universitätbonn

O,DO, DO², Eurandom

Anton Bovier

Metastability in the random field Curie-Weiss model
Based on collaborations with:
Alessandra Bianchi and Dima Ioffe
\triangleright Metastability
\triangleright The RFCW model
\triangleright Equilibrium properties
\triangleright Glauber dynamics
\triangleright Main theorem
\triangleright Previous work
\triangleright Elements of proof
\triangleright Conclusions and outlook

Metastability

Metastability is a common phenomenon related to the dynamics of first order phase transitions:

If the parameters of a systems are changed rapidly across the line of a first order phase transition, the system will persist for a long time in a metastable state before transiting rapidly to the new equilibrium state under the influence of random fluctuations.

Stochastic Ising models

A model context we are interested in are stochastic Ising-type models, i.e. Markov chains with
\triangleright State space $\mathcal{S}_{\Lambda}=\{-1,1\}^{\Lambda}, \Lambda \subseteq \mathbb{Z}^{d} ;$
\triangleright Hamiltonian $H_{\Lambda}: \mathcal{S}_{\Lambda} \rightarrow \mathbb{R}$;
\triangleright Gibbs measure $\mu_{\beta, \Lambda}(\sigma)=Z_{\beta, \Lambda}^{-1} \exp \left(-\beta H_{\Lambda}(\sigma)\right)$;
\triangleright Order paprameter, e.g. $m_{\Lambda}(\sigma)=\frac{1}{|\Lambda|} \sum_{x \in \Lambda} \sigma_{x} ;$
\triangleright Transition rates $p_{\beta}\left(\sigma, \sigma^{\prime}\right)$ reversible with respect to $\mu_{\beta, \Lambda}$ and "local", i.e. essentially single site flips only.

Order parameter

Metastability in such system can be described often in terms of the behavior of the order parameter:

If m_{β}^{*} is the equilibrium value of m_{Λ}, i.e. $\mu_{\beta, \Lambda}\left(m_{\lambda}(\sigma) \sim m_{\beta}^{*}\right) \sim 1$, there are values of m such that if at time $t=0$, the system is prepared with $m_{\Lambda}(\sigma(0))=m$, then the first time, t, such that $m_{\lambda}(\sigma(t)) \sim m_{\beta}^{*}$, is exceptionally large (in average).

The issue at hand is to understand in a precise way the lifetimes of such metastable states.

The heuristic theory of Kramer's and Eyring (ca. 1940) models the evolution of the order parameters by a stochastic differential equation:

Well understood situations

Finite state Markov chains.

If Λ is a finite set, and we consider the limit $\beta \uparrow \infty$, we have a very satisfactory theory at hand.
\triangleright Metastable states correspond to local minima of H_{Λ};
\triangleright Exit from metastable states occur through minimal saddle points of H_{Λ} connecting one mimimum to deeper ones;
$\triangleright \mathbb{E}_{x} \tau_{x}=C \exp \left(\beta\left(H_{\Lambda}(\right.\right.$ saddle $\left.\left.)-H_{\Lambda}(\min)\right)\right) ; \tau_{x}$ exp. distributed;
The simplifying feature here is that there at only "few paths", or "nothing can beat $\exp (-\beta)!$!"

Well understood situations

Mean field models.

If $H_{\Lambda}(\sigma)=E\left(m_{\Lambda}(\sigma)\right), m_{\lambda}(\sigma(t))$ is again Markov chain on $\{-1,-1-2 / N, \ldots, 1\}$;
\triangleright nearest neigbor random walk reversible with respect to measure $\exp (-\beta N F(x))$ with F free energy;
-explicitely solvable;
Thus here we essentially have exactly the situation imagined by Kramers and Eyring.

The real thing:

Whenever we are not in one of the two situations above, we have problems:
\triangleright There are lots of relevant paths!
\triangleright There is no exact reduction to a finite dimensional system!

Still, we expect an effective description of the dynamics in terms of some mesoscopic coarse grained dynamics!

In the remainder of this talk I will explain how this idea can be implemented in a simple example.

The RFCW model

Random Hamiltonian:

$$
H_{N}(\sigma) \equiv-\frac{N}{2}\left(\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}\right)^{2}-\sum_{i=1}^{N} h_{i} \sigma_{i}
$$

$h_{i}, i \in \mathbb{N}$ are (bounded) i.i.d. random variables, $\sigma \in\{-1,1\}^{N}$.
Equilibrium properties: [see Amaro de Matos, Patrick, Zagrebnov (92), Külske (97)]
Gibbs measure: $\mu_{\beta, N}(\sigma)=\frac{2^{-N_{e}-\beta H_{N}(\sigma)}}{Z_{\beta, N}}$
Magnetization: $m_{N}(\sigma) \equiv \frac{1}{N} \sum_{i=1}^{N} \sigma_{i}$.
Induced measure: $\mathcal{Q}_{\beta, N} \equiv \mu_{\beta, N} \circ m_{N}^{-1}$. on the set $\Gamma_{N} \equiv\{-1,-1+2 / N, \ldots,+1\}$.

Equilibrium properties

Using sharp large deviation estimates, one gets

$$
Z_{\beta, N} \mathcal{Q}_{\beta, N}(m)=\sqrt{\frac{2 I_{N}^{\prime \prime}(m)}{N \pi}} \exp \left\{-N \beta F_{N}(x)\right\}(1+o(1))
$$

where $F_{N}(x) \equiv \frac{1}{2} m^{2}-\frac{1}{\beta} I_{N}(m)$ and $I_{N}(y)$ is the Legendre-Fenchel transform of

$$
U_{N}(t) \equiv \frac{1}{N} \sum_{i \in \Lambda} \ln \cosh \left(t+\beta h_{i}\right)
$$

Critical points: Solutions of $m^{*}=\frac{1}{N} \sum_{i \in \Lambda} \tanh \left(\beta\left(m^{*}+h_{i}\right)\right)$. Maxima if $\beta \mathbb{E}_{h}\left(1-\tanh ^{2}\left(\beta\left(z^{*}+h\right)\right)\right)>1$. Moreover, at critical points,

$$
Z_{\beta, N} \mathcal{Q}_{\beta, N}\left(z^{*}\right)=\frac{\exp \left\{\beta N\left(-\frac{1}{2}\left(z^{*}\right)^{2}+\frac{1}{\beta N} \sum_{i \in \Lambda} \ln \cosh \left(\beta\left(z^{*}+h_{i}\right)\right)\right)\right\}}{\sqrt{\frac{N \pi}{2}\left(\mathbb{E}_{h}\left(1-\tanh ^{2}\left(\beta\left(z^{*}+h\right)\right)\right)\right)}}(1+o(1))
$$

Glauber dynamics

We consider for definiteness discrete time Glauber dynamics with Metropolis transition probabilities

$$
p_{N}\left(\sigma, \sigma^{\prime}\right) \equiv \frac{1}{N} \exp \left\{-\beta\left[H_{N}\left(\sigma^{\prime}\right)-H_{N}(\sigma)\right]_{+}\right\}
$$

if σ and σ^{\prime} differ on a single coordinate, and zero else.
We will be interested in transition times from a local minimum, m^{*}, to the set of "deeper" local minima,

$$
M \equiv\left\{m: F_{\beta, N}(m) \leq F_{\beta, N}\left(m^{*}\right)\right\} .
$$

Set $S[M]=\left\{\sigma \in S_{N}: m_{N}(\sigma) \in M\right\}$.

Main theorem

Theorem 1. Let m^{*} be a local minimum of $F_{\beta, N}$; let z^{*} be the critical point separating m^{*} from M.

$$
\begin{aligned}
& \mathbb{E}_{\nu_{m^{*}}} \tau_{S[M]} \\
& =\exp \left\{\beta N\left(F_{N}\left(z^{*}\right)-F_{N}\left(m^{*}\right)\right)\right\} \\
& \times \frac{2 \pi N}{\beta\left|\hat{\gamma}_{1}\right|} \sqrt{\frac{\beta \mathbb{E}_{h}\left(1-\tanh ^{2}\left(\beta\left(z^{*}+h\right)\right)\right)-1}{1-\beta \mathbb{E}_{h}\left(1-\tanh ^{2}\left(\beta\left(m^{*}+h\right)\right)\right)}}(1+o(1)),
\end{aligned}
$$

where $\hat{\gamma}_{1}$ is the unique negative solution of the equation

$$
\mathbb{E}_{h}\left[\frac{1-\tanh \left(\beta\left(z^{*}+h\right)\right)}{\left[\beta\left(1+\tanh \left(\beta\left(z^{*}+h\right)\right)\right)\right]^{-1}-\gamma}\right]=1
$$

Note that a naive approximation by a one-dimensional chain would give the same result except the wrong constant

$$
\gamma=\frac{1}{\beta \mathbb{E}_{h}\left(1-\tanh ^{2}\left(\beta\left(z^{*}+h\right)\right)\right)}-1
$$

Previous work

The model was studied in
\triangleright F. den Hollander and P. dai Pra (JSP 1996) [large deviations, logarithmic asymptotics]
\triangleright P. Mathieu and P. Picco (JSP, 1998) [binary distribution; up to polynomial errors in N]
\triangleright A.B, M. Eckhoff, V. Gayrard, M. Klein (PTRF, 2001) [discrete distribution, up to multiplicative constants]

Both MP and BEGK made heavy use of exact mapping to finite-dimensional Markov chain!

The main goal of the present work was to show that potential theoretic methods allow to get sharp estimates (i.e. precise pre-factors of exponential rates) in spin systems at finite temperature when no symmetries are present. The RFCW model is the simplest model of this kind.

Elements of the proof: 1. Potential theory

Equilibrium potential for $A \cap B=\emptyset,-L=P-1$ generator, solution of

$$
\left(L h_{B, A}\right)(\sigma)=0, \quad \sigma \notin A \cup B,
$$

with boundary conditions

$$
h_{B, A}(\sigma)=\left\{\begin{array}{ll}
1, & \text { if } \sigma \in B \\
0, & \text { if } \sigma \in A
\end{array} .\right.
$$

Equilibrium measure $e_{B, A}(\sigma) \equiv-\left(L h_{B, A}\right)(\sigma)$.
Capacity: $\sum_{\sigma \in B} \mu(\sigma) e_{B, A}(\sigma) \equiv \operatorname{cap}(B, A)$.
Dirichlet form $\Phi_{N}(f) \equiv \frac{1}{2} \sum_{\sigma, \sigma^{\prime} \in S_{N}} \mu(\sigma) p_{N}\left(\sigma, \sigma^{\prime}\right)\left[f(\sigma)-f\left(\sigma^{\prime}\right)\right]^{2}$.
Dirichlet principle: $\operatorname{cap}(B, A)=\Phi\left(h_{B, A}\right)=\inf _{h \in \mathcal{H}_{B, A}} \Phi_{N}(h)$.
Probabilistic interpretation:

$$
\mathbb{P}_{\sigma}\left[\tau_{B}<\tau_{A}\right]= \begin{cases}h_{B, A}(\sigma), & \text { if } \sigma \notin A \cup B \\ e_{B, A}(\sigma), & \text { if } \sigma \in A .\end{cases}
$$

Elements of the proof: 1. Potential theory

Equilibrium potentials and equilibrium measures also determine the Green's function:

$$
h_{B, A}(\sigma)=\sum_{\sigma^{\prime} \in B} G_{S_{N} \backslash A}\left(\sigma, \sigma^{\prime}\right) e_{A, B}\left(\sigma^{\prime}\right)
$$

Mean hitting times:

$$
\sum_{\sigma \in B} \mu(\sigma) e_{A, B}(\sigma) \mathbb{E}_{\sigma} \tau_{A}=\sum_{\sigma^{\prime} \in S_{N}} \mu\left(\sigma^{\prime}\right) h_{A, B}\left(\sigma^{\prime}\right)
$$

or

$$
\mathbb{E}_{\nu_{B, A}} \tau_{A}=\frac{1}{\operatorname{cap}(B, A)} \sum_{\sigma^{\prime} \in S_{N}} \mu\left(\sigma^{\prime}\right) h_{B, A}\left(\sigma^{\prime}\right)
$$

where

$$
\nu_{A, B}(\sigma)=\frac{\mu_{\beta, N}(\sigma) e_{B, A}(\sigma)}{\operatorname{cap}(B, A)}
$$

Thus we need
\triangleright precise control of capacities and some
\triangleright rough control of equilibrium potential.

The discusion above explains why it is natural in our formalism to get results for hitting times of the process started in the special measure $\nu_{m^{*}, \mathcal{S}[M]}$.
Of course one would expect that in most cases, the same results hold uniformly pointwise within a suitable set of in itial configurations.

In our case, we can show this to be true using a rather elaborate coupling argument.

All this would be much simpler if we had a reasonably qunatitative version of elliptic Harnack-inequalties for such processes.

Elements of Proof 2: Coarse graining

$I_{\ell}, \ell \in\{1, \ldots, n\}$: partition of the support of the distribution of the random field.
Random partition of the set $\Lambda \equiv\{1, \ldots, N\}$

$$
\Lambda_{k} \equiv\left\{i \in \Lambda: h_{i} \in I_{k}\right\}
$$

Order parameters

$$
\begin{gathered}
\boldsymbol{m}_{k}(\sigma) \equiv \frac{1}{N} \sum_{i \in \Lambda_{k}} \sigma_{i} \\
H_{N}(\sigma)=-N E(\boldsymbol{m}(\sigma))+\sum_{\ell=1}^{n} \sum_{i \in I_{\ell}} \sigma_{i} \tilde{h}_{i}
\end{gathered}
$$

where $\tilde{h}_{i}=h_{i}-\bar{h}_{\ell}, i \in \Lambda_{\ell}$. Note $\left|\tilde{h}_{i}\right| \leq c / n$;

$$
E(\boldsymbol{x}) \equiv \frac{1}{2}\left(\sum_{\ell=1}^{n} \boldsymbol{x}_{\ell}\right)^{2}+\sum_{\ell=1}^{n} \bar{h}_{\ell} \boldsymbol{x}_{\ell}
$$

Equilibrium distribution of the variables $\boldsymbol{m}[\sigma]$

$$
\mu_{\beta, N}(\boldsymbol{m}(\sigma)=\boldsymbol{x}) \equiv \mathcal{Q}_{\beta, N}(\boldsymbol{x})
$$

Elements of Proof 2: Coarse graining

Coarse grained Dirichlet form:

$$
\widehat{\Phi}(g) \equiv \sum_{\boldsymbol{x}, \boldsymbol{x}^{\prime} \in \Gamma_{N}} \mathcal{Q}_{\beta, N}[\omega](\boldsymbol{x}) r_{N}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\left[g(\boldsymbol{x})-g\left(\boldsymbol{x}^{\prime}\right)\right]^{2}
$$

with

$$
r_{N}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \equiv \frac{1}{\mathcal{Q}_{\beta, N}[\omega](\boldsymbol{x})} \sum_{\sigma: m(\sigma)=\boldsymbol{x}} \mu_{\beta, N}[\omega](\sigma) \sum_{\sigma^{\prime}: \boldsymbol{m}(\sigma)=\boldsymbol{x}^{\prime}} p\left(\sigma, \sigma^{\prime}\right) .
$$

Elements of proof: Approximate harmonic functions

The key step in the proof of both upper and lower bounds is to find a function that is almost harmonic in a small neighborhood of the relevant saddle point. This will be given by

$$
h(\sigma)=g(\boldsymbol{m}(\sigma))=f\left(\left(\boldsymbol{v},\left(\boldsymbol{z}^{*}-\boldsymbol{m}(\sigma)\right)\right)\right)
$$

for suitable vector $\boldsymbol{v} \in \mathbb{R}^{n}$ and $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$

$$
f(a)=\sqrt{\frac{\beta N \hat{\boldsymbol{\gamma}}_{1}^{(n)}}{2 \pi}} \int_{-\infty}^{a} e^{-\beta N\left|\hat{\gamma}_{1}\right| u^{2} / 2} d u
$$

This yields a straightforward upper bound for capacities which will turn out to be the correct answer, as $n \uparrow \infty$!

Elements of proof: Lower bounds through flows

Lower bounds use a variational principle from Berman and Konsowa [1990]:
Let $f: \mathcal{E} \rightarrow \mathbb{R}_{+}$be a non-negative unit flow from $A \rightarrow B$, i.e. a function on edges such that
$\triangleright \sum_{a \in A} \sum_{b} f(a, b)=1$
\triangleright for any $a, \sum_{b} f(b, a)=\sum_{b} f(a, b)$ (Kirchhoff's law).
Set $q^{f}(a, b) \equiv \frac{f(a, b)}{\sum_{b} f(a, b)}$, and let the initial distribution for $a \in A$ be
$F(a) \equiv \sum_{b} f(a, b)$.

This defines a Markov chain on paths $\mathcal{X}: A \rightarrow B$, with law \mathbb{P}^{f}.

Elements of proof: Lower bounds through flows

Theorem 2. For any non-negative unit flow, f, one has that, for $\mathcal{X}=$ $\left(a_{0}, a_{1}, \ldots, a_{|\mathcal{X}|}\right)$,

$$
\operatorname{cap}(A, B) \geq \mathbb{E}_{\mathcal{X}}^{f}\left[\sum_{\ell=0}^{|\mathcal{X}|-1} \frac{f\left(a_{\ell}, a_{\ell+1}\right)}{\mu\left(a_{\ell}\right) p\left(a_{\ell}, a_{\ell+1}\right)}\right]^{-1}
$$

Note: the variational principle is sharp, as equality is reached for the harmonic flow

$$
f(a, b)=\frac{1}{\operatorname{cap}(A, B)} \mu(a) p(a, b)\left[h^{*}(b)-h^{*}(a)\right]_{+}
$$

Elements of proof: Construction of flow

Again, care has to be taken in the construction of the flow only near the saddle point.

Two scale construction:
\triangleright Construct mesoscopic flow on variables m from approximate harmonic function used in upper bound. This gives good lower bound in the mesoscopic Dirichlet form.
\triangleright Construct microscopic flow for each mesoscopic path.
\triangleright Use the magnetic field is almost constant and averaging that conductance of most mesoscopic paths give the same values as in mesoscopic Dirichlet function.

This yields upper lower bound that differs from upper bound only by factor $1+$ $O(1 / n)$).

Result for capacity

If $A=\left\{\sigma: \boldsymbol{m}_{N}(\sigma)=\boldsymbol{m}_{1}\right\}, B=\left\{\sigma: \boldsymbol{m}_{N}(\sigma)=\boldsymbol{m}_{2}\right\}$, and \boldsymbol{z}^{*} is the essential saddle point connecting them, then

$$
\operatorname{cap}(A, B)=\mathcal{Q}_{\beta, N}\left(\boldsymbol{z}^{*}\right) \frac{\beta\left|\hat{\gamma}_{1}\right|}{2 \pi N}\left(\prod_{\ell=1}^{n} \sqrt{r_{\ell}}\right)\left(\frac{\pi N}{2 \beta}\right)^{n / 2} \frac{1}{\sqrt{\prod_{j=1}^{n}\left|\hat{\gamma}_{j}\right|}}(1+O(\epsilon))
$$

This can be re-written as:
Theorem 3.

$$
\begin{aligned}
& Z_{\beta, N} \operatorname{cap}(A, B) \\
& =\frac{\beta\left|\hat{\gamma}_{1}^{(n)}\right|}{2 \pi N} \frac{\exp \left\{\beta N\left(-\frac{1}{2}\left(z^{*}\right)^{2}+\frac{1}{\beta N} \sum_{i \in \Lambda} \ln \cosh \left(\beta\left(z^{*}+h_{i}\right)\right)\right)\right\}(1+o(\epsilon))}{\sqrt{\beta \mathbb{E}_{h}\left(1-\tanh ^{2}\left(\beta\left(z^{*}+h\right)\right)\right)-1}} .
\end{aligned}
$$

Elements of proof: control of harmonic function

Final step in control of mean hitting times:
Compute

$$
\sum_{\sigma} \mu_{\beta, N}(\sigma) h_{A, B}(\sigma) \sim \mathcal{Q}_{\beta, N}\left(\left[\rho+m_{1}, m_{1}-\rho\right]\right)
$$

This requires to show that: $h_{A, B}(\sigma) \sim 1$, if σ near A, and
 $h_{A, B}(\sigma) \leq \exp \left\{-\mathbb{N}\left(F_{\beta, N}\left(z^{*}\right)-F_{\beta, N}\left(m_{N}(\sigma)\right)-\delta\right)\right\}$ if $F_{\beta, N}\left(m_{N}(\sigma) \leq F_{b, N}\left(m_{1}\right)\right.$.

Can be done using super-harmonic barrier function.

Conclusions

Nice features:

\triangleright We have obtained sharp estimates on exit times in a model without symmetry when entropy is relevant.
\triangleright Avoided use of renewal estimates for harmonic functions.

Future challenges:

\triangleright Control of small eigenvalues!
\triangleright Beyond mean field models: Kac model should be next candidate.
\triangleright Full scale Glauber or Kawasaki dynamics for lattice Ising!
Work on all this is in progress with Alessandra Bianchi, Frank den Hollander, Dima loffe, and Cristian Spitoni

Thank you for your attention!

