Probabilistic Graphical Models for Diagnosis and Decision Making

EURANDOM, Eindhoven, August 2009

Section 0

Background

Probabilistic Graphical Models for Diagnosis and Decision Making - p. 1/1

References

I will not give references of credit. Below some references for study.

- Judea Pearl, *Probabilistic Reasoning in Intelligent Systems*, Morgan Kaufmann Publishers, 1988.
- Steffen L. Lauritzen, *Graphical Models*, Oxford University Press, 1996.
- Enrique Castillo, José M. Gutiérrez, and Ali S. Hadi, *Expert Systems and Probabilistic Network Models*, Springer-Verlag, 1997.
- Robert G. Cowell, A. Philip Dawid, and Steffen L. Lauritzen, *Probabilistic Networks* and *Expert Systems*, Springer-Verlag, 1999.
- Kevin B. Korb and Ann E. Nicholson, *Bayesian Artificial Intelligence*, Chapman & Hall 2004.
- Richard E. Neapolitan, *Learning Bayesian Networks*, Pearson Prentice Hall, 2004.
- Finn V. Jensen and Thomas D. Nielsen *Bayesian Networks and Decision Graphs*, 2nd edition, Springer-Verlag, 2007.

Belief updating

A very basic task in artificial intelligence is *belief updating*. In the framework of probability theory it says:

- Hypothesis variable A with prior distribution P(A).
- Case specific knowledge: $e = \{B = \beta, \dots, C = \gamma\}$
- What is P(A|e)?

In AI, the approach to probabilities is that of subjective probabilities.

Conditional probabilities

Every probability is conditioned on a <u>context</u>. For example, if we throw a dice:

" $P(\{six\}) = \frac{1}{6}$ " = " $P(six|symmetric dice) = \frac{1}{6}$ ".

In general, if \mathcal{A} and \mathcal{B} are events and $P(\mathcal{A}|\mathcal{B}) = x$, then:

"In the context of \mathcal{B} we have that $P(\mathcal{A}) = x$ "

<u>Note</u>: It is <u>not</u> "whenever \mathcal{B} we have $P(\mathcal{A}) = x$ ", but rather: if \mathcal{B} , and everything else known is irrelevant to \mathcal{A} , then $P(\mathcal{A}) = x$.

Basic probability calculus

Let \mathcal{A} , \mathcal{B} and \mathcal{C} be events.

<u>The fundamental rule:</u> $P(\mathcal{A} \cap \mathcal{B}) = P(\mathcal{A}|\mathcal{B})P(\mathcal{B}).$

<u>The conditioned fundamental rule:</u> $P(\mathcal{A} \cap \mathcal{B}|\mathcal{C}) = P(\mathcal{A}|\mathcal{B} \cap \mathcal{C})P(\mathcal{B}|\mathcal{C}).$

Basic probability calculus

Let \mathcal{A} , \mathcal{B} and \mathcal{C} be events.

<u>The fundamental rule:</u> $P(\mathcal{A} \cap \mathcal{B}) = P(\mathcal{A}|\mathcal{B})P(\mathcal{B}).$

<u>The conditioned fundamental rule:</u> $P(\mathcal{A} \cap \mathcal{B} | \mathcal{C}) = P(\mathcal{A} | \mathcal{B} \cap \mathcal{C}) P(\mathcal{B} | \mathcal{C}).$

Conditional independence: $P(\mathcal{A}|\mathcal{B} \cap \mathcal{C}) = P(\mathcal{A}|\mathcal{C})$

In that case $P(\mathcal{A} \cap \mathcal{B} | \mathcal{C}) = P(\mathcal{A} | \mathcal{C}) \cdot P(\mathcal{B} | \mathcal{C}).$

Probability calculus for variables

A is a variable with states a_1, \ldots, a_n ; B is a variable with states b_1, \ldots, b_m .

 $P(A) = (x_1, \dots, x_n)$ is a probability distribution ; $x_i \ge 0$; $\sum_{i=1}^n x_i = 1$.

P(A|B) is a $n \times m$ table containing the numbers $P(a_i|b_j)$.

Note: $\sum_{A} P(A b_j) = 1$ for all b_j .

			B	
		b_1	b_2	b_3
Δ	a_1	0.4	0.3	0.6
А	a_2	0.6	0.7	0.4

P(A, B) is a $n \times m$ table too; $\sum_{A, B} P(A, B) = 1$.

			B	
_		b_1	b_2	b_3
Δ	a_1	0.16	0.12	0.12
Л	a_2	0.24	0.28	0.08

The fundamental rule for variables

 $P(A|B)P(B): n \times m$ multiplications $P(a_i|b_j)P(b_j) = P(a_i, b_j)$

	b_1	b_2	b_3	- h1	ha	h_0			b_1	b_2	b_3	
a_1	0.4	0.3	0.6		0.4	03 0.0	=	a_1	0.16	0.12	0.12	
a_2	0.6	0.7	0.4	0.4	0.4	0.2		a_2	0.24	0.28	0.08	
	$P(\mathbf{z})$	4 <i>B</i>)			$P(\mathbf{B})$				P(A, B)			

A potential ϕ is a real-valued non-negative function over a set of variables, dom(ϕ).

A table of probabilities is a probability potential.

A <u>potential</u> ϕ is a real-valued non-negative function over a set of variables, <u>dom(ϕ)</u>. A table of probabilities is a probability potential.

	b_1	b_2		b_1	b_2				b_1	b_2	
a_1	1	3	 c_1	6	7	=		a_1	(_,_)	(_,_)	
a_2	4	5	c_2	8	9			a_2	$(_,_)$	$(_, _)$	
ϕ_1	(A, I)	B)	ϕ_2	(C, I)	3)		$\phi_3(A,$	B, C)	$\phi = \phi_1(A)$	$, B) \cdot \phi_2(0)$	C, B)

A <u>potential</u> ϕ is a real-valued non-negative function over a set of variables, <u>dom(ϕ)</u>. A table of probabilities is a probability potential.

	b_1	b_2		b_1	b_2				b_1	b_2	
a_1	1	3	 c_1	6	7	=		a_1	$(\mathbf{6_{c_1}}, \mathbf{8_{c_2}})$	$(_, _)$	
a_2	4	5	c_2	8	9			a_2	$(_,_)$	$(_,_)$	
ϕ_1	(A, I)	B)	ϕ_2	$_2(C, I)$	3)		$\phi_3($	A, B, c	$C) = \phi_1(A, A)$	$(\mathbf{B}) \cdot \phi_2(\mathbf{C})$,B)

A <u>potential</u> ϕ is a real-valued non-negative function over a set of variables, <u>dom(ϕ)</u>. A table of probabilities is a probability potential.

	b_1	b_2		b_{1}	L ł	\mathbf{P}_2			b_1	b_2
a_1	1	3	С	1 6		7 =	=	a_1	$(6_{\mathbf{c_1}}, 8_{\mathbf{c_2}})$	$(21_{c_1}, 27_{c_2})$
a_2	4	5	С	2 8		9		a_2	$(_,_)$	$(_,_)$
ϕ_1	$_1(A, I$	B)		$\phi_2(\mathcal{O}$	(,B)		($\phi_3(A,$	$(B,C) = \phi_1(A)$	$(A,B) \cdot \phi_2(C,B)$

A <u>potential</u> ϕ is a real-valued non-negative function over a set of variables, <u>dom(ϕ)</u>. A table of probabilities is a probability potential.

	b_1	b_2			b_1	b_2			b_1	b_2
a_1	1	3		c_1	6	7	=	a_1	$(6_{\textbf{c_1}}, 8_{\textbf{c_2}})$	$(21_{c_1}, 27_{c_2})$
a_2	4	5		c_2	8	9		a_2	$(24_{\textbf{c_1}}, 32_{\textbf{c_2}})$	$(_,_)$
ϕ_{1}	$_1(A, I$	3)		ϕ_2	$_2(C, I)$	3)		$\phi_3(A$	$(B,C) = \phi_1(A)$	$, B) \cdot \phi_2(C, B)$

A <u>potential</u> ϕ is a real-valued non-negative function over a set of variables, <u>dom(ϕ)</u>. A table of probabilities is a probability potential.

	b_1	b_2			b_1	b_2			b_1	b_2
a_1	1	3		c_1	6	7	=	a_1	$(6_{c_1}, 8_{c_2})$	$(21_{\boldsymbol{c_1}},27_{\boldsymbol{c_2}})$
a_2	4	5		c_2	8	9		a_2	$(24_{\boldsymbol{c_1}}, 32_{\boldsymbol{c_2}})$	$(35_{\textcolor{red}{c_1}}, 45_{\textcolor{red}{c_2}})$
ϕ_{1}	$\mathbf{I}(A, \mathbf{I})$	3)		ϕ_2	$_2(C, I)$	3)		$\phi_3(A$	$(B,C) = \phi_1(A)$	$(A,B)\cdot\phi_2(C,B)$

Marginalization of potentials

$$\sum_{B} \left(\begin{array}{c|c} b_{1} & b_{2} \\ \hline a_{1} & 2 & 3 \\ a_{2} & 1 & 4 \end{array} \right) = \begin{array}{c|c} a_{1} & 5 \\ a_{2} & 5 \end{array}$$
$$\sum_{A} \left(\begin{array}{c|c} b_{1} & b_{2} \\ \hline a_{1} & 2 & 3 \\ a_{2} & 1 & 4 \end{array} \right) = \begin{array}{c|c} b_{1} & 3 \\ b_{2} & 5 \end{array}$$

The algebra of potentials

- (i) dom $(\phi_1\phi_2) = dom\phi_1 \cup dom\phi_2$.
- (ii) The commutative law: $\phi_1\phi_2=\phi_2\phi_1$.
- (iii) The associative law: $(\phi_1\phi_2)\phi_3 = \phi_1(\phi_2\phi_3)$.
- (iv) Existence of unit: The number 1 is a potential over the empty domain, and $1 \cdot \phi = \phi$ for all potentials ϕ . The unit potential is denoted 1.
- $\sum_{A} \phi$ is a potential over dom $(\phi) \setminus \{A\}$.
 - (v) $\sum_{A} \sum_{B} \phi = \sum_{B} \sum_{A} \phi.$
- (vi) The unit potential property: $\sum_{A} P(A \mid V) = \mathbf{1}$.
- (vii) The distributive law: If $A \notin \text{dom}(\phi_1)$, then $\sum_A \phi_1 \phi_2 = \phi_1 \sum_A \phi_2$.

A simple example of belief updating

The universe $\mathcal{U} = \{A, B, C\}$, evidence : $B = \beta$

We have access to P(A, B, C).

A simple example of belief updating

The universe $\mathcal{U} = \{A, B, C\}$, evidence : $B = \beta$

We have access to P(A, B, C).

Then

$$P(A) = \sum_{B,C} P(A, B, C).$$

We have

$$P(A, B = \beta) = \sum_{C} P(A, B = \beta, C),$$

and

$$P(A|B = \beta) = \frac{P(A, B = \beta)}{\sum_{A} P(A, B = \beta).}$$

A simple example of belief updating

The universe $\mathcal{U} = \{A, B, C\}$, evidence : $B = \beta$

We have access to P(A, B, C).

Then

$$P(A) = \sum_{B,C} P(A, B, C).$$

We have

$$P(A, B = \beta) = \sum_{C} P(A, B = \beta, C),$$

and

$$P(A|B = \beta) = \frac{P(A, B = \beta)}{\sum_{A} P(A, B = \beta).}$$

With access to the joint distribution over \mathcal{U} , belief updating is mathematically a rather simple task. However, it is intractable with large \mathcal{U} .