Section 1

Causal and Bayesian Networks

The car start problem (causally)

In the morning, my car will not start. I can hear the starter turn, but nothing happens. The most probable causes are that the fuel has been stolen over night or that the spark plugs are dirty. I look at the fuel meter. It shows half full, so I decide to clean the spark plugs.

Events:

- Fuel?\{y,n\}
- Clean spark plugs?\{y,n\}
- Start?\{y,n\}
- Fuel meter\{full, $\frac{1}{2}$,empty\}.

The car start problem (causally)

In the morning, my car will not start. I can hear the starter turn, but nothing happens. The most probable causes are that the fuel has been stolen over night or that the spark plugs are dirty. I look at the fuel meter. It shows half full, so I decide to clean the spark plugs.

Events:

- Fuel?\{y,n\}
- Clean spark plugs? $\{y, n\}$
- Start?\{y,n\}
- Fuel meter\{full, $\frac{1}{2}$,empty\}.

Causal relations:

When I enter the car I have some prior belief on the various events but then start=n.

The reasoning (explaining away)

The reasoning (explaining away)

The reasoning (explaining away)

Causal networks

A causal network is a directed acyclic graph:

- The nodes are variables with a finite set of states that are mutually exclusive and exhaustive:
- For example $\{y, n\}$, $\{$ red, blue, green $\},\{0,1,2,3,42\}$.
- The links represent cause - effect relations.

For example:

All variables are in exactly one state, but we may not know which one.

Reasoning under uncertainty 1

- Information on flooding may change the belief of Rainfall.
- If we know that the water level is high, then information on flooding will not change the belief of Rainfall.

Reasoning under uncertainty 2

- Knowledge of a person's hair length may change the belief of the stature.
- If we know that it is a women, then information of hair length has no impact on the belief of her stature.

Reasoning under uncertainty 3

- Salmonella has nor impact on Flue?
- If a person is Pale, then knowledge of Salmonella may change the belief on Flue (explaining away).

Rules of d-separation

Relevance changes with evidence

Note: These are general rules about reasoning under uncertainty on causal models.

Transmission of evidence

Can knowledge of A have an impact on our knowledge of G ?

Transmission of evidence

Can knowledge of A have an impact on our knowledge of G ? yes!

Quantification of causal networks

The strength of the link is represented by probabilities:

$P(0 \mid p)$	$P(0 \mid c)$	$P(0 \mid m)$
$P(1 \mid p)$	$P(1 \mid c)$	$P(1 \mid m)$
$P(2 \mid p)$	$P(2 \mid c)$	$P(2 \mid m)$
$P(3 \mid p)$	$P(3 \mid c)$	$P(3 \mid m)$
$P(\geq 4 \mid p)$	$P(\geq 4 \mid c)$	$P(\geq 4 \mid m)$

		Religion		
		p	c	m
	0	0.15	0.05	0.05
	1	0.2	0.1	0.1
	2	0.4	0.2	0.1
	3	0.2	0.4	0.1
	≥ 4	0.05	0.25	0.35
		Childr	\|Relig	

Several parents

$$
\begin{array}{ll}
P(y \mid y, y) & P(y \mid y, n) \\
P(n \mid y, y) & P(n \mid y, n) \\
P(y \mid n, y) & P(y \mid n, n) \\
P(n \mid n, y) & P(n \mid n, n)
\end{array}
$$

		Salmonella	
		y	n
$\stackrel{\text { © }}{\beth}$	y	$(0.9,0.1)$	$(0.6,0.4)$
ㄴ	n	$(0.8,0.2)$	$(0.1,0.9)$

$P($ Nausea|Salmonella,Flue)

Bayesian networks

A causal network without directed cycles:

For each variable A with parents B_{1}, \ldots, B_{n} there is a conditional probability table $P\left(A \mid B_{1}, \ldots, B_{n}\right)$.

Bayesian networks as a tool for reasoning

Bayesian networks as a tool for reasoning

Consider evidence $e_{1}=($ Start $=\mathrm{n})$ and find:

- $P\left(\right.$ Spark Plugs $\left.\mid e_{1}\right)=$??
- $\quad P\left(\right.$ Fuel $\left.\mid e_{1}\right)=$??
- $\quad P\left(\right.$ Fuel Meter $\left.\mid e_{1}\right)=$??

Bayesian networks as a tool for reasoning

Consider evidence $e_{1}=($ Start=n) and find:

- $P\left(\right.$ Spark Plugs $\left.\mid e_{1}\right)=?$?
- $\quad P\left(\right.$ Fuel $\left.\mid e_{1}\right)=$??
- $\quad P\left(\right.$ Fuel Meter $\left.\mid e_{1}\right)=$??

If we also have evidence $e_{2}=\left(\right.$ Fuel Meter $\left.=\frac{1}{2}\right)$ what is:

- $P\left(\right.$ Spark Plugs $\left.\mid e_{1}, e_{2}\right)=$??
- $P\left(\right.$ Fuel $\left.\mid e_{1}, e_{2}\right)=$??

Bayesian belief updating

Find $P(B \mid a, f, g, h)$

Bayesian belief updating

Find $P(B \mid a, f, g, h)$

We can if we have access to $P(a, B, C, D, E, f, g, h)$:

$$
\begin{aligned}
P(B, a, f, g, h) & =\sum_{C, D, E} P(a, B, C, D, E, f, g, h) \\
P(B \mid a, f, g, h) & =\frac{P(B, a, f, g, h)}{P(a, f, g, h)}
\end{aligned}
$$

where

$$
P(a, f, g, h)=\sum_{B} P(B, a, f, g, h)
$$

Joint probabilities

Calculate $P(A, B, C, D, E)$

Joint probabilities

Joint probabilities

Calculate $P(A, B, C, D, E)$

$$
\begin{aligned}
P(A, B, C, D, E) & =P(E \mid A, B, C, D) P(A, B, C, D) \\
& =P(E \mid C) P(A, B, C, D)
\end{aligned}
$$

Joint probabilities

Calculate $P(A, B, C, D, E)$

$$
\begin{aligned}
P(A, B, C, D, E) & =P(E \mid A, B, C, D) P(A, B, C, D) \\
& =P(E \mid C) P(A, B, C, D) \\
& =P(E \mid C) P(D \mid A, B, C) P(A, B, C)
\end{aligned}
$$

Joint probabilities

Calculate $P(A, B, C, D, E)$

$$
\begin{aligned}
P(A, B, C, D, E) & =P(E \mid A, B, C, D) P(A, B, C, D) \\
& =P(E \mid C) P(A, B, C, D) \\
& =P(E \mid C) P(D \mid A, B, C) P(A, B, C) \\
& =P(E \mid C) P(D \mid B, C) P(A, B, C)
\end{aligned}
$$

Joint probabilities

Calculate $P(A, B, C, D, E)$

$$
\begin{aligned}
P(A, B, C, D, E) & =P(E \mid A, B, C, D) P(A, B, C, D) \\
& =P(E \mid C) P(A, B, C, D) \\
& =P(E \mid C) P(D \mid A, B, C) P(A, B, C) \\
& =P(E \mid C) P(D \mid B, C) P(A, B, C) \\
& =P(E \mid C) P(D \mid B, C) P(C \mid A, B) P(A, B)
\end{aligned}
$$

Joint probabilities

Calculate $P(A, B, C, D, E)$

$$
\begin{aligned}
P(A, B, C, D, E) & =P(E \mid A, B, C, D) P(A, B, C, D) \\
& =P(E \mid C) P(A, B, C, D) \\
& =P(E \mid C) P(D \mid A, B, C) P(A, B, C) \\
& =P(E \mid C) P(D \mid B, C) P(A, B, C) \\
& =P(E \mid C) P(D \mid B, C) P(C \mid A, B) P(A, B) \\
& =P(E \mid C) P(D \mid B, C) P(C \mid A) P(B, A)
\end{aligned}
$$

Joint probabilities

Calculate $P(A, B, C, D, E)$

$$
\begin{aligned}
P(A, B, C, D, E) & =P(E \mid A, B, C, D) P(A, B, C, D) \\
& =P(E \mid C) P(A, B, C, D) \\
& =P(E \mid C) P(D \mid A, B, C) P(A, B, C) \\
& =P(E \mid C) P(D \mid B, C) P(A, B, C) \\
& =P(E \mid C) P(D \mid B, C) P(C \mid A, B) P(A, B) \\
& =P(E \mid C) P(D \mid B, C) P(C \mid A) P(B, A) \\
& =P(E \mid C) P(D \mid B, C) P(C \mid A) P(B \mid A) P(A)
\end{aligned}
$$

The chain rule

Let BN be a Bayesian network over $\mathcal{U}=\left\{A_{1}, \ldots, A_{n}\right\}$ Then:

$$
P(\mathcal{U})=\prod_{i} P\left(A_{i} \mid \operatorname{Pa}\left(A_{i}\right)\right),
$$

where $\mathrm{Pa}\left(A_{i}\right)$ are the parents of A_{i}.

- $P(\mathcal{U})$ is the product of the potentials specified in BN .
- BN is a compact representation of $P(\mathcal{U})$.

$$
\begin{aligned}
P(\mathcal{U}) & =P(A \mid \mathcal{U} \backslash\{A\}) P(\mathcal{U} \backslash\{A\}) \\
& =P(A \mid B, \ldots, C) \prod_{X \in \mathcal{U} \backslash\{A\}} P(X \mid \operatorname{Pa}(X))
\end{aligned}
$$

Evidence I

Consider a variable A with five states $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ and with probability:

$$
P(A)=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right), \sum_{i=1}^{5} x_{i}=1
$$

Assume that we get the evidence e : " A is either in state a_{2} or a_{4} ". Then:

$$
P(A, e)=\left(\begin{array}{c}
0 \\
x_{2} \\
0 \\
x_{4} \\
0
\end{array}\right)=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right)
$$

Thus, e can be represented by a potential $\bar{e}=(0,1,0,1,0)^{T}$ and:

$$
P(A, e)=P(A) \cdot \bar{e}
$$

Evidence II

Definition: Let A be a variable with n states. A finding on A is an n-dimensional table with 0 s and 1 s .

Semantics: The states marked with a 0 are impossible.

Theorem: Let BN be a Bayesian network over the universe $\mathcal{U}=\left\{A_{1}, \ldots, A_{n}\right\}$, and let \bar{e}_{1}, $\bar{e}_{2}, \ldots, \bar{e}_{m}$ be findings. Then:

$$
\begin{aligned}
P(\mathcal{U}, e) & =P(\mathcal{U}) \cdot \prod_{i=1}^{m} \bar{e}_{i} \\
& =\prod_{i=1}^{n} P\left(A_{i} \mid \operatorname{Pa}\left(A_{i}\right)\right) \prod_{j=1}^{m} \bar{e}_{j} .
\end{aligned}
$$

Hence, to find $P(A \mid e)$ we use:

$$
P(A \mid e)=\frac{\sum_{\mathcal{U} \backslash\{A\}} P(\mathcal{U}, e)}{P(e)} .
$$

Variable elimination

Do we need $P(\mathcal{U})=P(A, B, C, D, E)$ in order to calculate $P(A \mid c, e)$?
Note: $P(A \mid c, e)=\frac{\sum_{B} \sum_{D} P(A, B, c, D, e)}{P(c, e)}$.

Variable elimination

Do we need $P(\mathcal{U})=P(A, B, C, D, E)$ in order to calculate $P(A \mid c, e)$?
Note: $P(A \mid c, e)=\frac{\sum_{B} \sum_{D} P(A, B, c, D, e)}{P(c, e)}$.

$$
\sum_{B} \sum_{D} P(A, B, c, D, e)=\sum_{B} \sum_{D} P(e \mid c) P(c \mid A) P(D \mid c, B) P(A) P(B \mid A)
$$

Variable elimination

Do we need $P(\mathcal{U})=P(A, B, C, D, E)$ in order to calculate $P(A \mid c, e)$?
Note: $P(A \mid c, e)=\frac{\sum_{B} \sum_{D} P(A, B, c, D, e)}{P(c, e)}$.

$$
\begin{aligned}
\sum_{B} \sum_{D} P(A, B, c, D, e) & =\sum_{B} \sum_{D} P(e \mid c) P(c \mid A) P(D \mid c, B) P(A) P(B \mid A) \\
& =P(e \mid c) P(c \mid A) P(A) \sum_{B} \sum_{D} P(D \mid c, B) P(B \mid A)
\end{aligned}
$$

Variable elimination

Do we need $P(\mathcal{U})=P(A, B, C, D, E)$ in order to calculate $P(A \mid c, e)$?
Note: $P(A \mid c, e)=\frac{\sum_{B} \sum_{D} P(A, B, c, D, e)}{P(c, e)}$.

$$
\begin{aligned}
\sum_{B} \sum_{D} P(A, B, c, D, e) & =\sum_{B} \sum_{D} P(e \mid c) P(c \mid A) P(D \mid c, B) P(A) P(B \mid A) \\
& =P(e \mid c) P(c \mid A) P(A) \sum_{B} \sum_{D} P(D \mid c, B) P(B \mid A) \\
& =P(e \mid c) P(c \mid A) P(A) \sum_{B} P(B \mid A) \sum_{D} P(D \mid c, B)
\end{aligned}
$$

Variable elimination

Do we need $P(\mathcal{U})=P(A, B, C, D, E)$ in order to calculate $P(A \mid c, e)$?
Note: $P(A \mid c, e)=\frac{\sum_{B} \sum_{D} P(A, B, c, D, e)}{P(c, e)}$.

$$
\begin{aligned}
\sum_{B} \sum_{D} P(A, B, c, D, e) & =\sum_{B} \sum_{D} P(e \mid c) P(c \mid A) P(D \mid c, B) P(A) P(B \mid A) \\
& =P(e \mid c) P(c \mid A) P(A) \sum_{B} \sum_{D} P(D \mid c, B) P(B \mid A) \\
& =P(e \mid c) P(c \mid A) P(A) \sum_{B} P(B \mid A) \sum_{D} P(D \mid c, B) \\
& =P(e \mid c) P(c \mid A) P(A)
\end{aligned}
$$

So instead of constructing a table with 2^{5} entries we only need 2 numbers!

