
Section 3

Learning of Bayesian Networks
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Learning probabilities from a database

We have:

➤ A Bayesian network structure.

➤ A database of cases over (some of) the variables.

We want:

➤ A Bayesian network model (with probabilities) representing the database.

Pr
Pr

Ut
Ut

Bt
Bt

Cases Pr Bt Ut

1. ? pos pos
2. yes neg pos
3. yes pos ?
4. yes pos neg
5. ? neg ?

P(Bt | Pr)

P(Pr)

P(Ut | Pr)
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Complete data: maximum likelihood estimation

You get a maximum likelihood estimate as the fraction of counts over the total number of
counts.

B C

A

We want P (A = a |B = b, C = c)

To find the maximum likelihood estimate P̂ (A = a |B = b, C = c) we simply calculate:

P̂ (A = a |B = b, C = c) =
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Complete data: maximum likelihood estimation

You get a maximum likelihood estimate as the fraction of counts over the total number of
counts.

B C

A

We want P (A = a |B = b, C = c)

To find the maximum likelihood estimate P̂ (A = a |B = b, C = c) we simply calculate:

P̂ (A = a |B = b, C = c) =
P̂ (A = a, B = b, C = c)

P̂ (B = b, C = c)
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Complete data: maximum likelihood estimation

You get a maximum likelihood estimate as the fraction of counts over the total number of
counts.

B C

A

We want P (A = a |B = b, C = c)

To find the maximum likelihood estimate P̂ (A = a |B = b, C = c) we simply calculate:

P̂ (A = a |B = b, C = c) =
P̂ (A = a, B = b, C = c)

P̂ (B = b, C = c)
=

[

N(A=a,B=b,C=c)
N

]

[

N(B=b,C=c)
N

]
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Complete data: maximum likelihood estimation

You get a maximum likelihood estimate as the fraction of counts over the total number of
counts.

B C

A

We want P (A = a |B = b, C = c)

To find the maximum likelihood estimate P̂ (A = a |B = b, C = c) we simply calculate:

P̂ (A = a |B = b, C = c) =
P̂ (A = a, B = b, C = c)

P̂ (B = b, C = c)
=

[

N(A=a,B=b,C=c)
N

]

[

N(B=b,C=c)
N

]

=
N(A = a, B = b, C = c)

N(B = b, C = c)
.

So we have a simple counting problem!
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Complete data: maximum likelihood estimation

Unfortunately, maximum likelihood estimation has a drawback:

Last three letters
aaa aab aba abb baa bba bab bbb

First
two

letters

aa 2 2 2 2 5 7 5 7

ab 3 4 4 4 1 2 0 2

ba 0 1 0 0 3 5 3 5

bb 5 6 6 6 2 2 2 2

By using this table to estimate e.g. P (T1 = b, T2 = a, T3 = T4 = T5 = a) we get:

P̂ (T1 = b, T2 = a, T3 = T4 = T5 = a) =
N(T1 = b, T2 = a, T3 = T4 = T5 = a)

N
= 0

This is not reliable!
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Complete data: maximum likelihood estimation

Bayesian fix: an even prior distribution corresponds to adding a virtual count of 1:

Last three letters
aaa aab aba abb baa bba bab bbb

First
two

letters

aa 2 2 2 2 5 7 5 7

ab 3 4 4 4 1 2 0 2

ba 0 1 0 0 3 5 3 5

bb 5 6 6 6 2 2 2 2

From this table we get:

T1

a b

T2
a 32 17

b 20 31

⇒

T1

a b

T2
a 32 + 1 17 + 1

b 20 + 1 31 + 1

⇒

T1

a b

T2
a

(

33
54

) (

18
50

)

b
(

21
54

) (

32
50

)

N(T1, T2) N ′(T1, T2) P (T2 |T1)= N′(T1,T2)
N′(T1)
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Incomplete data

How do we handle cases with missing values:

➤ Faulty sensor readings.

➤ Values have been intentionally removed.

➤ Some variables may be unobservable.

If you do not exploit cases with missing values, you may get misleading results
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How is the data missing?

We need to take into account how the data is missing:

Missing completely at random The probability that a value is missing is independent of both the
observed and unobserved values.

Missing at random The probability that a value is missing depends only on the observed val-
ues.

Non-ignorable Neither MAR nor MCAR.

Examples:

➤ MCAR: A monitoring system that is not completely stable and where some sensor val-
ues are not stored properly.

➤ MAR: A database containing the results of two tests, where the second test has only
performed (as a “backup test”) when the result of the first test was negative.

➤ Non-Ign: An exit poll, where an extreme right-wing party is running for parliament.
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The EM algorithm (requires MAR)

Pr

UtBt

P0(Pr) = (0.5, 0.5)

P0(Ut = pos |Pr) = (0.5, 0.5)

P0(Bt = pos |Pr) = (0.5, 0.5)

Cases Pr Bt Ut

1. ? pos pos
2. yes neg pos
3. yes pos ?
4. yes pos neg
5. ? neg ?
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The EM algorithm (requires MAR)

E-step 1

Pr

UtBt

P0(Pr) = (0.5, 0.5)

P0(Ut = pos |Pr) = (0.5, 0.5)

P0(Bt = pos |Pr) = (0.5, 0.5)

E0[N(Pr)] = (4, 1)

E0[N(Ut = pos, P r)] = (0.5 + 1 + 0.5 + 0 + 0.25,

0.5 + 0 + 0 + 0 + 0.25)

E0[N(Bt = pos, P r)] = (0.5 + 0 + 1 + 1 + 0

, 0.5 + 0 + 0 + 0 + 0)

Cases Pr Bt Ut

1. ? pos pos
2. yes neg pos
3. yes pos ?
4. yes pos neg
5. ? neg ?
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The EM algorithm (requires MAR)

E-step 1

M-step 2

Pr

UtBt

P0(Pr) = (0.5, 0.5)

P0(Ut = pos |Pr) = (0.5, 0.5)

P0(Bt = pos |Pr) = (0.5, 0.5)

P1(Pr) = ( 4
5
, 1

5
)

P1(Ut = pos |Pr) = ( 2.25
4

, 0.75
1

)

P1(Bt = pos |Pr) = ( 2.5
4

, 0.5
1

)

E0[N(Pr)] = (4, 1)

E0[N(Ut = pos, P r)] = (2.25, 0.75)

E0[N(Bt = pos, P r)] = (2.5, 0.5)

Cases Pr Bt Ut

1. ? pos pos
2. yes neg pos
3. yes pos ?
4. yes pos neg
5. ? neg ?
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The EM algorithm (requires MAR)

E-step 1

M-step 2

E-step 3

Pr

Pr

Ut

Ut

Bt

Bt

P0(Pr) = (0.5, 0.5)

P0(Ut = pos |Pr) = (0.5, 0.5)

P0(Bt = pos |Pr) = (0.5, 0.5)

P1(Pr) = ( 4
5
, 1

5
)

P1(Ut = pos |Pr) = ( 2.25
4

, 0.75
1

)

P1(Bt = pos |Pr) = ( 2.5
4

, 0.5
1

)

E0[N(Pr)] = (4, 1)

E0[N(Ut = pos, P r)] = (2.25, 0.75)

E0[N(Bt = pos, P r)] = (2.5, 0.5)

E1[N(Pr)] = ( , )

E1[N(Ut = pos, P r)] = ( , )

E1[N(Bt = pos, P r)] = ( , )

Cases Pr Bt Ut

1. ? pos pos
2. yes neg pos
3. yes pos ?
4. yes pos neg
5. ? neg ?Section 3Learning of Bayesian Networks – p. 8/26



The EM algorithm (requires MAR)

Until convergence

E-step 1

M-step 2

E-step 3

M-step 4

Pr

Pr

Ut

Ut

Bt

Bt

P0(Pr) = (0.5, 0.5)

P0(Ut = pos |Pr) = (0.5, 0.5)

P0(Bt = pos |Pr) = (0.5, 0.5)

P1(Pr) = ( 4
5
, 1

5
)

P1(Ut = pos |Pr) = ( 2.25
4

, 0.75
1

)

P1(Bt = pos |Pr) = ( 2.5
4

, 0.5
1

)

P2(Pr) = (·, .·)

P2(Ut = pos |Pr) = (·, .·)

P2(Bt = pos |Pr) = (·, .·)

E0[N(Pr)] = (4, 1)

E0[N(Ut = pos, P r)] = (2.25, 0.75)

E0[N(Bt = pos, P r)] = (2.5, 0.5)

E1[N(Pr)] = ( , )

E1[N(Ut = pos, P r)] = ( , )

E1[N(Bt = pos, P r)] = ( , )

Cases Pr Bt Ut

1. ? pos pos
2. yes neg pos
3. yes pos ?
4. yes pos neg
5. ? neg ?
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The EM algorithm in general

Pr

UtBt

Cases Pr Bt Ut

1. ? pos pos
2. yes neg pos
3. yes pos ?
4. yes pos neg
5. ? neg ?

1. Let θ
0 = {θijk} be some start estimates (P (Xi = j | pa(Xi = k) = θijk).

2. Repeat until convergence:

E-step: For each variable Xi calculate the table of expected counts:

E

θ
t

[N(Xi, pa(Xi) | D] =
∑

d ∈ D

P (Xi, pa(Xi) |d, θt).

P (Xi, pa(Xi) |d, θt) is achieved from the BN with parameters θ
t.

M-step: Use the expected counts as if they were actual counts:

θ̂ijk =
E

θ
i [N(Xi = k, pa(Xi) = j | D]

∑|sp(Xi)|
k=1 E

θ
i [N(Xi = k, pa(Xi) = j | D]

.
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Learning the structure of Bayesian networks

Some agent produces samples D of cases from a Bayesian network M over the universe U .

➤ These cases are handed over to you, and you should now reconstruct M from the
cases.

Assumptions:

➤ The sample is fair (PD(U) reflects the distribution determined by M ).

➤ All links in M are essential.

A naïve procedure:

• For each Bayesian network structure N :

- Calculate the distance between PN (U) and PD(U) (e.g. Kullback-Leibler
divergence).

• Return the network N that minimizes the distance, and where all links are essential.

But this is hardly feasible!
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The space of network structures is huge!

The number of DAG structures (as a function of the number of nodes):

f(n) =
n

∑

i=1

(−1)i+1 n!

(n− i)!i!
2i(n−i)f(n− i).

Some example calculations:

Nodes Number of DAGs Nodes Number of DAGs

1 1 13 1.9 · 1031

2 3 14 1.4 · 1036

3 25 15 2.4 · 1041

4 543 16 8.4 · 1046

5 29281 17 6.3 · 1052

6 3.8 · 106 18 9.9 · 1058

7 1.1 · 109 19 3.3 · 1065

8 7.8 · 1011 20 2.35 · 1072

9 1.2 · 1015 21 3.5 · 1079

10 4.2 · 1018 22 1.1 · 1087

11 3.2 · 1022 23 7.0 · 1094

12 5.2 · 1026 24 9.4 · 10102
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Two approaches to structural learning

Score based learning:

➤ Produces a series of candidate structures.

➤ Returns the structure with highest score.

Constraint based learning:

➤ Establishes a set of conditional independence statements for the data.

➤ Builds a structure with d-separation properties corresponding to the independence
statements found.
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Constraint based learning

Some notation:

➤ To denote that A is conditionally independent of B given X in the database we shall
use

I(A, B,X ).Some assumptions:

➤ The database is a faithful sample from a Bayesian network M : A and B are d-separated
given X in M if and only if I(A, B,X ).

➤ We have an oracle that correctly answers questions of the type:
“Is I(A, B,X )?”

The algorithm: Use the oracle’s answers to first establish a skeleton of a Bayesian network:

➤ The skeleton is the undirected graph obtained by removing directions on the arcs.

C C

BAA B

Next, when the skeleton is found we then start looking for the directions on the arcs.
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Finding the skeleton

The idea: if there is a link between A and B in M then they cannot be d-separated, and as
the data is faithful it can be checked by asking questions to the oracle:

➤ The link A−B is part of the skeleton if and only if ¬I(A, B,X ), for all X .
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Setting the directions on the links I

Rule 1: If you have three nodes, A, B, C such that A−C and B−C, but not A−B, then intro-
duce the v-structure A → C ← B if there exists an X (possibly empty) such that I(A, B,X )

and C 6∈ X .

A B

CC

BA

Example: Assume that we get the independencies I(A, B), I(A, B, D), I(A, D), I(A, D, B),

I(A, D, {B, C}), I(A, D, {B, C, E}), I(C, D, B), I(C, D, {A, B}), I(B, E, {C, D}),
I(B, E, {C, D, A}), I(A, E, {C, D}) and I(A, E, {C, D, B}).

B

C D

E

A
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Setting the directions on the links I

Rule 1: If you have three nodes, A, B, C such that A−C and B−C, but not A−B, then intro-
duce the v-structure A → C ← B if there exists an X (possibly empty) such that I(A, B,X )

and C 6∈ X .

A B

CC

BA

Example: Assume that we get the independencies I(A, B), I(A, B, D), I(A, D), I(A, D, B),

I(A, D, {B, C}), I(A, D, {B, C, E}), I(C, D, B), I(C, D, {A, B}), I(B, E, {C, D}),
I(B, E, {C, D, A}), I(A, E, {C, D}) and I(A, E, {C, D, B}).

B

C D

E

A B

C D

E

A
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Setting the directions on the links II

Rule 2 [Avoid new v-structures]: When Rule 1 has been exhausted, and you have A→ C−B

(and no link between A and B), then direct C → B.

Rule 3 [Avoid cycles]: If A→ B introduces a directed cycle in the graph, then do A← B

Rule 4 [Choose randomly]: If none of the rules 1-3 can be applied anywhere in the graph,

choose an undirected link and give it an arbitrary direction.

Example:

B

C D

E

A B

C D

E

A B

C D

E

A

Skeleton Rule 1 Rule 4
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From independence tests to skeleton

Until now, we have assumed that all questions of the form “Is I(A, B,X )?” can be answered
(allowing us to establish the skeleton). However, questions come at a price, and we would
like to ask as few questions as possible.

To reduce the number of questions we exploit the following property:

Theorem: The nodes A and B are not linked if and only if I(A, B, pa(A)) or I(A, B, pa(B)).

It is sufficient to ask questions I(A, B,X ), where X is a subset of A’s or B’s neighbors.

A B C

D E

F G H
An active path from A to G must go through a parent of G.
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The PC algorithm

The PC algorithm:

1. Start with the complete graph;

2. i := 0;

3. while a node has at least i + 1 neighbors

- for all nodes A with at least i + 1 neighbors

- for all neighbors B of A

- for all neighbor sets X such that |X | = i and X ⊆ (nb(A) \ {B})

- if I(A, B,X ) then remove the link A− B and store "I(A, B,X )"

- i := i + 1

Section 3Learning of Bayesian Networks – p. 19/26



Example

We start with the complete graph and ask the questions I(A, B)?, I(A, C)?, I(A, D)?,
I(A, E)?, I(B, C)?, I(B, D)?, I(B, E)?, I(C, D)?, I(C, E)?, I(D, E)?

B

C D

E

A B

C D

E

A

The original model The complete graph

Section 3Learning of Bayesian Networks – p. 20/26



Example

We start with the complete graph and ask the questions I(A, B)?, I(A, C)?, I(A, D)?,
I(A, E)?, I(B, C)?, I(B, D)?, I(B, E)?, I(C, D)?, I(C, E)?, I(D, E)?.

B

C D

E

A B

C D

E

A

The original model The complete graph

We get a “yes” for I(A, B)? and I(A, D)?:

➤ the links A−B and A−D are therefore removed.
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Example

We now condition on one variable and ask the questions I(A, C, E)?, I(A, E, C)?,
I(B, C, D)?, I(B, C, E)?, I(B, D, C)?, I(B, D, E)?, I(B, E, C)?, I(B, E, D)?, I(C, B, A)?,
. . . ,I(C, D, A)?, I(C, D, B)?.

B

C D

E

A B

C D

E

A

The original model After one iteration
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Example

We now condition on one variable and ask the questions I(A, C, E)?, I(A, E, C)?,
I(B, C, D)?, I(B, C, E)?, I(B, D, C)?, I(B, D, E)?, I(B, E, C)?, I(B, E, D)?, I(C, B, A)?,
. . . ,I(C, D, A)?, I(C, D, B)?.

B

C D

E

A B

C D

E

A

The original model After one iteration

The question I(C, D, B)? has the answer "yes":

➤ we therefore remove the link C −D.
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Example

We now condition on two variables and ask questions like I(B, C, {D, E})?.

B

C D

E

A B

C D

E

A

The original model After two iterations

The questions I(B, E, {C, D})? and I(E, A, {C, D})? have the answer “yes”:

➤ we therefore remove the links B − E and A− E.
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Example

We now condition on three variables, but since no node has four neighbors we are finished.

B

C D

E

A B

C D

E

A

The original model After three iterations

The identified set of independence statements are then I(A, B), I(A, D), I(C, D, B),
I(A, E, {C, D}), and I(B, E, {C, D}). They are sufficient for applying rules 1-4.
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Real world data

The oracle is a statistical test, e.g. conditional mutual information:

CE(A, B|X) =
∑

X

P (X)
∑

A,B

P (A, B|X) log
P (A, B|X)

P (A|X)P (B|X)
.

I(A, B, X)⇔ CE(A, B|X) = 0.

However, all tests have false positives and false negatives, which may provide false re-
sults/causal relations!

Similarly, false results may also be caused to hidden variables:

E

D

B C

A
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