## Section 2

## Examples of Bayesian Networks

## Infected Milk

Milk from a cow may be infected. To detect whether or not the milk is infected, you can apply a test which may either give a positive or a negative test result. The test is not perfect: It may give false positives as well as false negatives.

## Infected Milk

Milk from a cow may be infected. To detect whether or not the milk is infected, you can apply a test which may either give a positive or a negative test result. The test is not perfect: It may give false positives as well as false negatives.


## 7-day model I

Infections develop over time:


## 7-day model I

Infections develop over time:


Assumption:

- The Markov property: If I know the present, then the past has no influence on the future, i.e.

$$
\operatorname{lnf}_{i-1} \text { is d-separated from } \operatorname{Inf}_{i+1} \text { given } \operatorname{Inf}_{i} .
$$

But what if yesterday's Inf-state has an impact on tomorrow's Inf-state?

## 7-day model II

Yesterday's Inf-state has an impact on tomorrow's Inf-state:


## 7-day model III

The test-failure is dependent on whether or not the test failed yesterday:


## A simplified poker game

The game consists of:
> Two players.

- Three cards to each player.
- Two rounds of changing cards (max two cards in the second round)

What kind of hand does my opponent have?

## A simplified poker game

The game consists of:
> Two players.

- Three cards to each player.
- Two rounds of changing cards (max two cards in the second round)

What kind of hand does my opponent have?
Hypothesis variable:

$$
\mathrm{OH}-\{n o, 1 \mathrm{a}, 2 \mathrm{v}, \mathrm{fl}, \mathrm{st}, 3 \mathrm{v}, \mathrm{sf}\}
$$

Information variables:

$$
\text { FC }-\{0,1,2,3\} \quad \text { and } \quad S C-\{0,1,2\}
$$

## A simplified poker game

The game consists of:
> Two players.

- Three cards to each player.
- Two rounds of changing cards (max two cards in the second round)


## What kind of hand does my opponent have?

Hypothesis variable:

$$
\mathrm{OH}-\{n o, 1 \mathrm{a}, 2 \mathrm{v}, \mathrm{fl}, \mathrm{st}, 3 \mathrm{v}, \mathrm{sf}\}
$$

Information variables:

$$
F C-\{0,1,2,3\} \quad \text { and } \quad S C-\{0,1,2\}
$$



But how do we find:
$P(\mathrm{FC}), P(\mathrm{SC} \mid \mathrm{FC})$ and $P(\mathrm{OH} \mid \mathrm{SC}, \mathrm{FC}) ? ?$

## A simplified poker game: Mediating variables

Introduce mediating variables:

- The opponent's initial hand, $\mathrm{OH}_{0}$.
- The opponent's hand after the first change of cards, $\mathrm{OH}_{1}$.


I am afraid that I do not have time to talk about how to estimate parameters.

