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Belief updating

A very basic task in artificial intelligence is belief updating. In the framework of probability
theory it says:

• Hypothesis variable A with prior distribution P (A).

• Case specific knowledge: e = {B = β, . . . , C = γ}

• What is P (A|e)?

In AI, the approach to probabilities is that of subjective probabilities.
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Conditional probabilities

Every probability is conditioned on a context. For example, if we throw a dice:

“P ({six}) = 1

6
” = “P (six|symmetric dice) = 1

6
”.

In general, if A and B are events and P (A|B) = x, then:

“In the context of B we have that P (A) = x”

Note: It is not “whenever B we have P (A) = x”, but rather: if B, and everything else known
is irrelevant to A, then P (A) = x.
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Basic probability calculus

Let A, B and C be events.

The fundamental rule: P (A∩ B) = P (A|B)P (B).

The conditioned fundamental rule: P (A ∩ B|C) = P (A|B ∩ C)P (B|C).
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Basic probability calculus

Let A, B and C be events.

The fundamental rule: P (A∩ B) = P (A|B)P (B).

The conditioned fundamental rule: P (A ∩ B|C) = P (A|B ∩ C)P (B|C).

Conditional independence: P (A|B ∩ C) = P (A|C)

In that case P (A∩ B|C) = P (A|C) · P (B|C).
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Probability calculus for variables

A is a variable with states a1, . . . , an; B is a variable with states b1, . . . , bm.

P (A) = (x1, . . . , xn) is a probability distribution ; xi ≥ 0;
Pn

i=1
xi = 1.

P (A|B) is a n × m table containing the numbers P (ai|bj).

Note:
P

A P (A|bj) = 1 for all bj .

B

b1 b2 b3

A
a1 0.4 0.3 0.6

a2 0.6 0.7 0.4

P (A, B) is a n × m table too;
P

A,B P (A, B) = 1.

B

b1 b2 b3

A
a1 0.16 0.12 0.12

a2 0.24 0.28 0.08
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The fundamental rule for variables

P (A|B)P (B): n × m multiplications P (ai|bj)P (bj) = P (ai, bj)

b1 b2 b3

a1 0.4 0.3 0.6

a2 0.6 0.7 0.4

b1 b2 b3

0.4 0.4 0.2
=

b1 b2 b3

a1 0.16 0.12 0.12

a2 0.24 0.28 0.08

P (A|B) P (B) P (A, B)
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Notation

A potential φ is a real-valued non-negative function over a set of variables, dom(φ).

A table of probabilities is a probability potential.
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Notation

A potential φ is a real-valued non-negative function over a set of variables, dom(φ).

A table of probabilities is a probability potential.

Multiplication

b1 b2

a1 1 3

a2 4 5

b1 b2

c1 6 7

c2 8 9

=
b1 b2

a1 (_, _) (_, _)

a2 (_, _) (_, _)

φ1(A, B) φ2(C, B) φ3(A, B, C) = φ1(A, B) · φ2(C, B)
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Notation

A potential φ is a real-valued non-negative function over a set of variables, dom(φ).

A table of probabilities is a probability potential.

Multiplication

b1 b2

a1 1 3

a2 4 5

b1 b2

c1 6 7

c2 8 9

=
b1 b2

a1 (6c1 , 8c2) (_, _)

a2 (_, _) (_, _)

φ1(A, B) φ2(C, B) φ3(A, B, C) = φ1(A, B) · φ2(C, B)
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Notation

A potential φ is a real-valued non-negative function over a set of variables, dom(φ).

A table of probabilities is a probability potential.

Multiplication

b1 b2

a1 1 3

a2 4 5

b1 b2

c1 6 7

c2 8 9

=
b1 b2

a1 (6c1 , 8c2 ) (21c1 , 27c2 )

a2 (_, _) (_, _)

φ1(A, B) φ2(C, B) φ3(A, B, C) = φ1(A, B) · φ2(C, B)
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Notation

A potential φ is a real-valued non-negative function over a set of variables, dom(φ).

A table of probabilities is a probability potential.

Multiplication

b1 b2

a1 1 3

a2 4 5

b1 b2

c1 6 7

c2 8 9

=
b1 b2

a1 (6c1 , 8c2 ) (21c1 , 27c2 )

a2 (24c1 , 32c2 ) (_, _)

φ1(A, B) φ2(C, B) φ3(A, B, C) = φ1(A, B) · φ2(C, B)
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Notation

A potential φ is a real-valued non-negative function over a set of variables, dom(φ).

A table of probabilities is a probability potential.

Multiplication

b1 b2

a1 1 3

a2 4 5

b1 b2

c1 6 7

c2 8 9

=
b1 b2

a1 (6c1 , 8c2 ) (21c1 , 27c2 )

a2 (24c1 , 32c2 ) (35c1 , 45c2 )

φ1(A, B) φ2(C, B) φ3(A, B, C) = φ1(A, B) · φ2(C, B)
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Marginalization of potentials

X

B

0

B

@

b1 b2

a1 2 3

a2 1 4

1

C

A
=

a1 5

a2 5

X

A

0

B

@

b1 b2

a1 2 3

a2 1 4

1

C

A
=

b1 3

b2 7
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The algebra of potentials

(i) dom(φ1φ2) =domφ1 ∪ domφ2.

(ii) The commutative law: φ1φ2 = φ2φ1.

(iii) The associative law: (φ1φ2)φ3 = φ1(φ2φ3).

(iv) Existence of unit: The number 1 is a potential over the empty domain, and 1 · φ = φ for
all potentials φ. The unit potential is denoted 1.

P

A φ is a potential over dom(φ) \ {A}.

(v)
P

A

P

B φ =
P

B

P

A φ.

(vi) The unit potential property:
P

A P (A |V ) = 1.

(vii) The distributive law: If A /∈ dom(φ1), then
P

A φ1φ2 = φ1

P

A φ2.
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A simple example of belief updating

The universe U = {A, B, C}, evidence : B = β

We have access to P (A, B, C).

Probabilistic Graphical Models for Diagnosis and Decision Making – p. 11/11



A simple example of belief updating

The universe U = {A, B, C}, evidence : B = β

We have access to P (A, B, C).

Then

P (A) =
X

B,C

P (A, B, C).

We have

P (A, B = β) =
X

C

P (A, B = β, C),

and

P (A|B = β) =
P (A, B = β)

P

A P (A, B = β).
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A simple example of belief updating

The universe U = {A, B, C}, evidence : B = β

We have access to P (A, B, C).

Then

P (A) =
X

B,C

P (A, B, C).

We have

P (A, B = β) =
X

C

P (A, B = β, C),

and

P (A|B = β) =
P (A, B = β)

P

A P (A, B = β).

With access to the joint distribution over U , belief updating is mathematically a rather simple
task. However, it is intractable with large U .
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