b)

lim
N!1

1

N

NX
i=1

m
(k)2
i = q; a:s:; 8k � 1:

c) � small enough =) 9 C (�) > 0; 0 < � (�) < 1; s.th.

lim sup
N!1

1

N

NX
i=1

�
m
(k)
i �m

(k�1)
i

�2
� C�k:

d)

lim
k!1

lim
N!1

1

N

NX
i;j=1

gijm
(k)
i m

(k)
j = 2�q (1� q) :
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Proof by an alternative representation of h(k)i :

h
(2)
i = h + �

p
q�i; �i

def
=
X
j

gij;

h
(3)
i = h + �

X
j

gij tanh
�
h + �

p
q�j
�
� �2

p
q (1� q) :

Idea: Replace gij by ones which are independent of the �i :

g
(2)
ij

def
= gij �

�i + �j
N

� independent of the �k (up to corrections which are negligible for N !1).
Then correct g(2)ij s.th. L = L (fgijg) : Independent �i with L

��
�i
	�
= L (f�ig) ; and put

g
(2)
ij

def
= g

(2)
ij +

�i + �j
N
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h
(3)
i � h + �

X
j

g
(2)
ij

�
m
(2)
j �

D
m(2);1

E�
+ �

D
m(2);1

E
�i;

wherem(2) def=
�
m
(2)
1 ; : : : ;m

(2)
N

�
; hx;yi def= 1

N

PN
i=1 xiyi:

� means equality up to terms which are negligible in the N !1 limit.
General scheme:m(1);m(2); : : : : �(k) : RN ! span

�
m(1); : : : ;m(k)

�
projections:

m̂(k) def=
m(k) � �(k�1)

�
m(k)

�m(k) � �(k�1)
�
m(k)

�; m̂(1) def= 1:

Recursive construction of �-�elds G1;G2; : : : ; g(1)ij ; g
(2)
ij ; : : :

�
(k)
i

def
=
X
j

g
(k)
ij m̂

(k)
j ; Gk def= �

�
�(1); : : : ; �(k)

�
;

g
(k+1)
ij

def
= g

(k)
ij �

�
(k)
i m̂

(k)
j + �

(k)
j m̂

(k)
i

N
:
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Conditionally on Gk�1;
n
g
(k+1)
ij

o
and

n
�
(k)
i

o
are � independent.

Recovering the �correct� distribution:

g
(k+1)
ij

def
= g

(k)
ij �

�
(k)

i m̂
(k)
j + �

(k)

j m̂
(k)
i

N
;

where conditionally on Gk�1;
n
�
(k)

i

o
i
and

n
�
(k)
i

o
i
are independent, and have the same

conditional Gaussian law.
Then

h
(k)
i � h + �

X
j

g
(k�1)
i;j

�
m
(k�1)
j � �(k�2)

�
m(k�1)

�
j

�
+ �

k�2X
r=1

D
m̂(r);m(k�1)

E
�
(r)
i :

Using this representation, the proposition follows.
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The transformation: New i-th spin distribution

pi (�i)
def
=
1

2

ehi�i

cosh (hi)
;

p (�)
def
=
YN

i=1
pi (�i) :

hi should be h
(k)
i for large k such that that h(k)i is close to h(k�1)i :

ZN =
X
�

2�N exp [�HN (�)]

= exp
hX

i
log cosh (hi)

iX
�

p (�) exp
h
�H (�)�

X
i
hi�i

i
:

X
i
log cosh (hi) � N

Z
log cosh (h + �

p
qz)� (dz) :



On the TAP equations, and a Morita type derivation of the RS-solution for the SK model 16

�H (�)�
X

i
hi�i =

�

2

X
i;j

gij�i�j + h
X
i

�i � h
X
i

�i

�
X
i;j

gij�imj + �
2 (1� q)

X
i

�imi

=
�

2

X
i;j

gij�̂i�̂j �
�

2

X
i;j

gijmimj + �
2 (1� q)

X
i

�imi

� �

2

X
i;j

gij�̂i�̂j �N�2q (1� q) + �2 (1� q)
X
i

�imi

� �

2

X
i;j

gij�̂i�̂j + �
2 (1� q)

X
i

�̂imi;

where

�̂i
def
= �i �mi:
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On the other hand �̂2i = (�i �mi)
2 = 1�m2

i � 2�̂imi; and therefore

�2

4N

X
i;j

�̂2i �̂
2
j =

�2

4N

X
i;j

�
1�m2

i

� �
1�m2

j

�
� �2

N

X
i;j

�̂imi

�
1�m2

j

�
+
�2

N

 X
i

�̂imi

!2

� �2N

4
(1� q)2 � �2 (1� q)

X
i

�̂imi +
�2

N

 X
i

�̂imi

!2
:

Combining:

�H (�)�
X

i
hi�i �

�2N

4
(1� q)2 +

�

2

X
i;j

gij�̂i�̂j �
�2

4N

X
i;j

�̂2i �̂
2
j +

�2

N

�X
i
mi�̂i

�2
;

The last term is annoying, but harmless for small � :CW-type term. Leaving it out:

f (�; h) = RS (�; h) + lim
N!1

1

N
log
X
�

p (�) exp

24�
2

X
i;j

gij�̂i�̂j �
�2

4N

X
i;j

�̂2i �̂
2
j

35 :
Claim: The second summand vanishes by a 2nd moment computation, if � is small.
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Problem: p (�) depends on fgijg :
Solution: Conditional second moment, given Gk; by a replacement of fgijg by

n
g
(k)
ij

o
:

The replacement introduces CW-type summands which are handled quenched. The
CW-computation is quite messy here.

Other possible applications:
Generalized SK-model: �i with values in an arbitrary �nite set S; with an arbitrary a
priori measure �:

�HN (�)
def
=
X

gij (�i; �j) ;

where fgij (s; t)gi<j; s;t2S is a Gaussian �eld, independent for different (i; j) : For that,
we know what the correct TAP equations should be. The TAP equations are for the full
(quenched) Gibbs distribution of �i on S: (joint work with Philipp Thomann).
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Most general perceptron model: � = (�1; : : : ; �N) 2 f�1; 1gN ; gij; 1 � i; j � N;
i.i.d. standard Gaussians.

y�;i
def
=

NX
j=1

gij�j; LN;�
def
=
1

N

NX
i=1

�y�;i:

We search for a rate function J :M+
1 (R)! [0;1] ; such that

lim sup
N!1

1

N
log # f� : LN;� 2 Ag � log 2 � � inf

�2A
J (�) ; A closed;

lim inf
N!1

1

N
log # f� : LN;� 2 Ag � log 2 � � inf

�2A
J (�) ; A open:

The �annealed� rate function is the relative entropy I (�j�) w.r.t. standard Gaussian �,
because by Sanov

E# f� : LN;� 2 Ag = 2NP (LN;� 2 A) � 2N exp [�NI (�j�)]

Up to now, we have not been able to �nd the correct TAP equation.
I expect that J (�) = I (�j�) on a hypersurface inM+

1 (R) of codimension 1; and � close
to �:


