Probabilistic Graphical Models for Diagnosis and Decision Making

EURANDOM, Eindhoven, August 2009

Section 0
Background

References

I will not give references of credit. Below some references for study.

- Judea Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann Publishers, 1988.
- Steffen L. Lauritzen, Graphical Models, Oxford University Press, 1996.
- Enrique Castillo, José M. Gutiérrez, and Ali S. Hadi, Expert Systems and Probabilistic Network Models, Springer-Verlag, 1997.
- Robert G. Cowell, A. Philip Dawid, and Steffen L. Lauritzen, Probabilistic Networks and Expert Systems, Springer-Verlag, 1999.
- Kevin B. Korb and Ann E. Nicholson, Bayesian Artificial Intelligence, Chapman \& Hall 2004.
- Richard E. Neapolitan, Learning Bayesian Networks, Pearson Prentice Hall, 2004.
- Finn V. Jensen and Thomas D. Nielsen Bayesian Networks and Decision Graphs, 2nd edition, Springer-Verlag, 2007.

Belief updating

A very basic task in artificial intelligence is belief updating. In the framework of probability theory it says:

- Hypothesis variable A with prior distribution $P(A)$.
- Case specific knowledge: $e=\{B=\beta, \ldots, C=\gamma\}$
- What is $P(A \mid e)$?

In AI, the approach to probabilities is that of subjective probabilities.

Conditional probabilities

Every probability is conditioned on a context. For example, if we throw a dice:

$$
" P(\{\text { six }\})=\frac{1}{6} "=" P(\text { six } \mid \text { symmetric dice })=\frac{1}{6} " .
$$

In general, if \mathcal{A} and \mathcal{B} are events and $P(\mathcal{A} \mid \mathcal{B})=x$, then:
"In the context of \mathcal{B} we have that $P(\mathcal{A})=x$ "
Note: It is not "whenever \mathcal{B} we have $P(\mathcal{A})=x$ ", but rather: if \mathcal{B}, and everything else known is irrelevant to \mathcal{A}, then $P(\mathcal{A})=x$.

Basic probability calculus

Let \mathcal{A}, \mathcal{B} and \mathcal{C} be events.
The fundamental rule: $P(\mathcal{A} \cap \mathcal{B})=P(\mathcal{A} \mid \mathcal{B}) P(\mathcal{B})$.
The conditioned fundamental rule: $P(\mathcal{A} \cap \mathcal{B} \mid \mathcal{C})=P(\mathcal{A} \mid \mathcal{B} \cap \mathcal{C}) P(\mathcal{B} \mid \mathcal{C})$.

Basic probability calculus

Let \mathcal{A}, \mathcal{B} and \mathcal{C} be events.
The fundamental rule: $P(\mathcal{A} \cap \mathcal{B})=P(\mathcal{A} \mid \mathcal{B}) P(\mathcal{B})$.
The conditioned fundamental rule: $P(\mathcal{A} \cap \mathcal{B} \mid \mathcal{C})=P(\mathcal{A} \mid \mathcal{B} \cap \mathcal{C}) P(\mathcal{B} \mid \mathcal{C})$.

Conditional independence: $P(\mathcal{A} \mid \mathcal{B} \cap \mathcal{C})=P(\mathcal{A} \mid \mathcal{C})$
In that case $P(\mathcal{A} \cap \mathcal{B} \mid \mathcal{C})=P(\mathcal{A} \mid \mathcal{C}) \cdot P(\mathcal{B} \mid \mathcal{C})$.

Probability calculus for variables

A is a variable with states $a_{1}, \ldots, a_{n} ; B$ is a variable with states b_{1}, \ldots, b_{m}.
$P(A)=\left(x_{1}, \ldots, x_{n}\right)$ is a probability distribution $; x_{i} \geq 0 ; \sum_{i=1}^{n} x_{i}=1$.
$P(A \mid B)$ is a $n \times m$ table containing the numbers $P\left(a_{i} \mid b_{j}\right)$.

$$
\text { Note: } \sum_{A} P\left(A \mid b_{j}\right)=1 \text { for all } b_{j} \text {. }
$$

$P(A, B)$ is a $n \times m$ table too; $\sum_{A, B} P(A, B)=1$.

		B		
		b_{1}	b_{2}	b_{3}
A	a_{1}	0.16	0.12	0.12
	a_{2}	0.24	0.28	0.08

The fundamental rule for variables

$P(A \mid B) P(B): n \times m$ multiplications $P\left(a_{i} \mid b_{j}\right) P\left(b_{j}\right)=P\left(a_{i}, b_{j}\right)$

Notation

A potential ϕ is a real-valued non-negative function over a set of variables, $\underline{\operatorname{dom}(\phi)}$.
A table of probabilities is a probability potential.

Notation

A potential ϕ is a real-valued non-negative function over a set of variables, $\underline{\operatorname{dom}(\phi)}$.
A table of probabilities is a probability potential.
Multiplication

	b_{1}	b_{2}
a_{1}	1	3
a_{2}	4	5

$$
\phi_{1}(A, B)
$$

	b_{1}	b_{2}
c_{1}	6	7
c_{2}	8	9

$\phi_{2}(C, B)$

$\phi_{3}(A, B, C)=\phi_{1}(A, B) \cdot \phi_{2}(C, B)$

Notation

A potential ϕ is a real-valued non-negative function over a set of variables, $\underline{\operatorname{dom}(\phi)}$.
A table of probabilities is a probability potential.
Multiplication

	b_{1}	b_{2}
a_{1}	1	3
a_{2}	4	5

$$
\phi_{1}(A, B)
$$

	b_{1}	b_{2}
c_{1}	6	7
c_{2}	8	9

$\phi_{2}(C, B)$

$\phi_{3}(A, B, C)=\phi_{1}(A, B) \cdot \phi_{2}(C, B)$

Notation

A potential ϕ is a real-valued non-negative function over a set of variables, $\underline{\operatorname{dom}(\phi)}$.
A table of probabilities is a probability potential.
Multiplication

	b_{1}	b_{2}
a_{1}	1	3
a_{2}	4	5

	b_{1}	b_{2}
c_{1}	6	7
c_{2}	8	9

$\phi_{2}(C, B)$

	b_{1}	b_{2}
a_{1}	$\left(6_{c_{1}}, 8_{c_{2}}\right)$	$\left(21_{c_{1}}, 27_{c_{2}}\right)$
a_{2}	$\left(_,-\right)$	$(-,-)$

$\phi_{3}(A, B, C)=\phi_{1}(A, B) \cdot \phi_{2}(C, B)$

Notation

A potential ϕ is a real-valued non-negative function over a set of variables, $\underline{\operatorname{dom}(\phi)}$.
A table of probabilities is a probability potential.
Multiplication

	b_{1}	b_{2}
a_{1}	1	3
a_{2}	4	5

$\phi_{1}(A, B)$

$\phi_{2}(C, B)$

	b_{1}	b_{2}
a_{1}	$\left(6_{c_{1}}, 8_{c_{2}}\right)$	$\left(21_{c_{1}}, 27_{c_{2}}\right)$
a_{2}	$\left(24_{c_{1}}, 32_{c_{2}}\right)$	$(,--)$

$\phi_{3}(A, B, C)=\phi_{1}(A, B) \cdot \phi_{2}(C, B)$

Notation

A potential ϕ is a real-valued non-negative function over a set of variables, $\underline{\operatorname{dom}(\phi)}$.
A table of probabilities is a probability potential.
Multiplication

	b_{1}	b_{2}
a_{1}	1	3
a_{2}	4	5

$\phi_{1}(A, B)$

	b_{1}	b_{2}
c_{1}	6	7
c_{2}	8	9

$\phi_{2}(C, B)$

	b_{1}	b_{2}
a_{1}	$\left(6_{c_{1}}, 8_{c_{2}}\right)$	$\left(21_{c_{1}}, 27_{c_{2}}\right)$
a_{2}	$\left(24_{c_{1}}, 32_{c_{2}}\right)$	$\left(35_{c_{1}}, 45_{c_{2}}\right)$

$\phi_{3}(A, B, C)=\phi_{1}(A, B) \cdot \phi_{2}(C, B)$

Marginalization of potentials

$$
\begin{aligned}
& \sum_{B}\left(\begin{array}{c|cc}
& b_{1} & b_{2} \\
\hline a_{1} & 2 & 3 \\
a_{2} & 1 & 4
\end{array}\right)=\begin{array}{l|l}
a_{1} & 5 \\
a_{2} & 5
\end{array} \\
& \sum_{A}\left(\begin{array}{c|cc}
& b_{1} & b_{2} \\
\hline a_{1} & 2 & 3 \\
a_{2} & 1 & 4
\end{array}\right)=\begin{array}{l|l}
b_{1} & 3 \\
b_{2} & 7
\end{array}
\end{aligned}
$$

The algebra of potentials

(i) $\operatorname{dom}\left(\phi_{1} \phi_{2}\right)=\operatorname{dom} \phi_{1} \cup \operatorname{dom} \phi_{2}$.
(ii) The commutative law: $\phi_{1} \phi_{2}=\phi_{2} \phi_{1}$.
(iii) The associative law: $\left(\phi_{1} \phi_{2}\right) \phi_{3}=\phi_{1}\left(\phi_{2} \phi_{3}\right)$.
(iv) Existence of unit: The number 1 is a potential over the empty domain, and $1 \cdot \phi=\phi$ for all potentials ϕ. The unit potential is denoted 1 .
$\sum_{A} \phi$ is a potential over $\operatorname{dom}(\phi) \backslash\{A\}$.
(v) $\sum_{A} \sum_{B} \phi=\sum_{B} \sum_{A} \phi$.
(vi) The unit potential property: $\sum_{A} P(A \mid V)=1$.
(vii) The distributive law: If $A \notin \operatorname{dom}\left(\phi_{1}\right)$, then $\sum_{A} \phi_{1} \phi_{2}=\phi_{1} \sum_{A} \phi_{2}$.

A simple example of belief updating

The universe $\mathcal{U}=\{A, B, C\}$, evidence : $B=\beta$
We have access to $P(A, B, C)$.

A simple example of belief updating

The universe $\mathcal{U}=\{A, B, C\}$, evidence : $B=\beta$
We have access to $P(A, B, C)$.
Then

$$
P(A)=\sum_{B, C} P(A, B, C) .
$$

We have

$$
P(A, B=\beta)=\sum_{C} P(A, B=\beta, C),
$$

and

$$
P(A \mid B=\beta)=\frac{P(A, B=\beta)}{\sum_{A} P(A, B=\beta)}
$$

A simple example of belief updating

The universe $\mathcal{U}=\{A, B, C\}$, evidence : $B=\beta$
We have access to $P(A, B, C)$.
Then

$$
P(A)=\sum_{B, C} P(A, B, C) .
$$

We have

$$
P(A, B=\beta)=\sum_{C} P(A, B=\beta, C),
$$

and

$$
P(A \mid B=\beta)=\frac{P(A, B=\beta)}{\sum_{A} P(A, B=\beta)}
$$

With access to the joint distribution over \mathcal{U}, belief updating is mathematically a rather simple task. However, it is intractable with large \mathcal{U}.

