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The car start problem (causally)

In the morning, my car will not start. I can hear the starter turn, but nothing happens. The
most probable causes are that the fuel has been stolen over night or that the spark plugs are
dirty. I look at the fuel meter. It shows half full, so I decide to clean the spark plugs.

Events:
• Fuel?{y,n}
• Clean spark plugs?{y,n}
• Start?{y,n}
• Fuel meter{full, 1

2
,empty}.
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The car start problem (causally)

In the morning, my car will not start. I can hear the starter turn, but nothing happens. The
most probable causes are that the fuel has been stolen over night or that the spark plugs are
dirty. I look at the fuel meter. It shows half full, so I decide to clean the spark plugs.

Events:
• Fuel?{y,n}
• Clean spark plugs?{y,n}
• Start?{y,n}
• Fuel meter{full, 1

2
,empty}.

Causal relations:

Fuel meter? Start?

Fuel? Clean spark plugs?

When I enter the car I have some prior belief on the various events but then start=n.
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The reasoning (explaining away)

Fuel? Clean spark plugs?

Fuel meter? Start?

+ + +
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The reasoning (explaining away)

Fuel? Clean spark plugs?

Fuel meter? Start?

+ + +

no
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The reasoning (explaining away)

Fuel? Clean spark plugs?

Fuel meter? Start?

+ + +

no

1
2
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Causal networks

A causal network is a directed acyclic graph:

A

C

B D

E G

F

• The nodes are variables with a finite set of states that are mutually exclusive and
exhaustive:

- For example {y,n}, {red, blue, green}, {0,1,2,3,42}.

• The links represent cause – effect relations.

For example:

Religion
Prot., Cath.,

#Children
0, 1, 2, 3,≥ 4

Muslim

All variables are in exactly one state, but we may not know which one.
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Reasoning under uncertainty 1

Rainfall WaterLevel Flooding

• Information on flooding may change the belief of Rainfall.
• If we know that the water level is high, then information on flooding will not change the

belief of Rainfall.
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Reasoning under uncertainty 2

Hair
long, short

Sex
man, woman

< 168cm, ≥ 168cm
Stature

• Knowledge of a person’s hair length may change the belief of the stature.
• If we know that it is a women, then information of hair length has no impact on the

belief of her stature.
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Reasoning under uncertainty 3

y, n
FlueSalmonella

y, n

Pale
y, n

Nausea
y, n

• Salmonella has nor impact on Flue?
• If a person is Pale, then knowledge of Salmonella may change the belief on Flue

(explaining away).
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Rules of d-separation

Relevance changes with evidence

A B C

A

B

C

A B

C

D

Serial

Diverging

Converging

Note: These are general rules about reasoning under uncertainty on causal models.
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Transmission of evidence

I J L

O

A B C D

E F G H

K

M N

e

e

Can knowledge of A have an impact on our knowledge of G?
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Transmission of evidence

I J L

O

A B C D

E F G H

K

M N

e

e

Can knowledge of A have an impact on our knowledge of G? yes!
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Quantification of causal networks

Religion
Prot., Cath.,

#Children
0, 1, 2, 3,≥ 4

Muslim

The strength of the link is represented by probabilities:

Religion
p c m

P (0|p) P (0|c) P (0|m)

⇒

#C
hi

ld
re

n

0 0.15 0.05 0.05

P (1|p) P (1|c) P (1|m) 1 0.2 0.1 0.1

P (2|p) P (2|c) P (2|m) 2 0.4 0.2 0.1

P (3|p) P (3|c) P (3|m) 3 0.2 0.4 0.1

P (≥ 4|p) P (≥ 4|c) P (≥ 4|m) ≥ 4 0.05 0.25 0.35

P (#Children|Religion)
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Several parents

y,n
FlueSalmonella

y, n

Nausea
y, n

Salmonella
y n

P (y|y, y) P (y|y, n)

⇒
F

lu
e y (0.9, 0.1) (0.6, 0.4)

P (n|y, y) P (n|y, n) n (0.8, 0.2) (0.1, 0.9)

P (y|n, y) P (y|n, n)

P (n|n, y) P (n|n, n)

P (Nausea|Salmonella,Flue)
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Bayesian networks

A causal network without directed cycles:

D

B

A

C

OK

D

B

A

C

¬OK

DB

A C

¬OK

For each variable A with parents B1, . . . , Bn there is a conditional probability table
P (A|B1, . . . , Bn).

A B

C

D E

F

Note: Nodes without parents receive a prior distribution.
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Bayesian networks as a tool for reasoning

Fuel Meter

Fuel

Start

Spark Plugs

Section 1Causal and Bayesian Networks – p. 13/19



Bayesian networks as a tool for reasoning

Fuel Meter

Fuel

Start

Spark Plugs

n

Consider evidence e1 =(Start=n) and find:

• P (Spark Plugs|e1) =??

• P (Fuel|e1) =??

• P (Fuel Meter|e1) =??
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Bayesian networks as a tool for reasoning

Fuel Meter

Fuel

Start

Spark Plugs

n1
2

Consider evidence e1 =(Start=n) and find:

• P (Spark Plugs|e1) =??

• P (Fuel|e1) =??

• P (Fuel Meter|e1) =??

If we also have evidence e2=
`

Fuel Meter = 1
2

´

what is:

• P (Spark Plugs|e1, e2) =??

• P (Fuel|e1, e2) =??
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Bayesian belief updating

A B C

D E

F G H

Find P (B|a, f, g, h)
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Bayesian belief updating

A B C

D E

F G H

Find P (B|a, f, g, h)

We can if we have access to P (a, B, C, D, E, f, g, h):

P (B, a, f, g, h) =
X

C,D,E

P (a, B, C, D, E, f, g, h)

P (B|a, f, g, h) =
P (B, a, f, g, h)

P (a, f, g, h)
,

where

P (a, f, g, h) =
X

B

P (B, a, f, g, h)
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Joint probabilities

A

B C

D E

P (B|A)

P (A)

P (D|B, C)

P (C|A)

P (E|C)

Calculate P (A, B, C, D, E)
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Joint probabilities

A

B C

D E

P (B|A)

P (A)

P (D|B, C)

P (C|A)

P (E|C)

Calculate P (A, B, C, D, E)

P (A, B, C, D, E) = P (E|A, B, C, D)P (A, B, C, D)
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Joint probabilities

A

B C

D E

P (B|A)

P (A)

P (D|B, C)

P (C|A)

P (E|C)

Calculate P (A, B, C, D, E)

P (A, B, C, D, E) = P (E|A, B, C, D)P (A, B, C, D)

= P (E|C)P (A, B, C, D)
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Joint probabilities

A

B C

D E

P (B|A)

P (A)

P (D|B, C)

P (C|A)

P (E|C)

Calculate P (A, B, C, D, E)

P (A, B, C, D, E) = P (E|A, B, C, D)P (A, B, C, D)

= P (E|C)P (A, B, C, D)

= P (E|C)P (D|A, B, C)P (A, B, C)
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Joint probabilities

A

B C

D E

P (B|A)

P (A)

P (D|B, C)

P (C|A)

P (E|C)

Calculate P (A, B, C, D, E)

P (A, B, C, D, E) = P (E|A, B, C, D)P (A, B, C, D)

= P (E|C)P (A, B, C, D)

= P (E|C)P (D|A, B, C)P (A, B, C)

= P (E|C)P (D|B, C)P (A, B, C)
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Joint probabilities

A

B C

D E

P (B|A)

P (A)

P (D|B, C)

P (C|A)

P (E|C)

Calculate P (A, B, C, D, E)

P (A, B, C, D, E) = P (E|A, B, C, D)P (A, B, C, D)

= P (E|C)P (A, B, C, D)

= P (E|C)P (D|A, B, C)P (A, B, C)

= P (E|C)P (D|B, C)P (A, B, C)

= P (E|C)P (D|B, C)P (C|A, B)P (A, B)
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Joint probabilities

A

B C

D E

P (B|A)

P (A)

P (D|B, C)

P (C|A)

P (E|C)

Calculate P (A, B, C, D, E)

P (A, B, C, D, E) = P (E|A, B, C, D)P (A, B, C, D)

= P (E|C)P (A, B, C, D)

= P (E|C)P (D|A, B, C)P (A, B, C)

= P (E|C)P (D|B, C)P (A, B, C)

= P (E|C)P (D|B, C)P (C|A, B)P (A, B)

= P (E|C)P (D|B, C)P (C|A)P (B, A)

Section 1Causal and Bayesian Networks – p. 15/19



Joint probabilities

A

B C

D E

P (B|A)

P (A)

P (D|B, C)

P (C|A)

P (E|C)

Calculate P (A, B, C, D, E)

P (A, B, C, D, E) = P (E|A, B, C, D)P (A, B, C, D)

= P (E|C)P (A, B, C, D)

= P (E|C)P (D|A, B, C)P (A, B, C)

= P (E|C)P (D|B, C)P (A, B, C)

= P (E|C)P (D|B, C)P (C|A, B)P (A, B)

= P (E|C)P (D|B, C)P (C|A)P (B, A)

= P (E|C)P (D|B, C)P (C|A)P (B|A)P (A)
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The chain rule

A1 A2

Ai

Am

Ak

Aj

An

Let BN be a Bayesian network over U = {A1, . . . , An}

Then:
P (U) =

Q

i P (Ai|Pa(Ai)),

where Pa(Ai) are the parents of Ai.

• P (U) is the product of the potentials specified in BN.

• BN is a compact representation of P (U).

B C

A

P (U) = P (A|U \ {A})P (U \ {A})

= P (A|B, . . . , C)
Q

X∈U\{A} P (X|Pa(X))
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Evidence I

Consider a variable A with five states a1, a2, a3, a4, a5 and with probability:

P (A) =

0

B

B

B

B

B

@

x1

x2

x3

x4

x5

1

C

C

C

C

C

A

,
5

X

i=1

xi = 1

Assume that we get the evidence e: “A is either in state a2 or a4”. Then:

P (A, e) =

0

B

B

B

B

B

@

0

x2

0

x4

0

1

C

C

C

C

C

A

=

0

B

B

B

B

B

@

x1

x2

x3

x4

x5

1

C

C

C

C

C

A

·

0

B

B

B

B

B

@

0

1

0

1

0

1

C

C

C

C

C

A

Thus, e can be represented by a potential ē = (0, 1, 0, 1, 0)T and:

P (A, e) = P (A) · ē
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Evidence II

Definition: Let A be a variable with n states. A finding on A is an n-dimensional table with 0s

and 1s.

Semantics: The states marked with a 0 are impossible.

Theorem: Let BN be a Bayesian network over the universe U = {A1, . . . , An}, and let ē1,
ē2,. . . , ēm be findings. Then:

P (U , e) = P (U) ·
m

Y

i=1

ēi

=

n
Y

i=1

P (Ai|Pa(Ai))

m
Y

j=1

ēj .

Hence, to find P (A|e) we use:

P (A|e) =

P

U\{A} P (U , e)

P (e)
.
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Variable elimination

A

B C

D E

P (B|A)

P (A)

P (D|B, C)

P (C|A)

P (E|C)

Do we need P (U) = P (A, B, C, D, E) in order to
calculate P (A|c, e)?

Note: P (A|c, e) =
P

B

P

D
P (A,B,c,D,e)

P (c,e)
.
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Variable elimination

A

B C

D E

P (B|A)

P (A)

P (D|B, C)

P (C|A)

P (E|C)

Do we need P (U) = P (A, B, C, D, E) in order to
calculate P (A|c, e)?

Note: P (A|c, e) =
P

B

P

D
P (A,B,c,D,e)

P (c,e)
.

X

B

X

D

P (A, B, c, D, e) =
X

B

X

D

P (e|c)P (c|A)P (D|c, B)P (A)P (B|A)
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Variable elimination

A

B C

D E

P (B|A)

P (A)

P (D|B, C)

P (C|A)

P (E|C)

Do we need P (U) = P (A, B, C, D, E) in order to
calculate P (A|c, e)?

Note: P (A|c, e) =
P

B

P

D
P (A,B,c,D,e)

P (c,e)
.

X

B

X

D

P (A, B, c, D, e) =
X

B

X

D

P (e|c)P (c|A)P (D|c, B)P (A)P (B|A)

= P (e|c)P (c|A)P (A)
X

B

X

D

P (D|c, B)P (B|A)
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Variable elimination

A

B C

D E

P (B|A)

P (A)

P (D|B, C)

P (C|A)

P (E|C)

Do we need P (U) = P (A, B, C, D, E) in order to
calculate P (A|c, e)?

Note: P (A|c, e) =
P

B

P

D
P (A,B,c,D,e)

P (c,e)
.

X

B

X

D

P (A, B, c, D, e) =
X

B

X

D

P (e|c)P (c|A)P (D|c, B)P (A)P (B|A)

= P (e|c)P (c|A)P (A)
X

B

X

D

P (D|c, B)P (B|A)

= P (e|c)P (c|A)P (A)
X

B

P (B|A)
X

D

P (D|c, B)
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Variable elimination

A

B C

D E

P (B|A)

P (A)

P (D|B, C)

P (C|A)

P (E|C)

Do we need P (U) = P (A, B, C, D, E) in order to
calculate P (A|c, e)?

Note: P (A|c, e) =
P

B

P

D
P (A,B,c,D,e)

P (c,e)
.

X

B

X

D

P (A, B, c, D, e) =
X

B

X

D

P (e|c)P (c|A)P (D|c, B)P (A)P (B|A)

= P (e|c)P (c|A)P (A)
X

B

X

D

P (D|c, B)P (B|A)

= P (e|c)P (c|A)P (A)
X

B

P (B|A)
X

D

P (D|c, B)

= P (e|c)P (c|A)P (A)

So instead of constructing a table with 25 entries we only need 2 numbers!
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