Scheduling: Performance and Asymptotics - part I

Bert Zwart
CWI, VU University, Eurandom, Georgia Tech

November 19, 2009

YEQT-III

Scheduling

- Area at the core of OR and CS
- Many applications (not only in computer systems)
- Playground for theoreticians, leading to different paradigms
- Worst-case analysis (many books, for e.g. Pinedo (2008)), optimization/complexity/approximation algorithms, ...
- Average case analysis (closer to queueing/performance analysis)
- "something in between"

Focus: "something in between"

- Main scheduling paradigms: average case analysis and worst case analysis
- Many impressive results are available
- Disjoint communities
- Focus in this tutorial: probabilistic (not worst-case) but focusing on bad events (i.e. not average case)
- Main performance measure: response time (a.k.a. processing time) of a job

Typical questions

- How likely is it that a long sojourn time will occur?
- If a long sojourn time occurs, how does it occur? How can we avoid this?
- Can we avoid long-sojourn times effectively if we don't know much about the distribution of the job sizes?
- How do we deal with multiple job classes?
- Central question: how do we choose a scheduling policy in order to effectively mitigate the negative impact of rare events?
- Use tools from large deviations theory

Some common scheduling disciplines

Key notions:

- Work-conserving
- Preemptive vs. non-preemptive
- Blind vs. size based
- Adaptive vs. non-adaptive

Key examples:

- FCFS/FIFO
- ROS (Random order of Service)
- LCFS/LIFO (Last come first served)
- PS (Processor Sharing)
- SRPT (Shortest Remaining Processing Time)
- FB (Foreground background PS)

Overview

- Tutotial on intersection of:
- Scheduling
- Queueing/Performance analysis
- Large deviations
- Today:
- Introduction
- Basics on large deviations (light and heavy tails)
- Rare events in FIFO queues
- Tomorrow:
- LIFO, PS, SRPT, ...
- Robustness and optimality issues
- Multi-class and multi-node systems

Large deviations for light tails

Let $X_{i}, i \geq 1$ be an i.i.d. sequence with $\mu=E\left[X_{1}\right]$.
Let $S_{0}=0$ and for $n \geq 1$, let $S_{n}=X_{1}+\ldots+X_{n}$.
We first recall some more basic limit theorems:
Laws of Large Numbers:
The strong law of large numbers (SLLN) states that

$$
P\left(\lim _{n \rightarrow \infty} S_{n} / n=\mu\right)=1,
$$

we often say that $S_{n} / n \rightarrow \mu$ almost surely (a.s.).
The weak law of large numbers (WLLN) states that

$$
\lim _{n \rightarrow \infty} P\left(\left|S_{n} / n-\mu\right|>\epsilon\right)=0
$$

for every $\epsilon>0$.

Correcting the LLN

The LLN says that $S_{n} \approx \mu n$ for n large.
Two basic questions:

1. Can we refine $S_{n}-\mu n$?
2. How fast is the convergence to 0 in the WLLN?

Answer to question 1: Central limit theorem. Suppose $E\left[X_{1}^{2}\right]<\infty$.

$$
\frac{S_{n}-\mu n}{\sigma \sqrt{n}} \xrightarrow{d} U \stackrel{d}{=} N(0,1),
$$

as $n \rightarrow \infty$.
Naive answer to question 2:

$$
P\left(S_{n}-\mu n>\epsilon n\right) \approx P(\sigma U>\epsilon \sqrt{n})
$$

Not accurate if X_{1} is non-normal (no uniform convergence)!

Rare events: simple estimates

We are interested in the event $\left\{S_{n}>a n\right\}$ with $a>\mu$. Assume $P\left(X_{1}>\right.$ a) >0. Observe:

$$
P\left(S_{n}>a n\right) \geq P\left(X_{i}>a, i=1, \ldots, n\right)=P\left(X_{1}>a\right)^{n} .
$$

Thus, rate of convergence in WLLN is at most exponentially fast.
To get a simple upper bound, observe

$$
P\left(S_{n}>a n\right) \leq E\left[e^{s X_{1}}\right]^{n} e^{-s a n}
$$

Optimizing over s leads to the Chernoff bound

$$
P\left(S_{n}>a n\right) \leq e^{-n \sup _{s \geq 0}\left[a s-\log E\left[\exp \left\{s X_{1}\right\}\right]\right]}
$$

Note: two exponential bounds do not agree with one another.
Note: bound only non-trivial if $a>\mu$ and $E\left[e^{\epsilon X_{1}}\right]<\infty$ for some $\epsilon>0$.

Rare events: Cramérs theorem

Some notation:

- Cumulant generating function of $X_{1}: \Lambda(s)=\log E\left[e^{s X_{1}}\right]$
- Convex conjugate of $\Lambda: \Lambda^{*}(a)=\sup _{s \geq 0}[a s-\Lambda(s)]$.
- Λ^{*} is convex, and strictly convex if X_{1} is non-deterministic
- Let s^{*} be such that $\Lambda^{*}(a)=a s^{*}-\Lambda\left(s^{*}\right)$.

Cramérs theorem states that the Chernoff bound is in some sense sharp:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log P\left(S_{n}>a n\right)=-\Lambda^{*}(a)
$$

Proof: need sharp lower bound.
We will continue to assume $P(X>a)>0$.

Lower bound

Define the subset A_{n} of \mathbb{R}^{n} by

$$
A_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{1}+\ldots+x_{n}>a n\right\} .
$$

Observe that

$$
P\left(S_{n} \geq a n\right)=\int_{A_{n}} d F\left(x_{1}\right) \ldots d F\left(x_{n}\right)
$$

with $F(x)=P(X \leq x)$. Given s^{*}, we define the so-called tilted distribution \tilde{F} of F as follows:

$$
d \tilde{F}(x)=\frac{e^{s^{*} x}}{E\left[e^{s^{*} X}\right]} d F(x)
$$

Let $\tilde{X}_{i}, i \geq \underset{\tilde{X}}{1}$ be an i.i.d. sequence with distribution function \tilde{F} and define $\tilde{S}_{n}=\tilde{X}_{1}+\ldots \tilde{X}_{n}$.

Lower bound (2)

We see that

$$
\begin{aligned}
& P\left(S_{n}>a n\right) \\
= & \int_{A_{n}} d F\left(x_{1}\right) \ldots d F\left(x_{n}\right) \\
= & \int_{A_{n}} e^{n \Lambda\left(s^{*}\right)} e^{-s^{*}\left(x_{1}+\ldots+x_{n}\right)} d \tilde{F}\left(x_{1}\right) \ldots d \tilde{F}\left(x_{n}\right) \\
= & \int_{\mathbb{R}^{n}} I\left(x_{1}+\ldots+x_{n}>a n\right) e^{n \Lambda\left(s^{*}\right)} e^{-s^{*}\left(x_{1}+\ldots+x_{n}\right)} d \tilde{F}\left(x_{1}\right) \ldots d \tilde{F}\left(x_{n}\right) \\
= & E\left[e^{-s^{*} \tilde{S}_{n}+n \Lambda\left(s^{*}\right)} I\left(\tilde{S}_{n}>a n\right)\right] .
\end{aligned}
$$

A second assumption we make is that $E\left[e^{\left(s^{*}+\epsilon\right) X}\right]<\infty$ for some $\epsilon>0$. Since $E\left[e^{s \tilde{X}}\right]=E\left[e^{\left(s^{*}+s\right) X}\right] / E\left[e^{s^{*} X}\right]$. We see that $E\left[e^{\epsilon \tilde{X}}\right]<\infty$, so that all moments of \tilde{X} are finite.

Verify that $E[\tilde{X}]=a$! Thus, \tilde{F} is designed in such a way that the mean has increased from μ to a, which makes the event of interest more likely.

Lower bound (3)

We see that

$$
\begin{equation*}
P\left(a n<\tilde{S}_{n}<a n+\sqrt{n}\right) \rightarrow P(0<U<1)>0 \tag{0.1}
\end{equation*}
$$

with U a normal random variable with zero mean and the same variance as \tilde{X}.

We are now ready to derive a sharp enough lower bound.

$$
\begin{aligned}
P\left(S_{n}>a n\right) & =E\left[e^{-s^{*} \tilde{S}_{n}+n \Lambda\left(s^{*}\right)} I\left(\tilde{S}_{n}>a n\right)\right] \\
& \geq E\left[e^{-s^{*} \tilde{S}_{n}+n \Lambda\left(s^{*}\right)} I\left(a n<\tilde{S}_{n}<a n+\sqrt{n}\right)\right] \\
& \geq e^{-s^{*}(a n+\sqrt{n})+n \Lambda\left(s^{*}\right)} P\left(a n<\tilde{S}_{n}<a n+\sqrt{n}\right) .
\end{aligned}
$$

Taking logarithms, dividing by n and letting $n \rightarrow \infty$ completes the proof.

Comments

- Large deviations and queueing: Schwarz \& Weiss (1995), Ganesh, O'Connell, Wischik (2004).
- General text: Dembo \& Zeitouni (1998).
- Extensions in DZ can be found on
- Cramér for more general sets: $P\left(S_{n} / n \in A\right)$ [generally one needs to tackle topological issues, which I circumvented]
- No regularity condition on distribution of X_{1}
- More general spaces
- "logarithmic asymptotics": $\log P\left(S_{n}>a n\right) \sim-n \Lambda^{*}(a)$:.
- "Exact asymptotics":

$$
P\left(S_{n}>a n\right) \sim \frac{C_{1}}{\sqrt{n}} e^{-n \Lambda^{*}(a)}
$$

(Bahadur-Rao (1976). See also DZ or Asmussen (2003))

The GI/GI/1 queue

Consider a GI/GI/1 FIFO queue with i.i.d. inter-arrival times $\left(A_{i}\right)$, i.i.d. service times $\left(B_{i}\right)$, working at speed 1. $\rho=E[A] / E[B]<1$.

Let W be the steady-state waiting time, and V the steady-state sojourn time, $V=W+B$.

Well-known result:

$$
W \stackrel{d}{=} \sup _{n \geq 0} S_{n}
$$

with $S_{n}=\sum_{i=1}^{n} X_{i}$ and $X_{i}=B_{i}-A_{i}$.
Main question: what is the behavior of

$$
P(W>x)=P\left(\sup _{n \geq 0} S_{n}>x\right)
$$

as $x \rightarrow \infty$?
Assume $E\left[e^{\epsilon X}\right]<\infty$ for some $\epsilon>0$ and $E[X]<0$.

Reduction to Cramér

The following crude bounds turn out to be sharp enough!

$$
\sup _{n} P\left(S_{n}>x\right) \leq P\left(\sup _{n} S_{n}>x\right) \leq \sum_{n=0}^{\infty} P\left(S_{n}>x\right)
$$

Upper bound: Let $u>0$ be such that $E\left[e^{u X}\right]<1$, and observe that

$$
\begin{aligned}
\sum_{n=0}^{\infty} P\left(S_{n}>x\right) & \leq \sum_{n=0}^{\infty} E\left[e^{u S_{n}}\right] e^{-u x} \\
& =\frac{1}{1-E\left[e^{u X}\right]} e^{-u x}
\end{aligned}
$$

Define $\gamma_{F}=\sup \left\{u: E\left[e^{u X}\right] \leq 1\right\}$.
Since the above bound is valid for all $u<\gamma_{F}$, we see that

$$
\limsup _{x \rightarrow \infty} \frac{1}{x} \log P(W>x) \leq-\gamma_{F}
$$

Lower bound

Use $P\left(S_{n}>x\right)$ with n chosen cleverly: $n=\lceil b x\rceil$ with $b=1 / \Lambda^{\prime}\left(\gamma_{F}\right)$.
Intuitively, this makes sense, since under the exponential tilting with this particular γ_{F}, we have $E\left[\tilde{X}_{1}\right]=\Lambda^{\prime}\left(\gamma_{F}\right)$.
Under this new probability distribution, the random walk S_{n} reaches level x at time $x / \Lambda^{\prime}\left(\gamma_{F}\right)$.

We see that

$$
\liminf _{x \rightarrow \infty} \frac{1}{x} \log P(W>x) \geq \liminf _{x \rightarrow \infty} \frac{1}{x} \log P\left(S_{\lceil b x\rceil}>x\right) .
$$

The latter liminf can be analyzed by transforming it in a problem of the type we have seen before.

Assume $E\left[e^{\gamma_{F} X_{1}}\right]=e^{\Lambda\left(\gamma_{F}\right)}=1$.

Lower bound (2)

Define $n=\lceil b x\rceil$ and observe that

$$
P\left(S_{\lceil b x\rceil}>x\right) \geq P\left(S_{n}>n / b\right)
$$

From Cramér's theorem, we conclude that

$$
\begin{aligned}
\liminf _{x \rightarrow \infty} \frac{1}{x} \log P\left(S_{\lceil b x\rceil}>x\right) & \geq b \liminf _{n \rightarrow \infty} \frac{1}{n} \log P\left(S_{n}>n / b\right) \\
& =-b \sup _{s \geq 0}[s / b-\Lambda(s)] \\
& =-\sup _{s \geq 0}\left[s-\Lambda(s) / \Lambda^{\prime}\left(\gamma_{F}\right)\right] .
\end{aligned}
$$

It can be shown that the optimal value of this optimization problem is γ_{F}. Since $\Lambda\left(\gamma_{F}\right)=0$, the corresponding value is γ_{F}.

We conclude

$$
\lim _{x \rightarrow \infty} \frac{-\log P(W>x)}{x}=\gamma_{F} .
$$

We call γ_{F} the decay rate of W.

Example

Consider the $M / M / 1$ queue with arrival rate λ and service rate μ. In this case

$$
E\left[e^{s X}\right]=E\left[e^{s B}\right] E\left[e^{-s A}\right]=\frac{\mu}{\mu-s} \frac{\lambda}{\lambda+s}
$$

It can be shown that $\gamma_{F}=\mu-\lambda$. The tilted distribution in the lower bound corresponds to switching λ and μ.

Consistent with

$$
P(W>x)=\rho e^{-(\mu-\lambda) x} .
$$

Comments

- The limit

$$
\lim _{x \rightarrow \infty} \frac{-\log P(W>x)}{x}=\gamma_{F}=\sup \left\{s: E\left[e^{s X}\right] \leq 1\right\}
$$

holds also if $E\left[e^{\gamma_{F} X_{1}}\right]<1$.

- Important interpretation: rare events under light tails typically occur by a temporary change of the underlying distribution, from F to some exponentially tilted \tilde{F}.
- In a queueing context, this causes the drift to change from negative to positive.
- Choosing \tilde{F} typically relates to a minimization problem. In GI/GI/1: trade off between the slope of the new drift, and the duration of the change.
- $b x$ can be interpreted as the time to overflow.
- $P(W>x) \leq P(V>x) \leq E\left[e^{\gamma_{F} B}\right] P(W>x)$, so V and W have the same decay rate.

Precise asymptotics

Assume that $E\left[X e^{\gamma_{F} X}\right]<\infty$ and set $\tau(x)=\inf \left\{n: S_{n}>x\right\}$, and that X is non-lattice.
As in the lower bound leading to Cramérs theorem, we can show that

$$
P(W>x)=e^{-\gamma_{F} x} E\left[e^{-\gamma_{F}\left(\tilde{S}_{\tau(x)}-x\right)}\right]
$$

with $\tilde{F}(d x)=e^{\gamma_{F} x} F(d x)$.
It can be shown, using the key renewal theorem for random walks (McDonald \& Ney (1978)), that the expected value converges to a limit C_{F}.

Thus, we have exact asymptotics

$$
P(W>x) \sim C_{F} e^{-\gamma_{F} x} .
$$

Heavy tails

The results obtained so far are not very meaningful if

$$
E\left[e^{\epsilon X}\right]=\infty
$$

for all $\epsilon>0$.
In this case, we say that X has a heavy (right) tail.
Examples of heavy tails:

- Pareto: $P(X>x) \sim x^{-\alpha}$
- Lognormal: $P(X>x) \sim e^{-(\log x)^{2}}$
- Weibull: $P(X>x) \sim e^{-x^{\alpha}}, \alpha \in(0,1)$.
- Any df with a hazard rate decreasing to 0 .

Classes of HT distributions

X is called long-tailed (and write $X \in \mathcal{L}$) if

$$
\frac{P(X>x+y)}{P(X>x)} \rightarrow 1
$$

as $x \rightarrow \infty$ for every $y>0$.
An equivalent way to write this is

$$
P(X>x+y \mid X>x) \rightarrow 1
$$

Subexponential distributions

A non-negative random variable X is subexponential if for two independent copies X_{1}, X_{2} of X,

$$
\frac{P\left(X_{1}+X_{2}>x\right)}{P\left(X_{1}>x\right)} \rightarrow 2
$$

as $x \rightarrow \infty$. We write $X \in \mathcal{S}$. Note that

$$
P\left(\max \left\{X_{1}, X_{2}\right\}>x\right) \sim 2 P\left(X_{1}>x\right)
$$

and that $X_{1}+X_{2}>\max \left\{X_{1}, X_{2}\right\}$. Thus, X is subexponential, if the inequality in

$$
P\left(X_{1}+X_{2}>x\right) \geq P\left(\max \left\{X_{1}, X_{2}\right\}>x\right)
$$

can be replace by " \sim ", and

$$
P\left(X_{1}+X_{2}>x ; \max \left\{X_{1}, X_{2}\right\}<x\right)=o\left(P\left(X_{1}>x\right)\right)
$$

Thus, a large sum is most likely due to a large maximum.

Properties

- $X \in \mathcal{L}$ and $Y \geq 0$ then $P(X>x+Y) \sim P(X>x)$.
- If $X \in \mathcal{S}$, then $\bar{F}^{n *}(x) / \bar{F}(x) \rightarrow n$.
- If $X \in \mathcal{S}$ and $P(Y>x)=o(P(X>x))$ and Y is independent of X, then $P(X+Y>x) \sim P(X>x)$.
- If $X \in \mathcal{S}$ then $X \in \mathcal{L}$. This may not hold if X can be negative!
- Kesten: If X is subexponential, then its distribution function F satisfies the following: for every $\epsilon>0$ there exists $K<\infty$ such that for every $n \geq 2$ and $x \geq 0$:

$$
\frac{\bar{F}^{n *}(x)}{\bar{F}(x)} \leq K(1+\epsilon)^{n}
$$

Random sums

Let N be a random variable independent of the i.i.d. sequence X_{1}, X_{2}, \ldots. Define the random sum $Z=X_{1}+\ldots+X_{N}$. What can we say about the tail behavior of Z if $X_{1} \in \mathcal{S}$?

Under the above conditions, if N is also such that $E\left[(1+\epsilon)^{N}\right]<\infty$ for some $\epsilon>0$, then

$$
\lim _{x \rightarrow \infty} \frac{P(Z>x)}{P\left(X_{1}>x\right)}=E[N] .
$$

Proof: Write $p_{n}=P(N=n)$ and observe that

$$
\frac{P(Z>x)}{P\left(X_{1}>x\right)}=\sum_{n=0}^{\infty} p_{n} \frac{\bar{F}^{n *}(x)}{\bar{F}(x)}
$$

Interchange of limit and sum is allowed: combine "Kesten" and dominated convergence.
Result is not true if N has heavier tail than X (tomorrow)!

Application to FIFO waiting time

Let B^{*} be a r.v. with density $P(B>x) / E[B]$.
Theorem (Korshunov (1997)). The following are equivalent:

1. $W \in \mathcal{S}$,
2. $B^{*} \in \mathcal{S}$,
3. $P(W>x) \sim \frac{\rho}{1-\rho} P\left(B^{*}>x\right)$.

Proof: Using Wiener-Hopf factorization for W. For $M / G / 1$:

$$
W \stackrel{d}{=} \sum_{i=1}^{N} B_{i}^{*},
$$

with $P(N=n)=(1-\rho) \rho^{n}$ so $E[N]=\frac{\rho}{1-\rho}$.
It can be shown that $P(B>x)=o\left(P\left(B^{*}>x\right)\right)$, so

$$
P(V>x)=P(W+B>x) \sim P(W>x) .
$$

Example: Regular variation

Part of the previous theorem have been shown by Borovkov (1971), Cohen (1973), Pakes (1975), Veraverbeke (1977). Extensions to non-iid input processes exist as well.

An important special case is

$$
P(B>x)=L(x) x^{-\alpha}, \alpha>1,
$$

with L slowly varying, i.e.

$$
L(a x) / L(x) \rightarrow 1
$$

for any $a>0$. In this case

$$
\begin{gathered}
P\left(B^{*}>x\right)=\frac{1}{E[B]} \int_{x}^{\infty} P(B>u) d u \sim \frac{1}{E[B](\alpha-1)} L(x) x^{1-\alpha} . \\
P(W>x) \sim \frac{\rho}{1-\rho} \frac{1}{E[B](\alpha-1)} L(x) x^{1-\alpha} .
\end{gathered}
$$

The principle of a single big jump

Most likely way to obtain the event $W>x$ (Zwart01, Baccelli+Foss02, Zachary04):

- At some time n, the random walk S_{n} has the typical value -an, $a=-E[X]$.
- $X_{n+1}=B_{n+1}-A_{n+1}$ is so large that $S_{n+1}>x$. For this to happen, we need $X_{n}>a n+x$.
- This can happen at any time n.

$$
\begin{aligned}
P(W>x) & \approx P\left(\cup_{n=1}^{\infty}\left\{S_{n} \approx-a n ; X_{n+1}>a n+x\right\}\right) \\
& \approx \sum_{n=0}^{\infty} P\left(X_{n+1}>a n+x\right)=\sum_{n=0}^{\infty} \bar{F}(a n+x) \\
& \sim \frac{1}{a} \int_{x}^{\infty} \bar{F}(u) d u \\
& \sim \frac{1}{a} \int_{x}^{\infty} \bar{P}(B>u) d u=\frac{\rho}{1-\rho} P\left(B^{*}>x\right) .
\end{aligned}
$$

Summary: The light-tailed case

- In beginning of busy period: Sample from exponentially $\left(\gamma_{F}\right)$ tilted distribution until level x is crossed.
- Maximum in busy cycle: $x+O(1)$

Summary: The heavy-tailed case

- In beginning of busy period (after $O(1)$ time): Huge job arrives
- Maximum in busy cycle: $x+O(x)$ (in case of regular variation) $x+O(a(x))$ (in general, $a(x)$ is "auxiliary function" from EVT)

Optimality (1)

For light tails, the main factor $e^{-\gamma_{F} x}$ cannot be improved!
For any scheduling discipline π :

$$
\begin{aligned}
P\left(V_{\pi}>x\right) & =\frac{1}{E[N]} E\left[\sum_{i=1}^{N} I\left(V_{\pi, i}>x\right)\right] \\
& \geq \frac{1}{E[N]} E\left[\sum_{i=1}^{N} I\left(V_{\pi, i}>x\right) I\left(C_{\max }>x\right)\right] \\
& \geq \frac{1}{E[N]} P\left(C_{\max }>x\right) .
\end{aligned}
$$

Iglehart (1972): $P\left(C_{\max }>x\right) \sim K e^{-\gamma_{F} x}$.
More generally: $-\log P\left(C_{\max }>x\right) \sim \gamma_{F} x$.
Optimality of FIFO w.r.t. decay rates is shown by Ramanan \& Stolyar (2001) for single nodes and by Stolyar (2003) for networks.

Optimality (2)

If service time tails are regularly varying, we see

$$
P(V>x)=O(x P(B>x)) .
$$

Intuition: $O(x)$ jobs in a busy period get stuck behind single large job.
Consistent with well known result: $E[V]<\infty \Leftrightarrow E\left[B^{2}\right]<\infty$.
Can we do better?

$$
E\left[V_{P S}\right]=\frac{E[B]}{1-\rho}, \quad E\left[V_{S R P T}\right] \leq E\left[V_{P S}\right]
$$

Anantharam (1999): Any nonpreemptive scheduling discipline is not optimal in case of pareto job sizes.

To be continued...

Tomorrow 13.30

