Section 1 Causal and Bayesian Networks

The car start problem (causally)

In the morning, my car will not start. I can hear the starter turn, but nothing happens. The most probable causes are that the fuel has been stolen over night or that the spark plugs are dirty. I look at the fuel meter. It shows *half full*, so I decide to clean the spark plugs.

Events:

- Fuel?{y,n}
- Clean spark plugs?{y,n}
- Start?{y,n}
- Fuel meter{full, $\frac{1}{2}$, empty}.

The car start problem (causally)

In the morning, my car will not start. I can hear the starter turn, but nothing happens. The most probable causes are that the fuel has been stolen over night or that the spark plugs are dirty. I look at the fuel meter. It shows *half full*, so I decide to clean the spark plugs.

Events:

- Fuel?{y,n}
- Clean spark plugs?{y,n}
- Start?{y,n}
- Fuel meter{full, $\frac{1}{2}$, empty}.

Causal relations:

When I enter the car I have some prior belief on the various events but then start=n.

The reasoning (explaining away)

The reasoning (explaining away)

The reasoning (explaining away)

Causal networks

A causal network is a directed acyclic graph:

- The nodes are <u>variables</u> with a finite set of <u>states</u> that are mutually exclusive and exhaustive:
 - For example {y,n}, {red, blue, green}, {0,1,2,3,42}.
- The <u>links</u> represent cause effect relations.

For example:

All variables are in exactly one state, but we may not know which one.

Reasoning under uncertainty 1

- Information on flooding may change the belief of *Rainfall*.
- If we know that the water level is high, then information on flooding will not change the belief of *Rainfall*.

Reasoning under uncertainty 2

- Knowledge of a person's hair length may change the belief of the stature.
- If we know that it is a women, then information of hair length has no impact on the belief of her stature.

Reasoning under uncertainty 3

- Salmonella has nor impact on Flue?
- If a person is Pale, then knowledge of *Salmonella* may change the belief on *Flue* (explaining away).

Rules of d-separation

Note: These are general rules about reasoning under uncertainty on causal models.

Transmission of evidence

Can knowledge of A have an impact on our knowledge of G?

Transmission of evidence

Can knowledge of A have an impact on our knowledge of G? yes!

Quantification of causal networks

The strength of the link is represented by probabilities:

						Religion			
						р	С	m	
$P(0 \mathbf{p})$	$P(0 \mathbf{c})$	$P(0 \mathbf{m})$		_	0	0.15	0.05	0.05	
P(1 p)	P(1 c)	P(1 m)	Υ.	hildren	1	0.2	0.1	0.1	
P(2 p)	P(2 c)	P(2 m)	\Rightarrow		2	0.4	0.2	0.1	
$P(3 \mathbf{p})$	$P(3 \mathbf{c})$	P(3 m)		#C	3	0.2	0.4	0.1	
$P(\geq 4 p)$	$P(\geq 4 c)$	$P(\geq 4 m)$			≥ 4	0.05	0.25	0.35	
					P(#Children Religion)			

Several parents

Bayesian networks

A causal network without directed cycles:

For each variable A with parents B_1, \ldots, B_n there is a conditional probability table $P(A|B_1, \ldots, B_n)$.

Note: Nodes without parents receive a prior distribution.

Bayesian networks as a tool for reasoning

Bayesian networks as a tool for reasoning

Consider <u>evidence</u> $e_1 = ($ Start=n) and find:

- $P(\text{Spark Plugs}|e_1) = ??$
- $P(\mathsf{Fuel}|e_1) = ??$
- $P(\text{Fuel Meter}|e_1) = ??$

Bayesian networks as a tool for reasoning

Consider <u>evidence</u> $e_1 = ($ Start=n) and find:

- $P(\text{Spark Plugs}|e_1) = ??$
- $P(\mathsf{Fuel}|e_1) = ??$
- $P(\text{Fuel Meter}|e_1) = ??$

If we also have evidence $e_2 = (Fuel Meter = \frac{1}{2})$ what is:

- $P(\text{Spark Plugs}|e_1, e_2) = ??$
- $P(\mathsf{Fuel}|e_1, e_2) = ??$

Bayesian belief updating

Find $P(\boldsymbol{B}|\boldsymbol{a},\boldsymbol{f},\boldsymbol{g},\boldsymbol{h})$

Bayesian belief updating

Find P(B|a, f, g, h)

We can if we have access to P(a, B, C, D, E, f, g, h):

$$P(B, a, f, g, h) = \sum_{C, D, E} P(a, B, C, D, E, f, g, h)$$
$$P(B|a, f, g, h) = \frac{P(B, a, f, g, h)}{P(a, f, g, h)},$$

where

$$P(\boldsymbol{a}, \boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}) = \sum_{\boldsymbol{B}} P(\boldsymbol{B}, \boldsymbol{a}, \boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})$$

Calculate P(A, B, C, D, E)

Calculate P(A, B, C, D, E)

P(A, B, C, D, E) = P(E|A, B, C, D)P(A, B, C, D)

Calculate P(A, B, C, D, E)

P(A, B, C, D, E) = P(E|A, B, C, D)P(A, B, C, D)= P(E|C)P(A, B, C, D)

Calculate P(A, B, C, D, E)

$$\begin{split} P(A, B, C, D, E) &= P(E|A, B, C, D) P(A, B, C, D) \\ &= P(E|C) P(A, B, C, D) \\ &= P(E|C) P(D|A, B, C) P(A, B, C) \end{split}$$

Calculate P(A, B, C, D, E)

P(A, B, C, D, E) = P(E|A, B, C, D)P(A, B, C, D)= P(E|C)P(A, B, C, D)= P(E|C)P(D|A, B, C)P(A, B, C)= P(E|C)P(D|B, C)P(A, B, C)

Calculate P(A, B, C, D, E)

P(A, B, C, D, E) = P(E|A, B, C, D)P(A, B, C, D)= P(E|C)P(A, B, C, D)= P(E|C)P(D|A, B, C)P(A, B, C)= P(E|C)P(D|B, C)P(A, B, C)= P(E|C)P(D|B, C)P(C|A, B)P(A, B)

Calculate P(A, B, C, D, E)

P(A, B, C, D, E) = P(E|A, B, C, D)P(A, B, C, D)= P(E|C)P(A, B, C, D)= P(E|C)P(D|A, B, C)P(A, B, C)= P(E|C)P(D|B, C)P(A, B, C)= P(E|C)P(D|B, C)P(C|A, B)P(A, B)= P(E|C)P(D|B, C)P(C|A)P(B, A)

Section 1Causal and Bayesian Networks - p. 15/1

Joint probabilities

Calculate P(A, B, C, D, E)

P(A, B, C, D, E) = P(E|A, B, C, D)P(A, B, C, D)= P(E|C)P(A, B, C, D)= P(E|C)P(D|A, B, C)P(A, B, C)= P(E|C)P(D|B, C)P(A, B, C)= P(E|C)P(D|B, C)P(C|A, B)P(A, B)= P(E|C)P(D|B, C)P(C|A)P(B, A)= P(E|C)P(D|B, C)P(C|A)P(B|A)P(A)

The chain rule

Let BN be a Bayesian network over $\mathcal{U} = \{A_1, \dots, A_n\}$ Then:

 $P(\mathcal{U}) = \prod_{i} P(\mathbf{A}_{i} | \mathsf{Pa}(\mathbf{A}_{i})),$

where $Pa(A_i)$ are the parents of A_i .

- $P(\mathcal{U})$ is the product of the potentials specified in BN.
- BN is a compact representation of P(U).

$$\begin{aligned} P(\mathcal{U}) &= P(A|\mathcal{U} \setminus \{A\}) P(\mathcal{U} \setminus \{A\}) \\ &= P(A|B, \dots, C) \prod_{X \in \mathcal{U} \setminus \{A\}} P(X|\mathsf{Pa}(X)) \end{aligned}$$

Evidence I

Consider a variable A with five states a_1, a_2, a_3, a_4, a_5 and with probability:

$$P(A) = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}, \sum_{i=1}^5 x_i = 1$$

Assume that we get the <u>evidence</u> e: "A is either in state a_2 or a_4 ". Then:

$$P(\mathbf{A}, \mathbf{e}) = \begin{pmatrix} 0\\x_2\\0\\x_4\\0 \end{pmatrix} = \begin{pmatrix} x_1\\x_2\\x_3\\x_4\\x_5 \end{pmatrix} \cdot \begin{pmatrix} 0\\1\\0\\1\\0 \end{pmatrix}$$

Thus, e can be represented by a potential $\bar{e} = (0, 1, 0, 1, 0)^T$ and:

$$P(\boldsymbol{A}, \boldsymbol{e}) = P(\boldsymbol{A}) \cdot \bar{\boldsymbol{e}}$$

Evidence II

<u>Definition</u>: Let *A* be a variable with *n* states. A <u>finding</u> on *A* is an *n*-dimensional table with 0s and 1s.

<u>Semantics</u>: The states marked with a 0 are impossible.

<u>Theorem</u>: Let BN be a Bayesian network over the universe $\mathcal{U} = \{A_1, \ldots, A_n\}$, and let \overline{e}_1 , $\overline{e}_2, \ldots, \overline{e}_m$ be findings. Then:

$$P(\mathcal{U}, \mathbf{e}) = P(\mathcal{U}) \cdot \prod_{i=1}^{m} \overline{\mathbf{e}}_{i}$$
$$= \prod_{i=1}^{n} P(\mathbf{A}_{i} | \operatorname{Pa}(\mathbf{A}_{i})) \prod_{j=1}^{m} \overline{\mathbf{e}}_{j}.$$

Hence, to find P(A|e) we use:

$$P(\boldsymbol{A}|\boldsymbol{e}) = \frac{\sum_{\mathcal{U}\setminus\{A\}} P(\mathcal{U},\boldsymbol{e})}{P(\boldsymbol{e})}.$$

Do we need $P(\mathcal{U}) = P(A, B, C, D, E)$ in order to calculate P(A|c, e)? Note: $P(A|c, e) = \frac{\sum_{B} \sum_{D} P(A, B, c, D, e)}{P(c, e)}$.

Do we need $P(\mathcal{U}) = P(A, B, C, D, E)$ in order to calculate P(A|c, e)? Note: $P(A|c, e) = \frac{\sum_{B} \sum_{D} P(A, B, c, D, e)}{P(c, e)}$.

 $\sum_{B} \sum_{D} P(A, B, c, D, e) = \sum_{B} \sum_{D} P(e|c)P(c|A)P(D|c, B)P(A)P(B|A)$

Do we need $P(\mathcal{U}) = P(A, B, C, D, E)$ in order to calculate P(A|c, e)? Note: $P(A|c, e) = \frac{\sum_{B} \sum_{D} P(A, B, c, D, e)}{P(c, e)}$.

$$\sum_{B} \sum_{D} P(A, B, c, D, e) = \sum_{B} \sum_{D} P(e|c)P(c|A)P(D|c, B)P(A)P(B|A)$$
$$= P(e|c)P(c|A)P(A)\sum_{B} \sum_{D} P(D|c, B)P(B|A)$$

Do we need $P(\mathcal{U}) = P(A, B, C, D, E)$ in order to calculate P(A|c, e)? Note: $P(A|c, e) = \frac{\sum_{B} \sum_{D} P(A, B, c, D, e)}{P(c, e)}$.

$$\sum_{B} \sum_{D} P(A, B, c, D, e) = \sum_{B} \sum_{D} P(e|c)P(c|A)P(D|c, B)P(A)P(B|A)$$
$$= P(e|c)P(c|A)P(A)\sum_{B} \sum_{D} P(D|c, B)P(B|A)$$
$$= P(e|c)P(c|A)P(A)\sum_{B} P(B|A)\sum_{D} P(D|c, B)$$

Do we need $P(\mathcal{U}) = P(A, B, C, D, E)$ in order to calculate P(A|c, e)? Note: $P(A|c, e) = \frac{\sum_{B} \sum_{D} P(A, B, c, D, e)}{P(c, e)}$.

$$\sum_{B} \sum_{D} P(A, B, c, D, e) = \sum_{B} \sum_{D} P(e|c)P(c|A)P(D|c, B)P(A)P(B|A)$$
$$= P(e|c)P(c|A)P(A)\sum_{B} \sum_{D} P(D|c, B)P(B|A)$$
$$= P(e|c)P(c|A)P(A)\sum_{B} P(B|A)\sum_{D} P(D|c, B)$$
$$= P(e|c)P(c|A)P(A)$$

So instead of constructing a table with 2^5 entries we only need 2 numbers!

Section 1Causal and Bayesian Networks - p. 19/1