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Scheduling

• Area at the core of OR and CS

• Many applications (not only in computer systems)

• Playground for theoreticians, leading to different paradigms
– Worst-case analysis (many books, for e.g. Pinedo (2008)), opti-
mization/complexity/approximation algorithms, ...

– Average case analysis (closer to queueing/performance analysis)
– "something in between"
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Focus: "something in between"

• Main scheduling paradigms: average case analysis and worst case
analysis
• Many impressive results are available
• Disjoint communities
• Focus in this tutorial: probabilistic (not worst-case) but focusing on
bad events (i.e. not average case)
• Main performance measure: response time (a.k.a. processing time)
of a job
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Typical questions

• How likely is it that a long sojourn time will occur?
• If a long sojourn time occurs, how does it occur? How can we avoid
this?
• Can we avoid long-sojourn times effectively if we don’t know much
about the distribution of the job sizes?
• How do we deal with multiple job classes?
• Central question: how do we choose a scheduling policy in order to
effectively mitigate the negative impact of rare events?
• Use tools from large deviations theory
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Some common scheduling disciplines

Key notions:
•Work-conserving
• Preemptive vs. non-preemptive
• Blind vs. size based
• Adaptive vs. non-adaptive

Key examples:
• FCFS/FIFO
• ROS (Random order of Service)
• LCFS/LIFO (Last come first served)
• PS (Processor Sharing)
• SRPT (Shortest Remaining Processing Time)
• FB (Foreground background PS)
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Overview

• Tutotial on intersection of:
– Scheduling
– Queueing/Performance analysis
– Large deviations

• Today:
– Introduction
– Basics on large deviations (light and heavy tails)
– Rare events in FIFO queues

• Tomorrow:
– LIFO, PS, SRPT, ...
– Robustness and optimality issues
– Multi-class and multi-node systems



JJ J N I II 7/34JJ J N I II 7/34

Large deviations for light tails

Let Xi, i ≥ 1 be an i.i.d. sequence with µ = E[X1].

Let S0 = 0 and for n ≥ 1, let Sn = X1 + . . . + Xn.

We first recall some more basic limit theorems:

Laws of Large Numbers:
The strong law of large numbers (SLLN) states that

P ( lim
n→∞

Sn/n = µ) = 1,

we often say that Sn/n→ µ almost surely (a.s.).

The weak law of large numbers (WLLN) states that

lim
n→∞

P (|Sn/n− µ| > ε) = 0

for every ε > 0.
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Correcting the LLN

The LLN says that Sn ≈ µn for n large.

Two basic questions:
1. Can we refine Sn − µn?
2. How fast is the convergence to 0 in the WLLN?

Answer to question 1: Central limit theorem. Suppose E[X2
1 ] <∞.

Sn − µn
σ
√
n

d→ U
d
= N(0, 1),

as n→∞.

Naive answer to question 2:

P (Sn − µn > εn) ≈ P (σU > ε
√
n)

Not accurate if X1 is non-normal (no uniform convergence)!
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Rare events: simple estimates

We are interested in the event {Sn > an} with a > µ. Assume P (X1 >
a) > 0. Observe:

P (Sn > an) ≥ P (Xi > a, i = 1, ..., n) = P (X1 > a)n.

Thus, rate of convergence in WLLN is at most exponentially fast.

To get a simple upper bound, observe

P (Sn > an) ≤ E[esX1]ne−san.

Optimizing over s leads to the Chernoff bound

P (Sn > an) ≤ e−n sups≥0[as−logE[exp{sX1}]],

Note: two exponential bounds do not agree with one another.

Note: bound only non-trivial if a > µ and E[eεX1] <∞ for some ε > 0.
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Rare events: Cramérs theorem

Some notation:
• Cumulant generating function of X1: Λ(s) = logE[esX1]

• Convex conjugate of Λ: Λ∗(a) = sups≥0[as− Λ(s)].
• Λ∗ is convex, and strictly convex if X1 is non-deterministic
• Let s∗ be such that Λ∗(a) = as∗ − Λ(s∗).

Cramérs theorem states that the Chernoff bound is in some sense sharp:

lim
n→∞

1

n
logP (Sn > an) = −Λ∗(a).

Proof: need sharp lower bound.

We will continue to assume P (X > a) > 0.
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Lower bound

Define the subset An of Rn by

An = {(x1, . . . , xn) : x1 + . . . + xn > an}.

Observe that

P (Sn ≥ an) =

∫
An

dF (x1) . . . dF (xn),

with F (x) = P (X ≤ x). Given s∗, we define the so-called tilted distri-
bution F̃ of F as follows:

dF̃ (x) =
es

∗x

E[es∗X ]
dF (x).

Let X̃i, i ≥ 1 be an i.i.d. sequence with distribution function F̃ and
define S̃n = X̃1 + . . . X̃n.
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Lower bound (2)

We see that

P (Sn > an)

=

∫
An

dF (x1) . . . dF (xn)

=

∫
An

enΛ(s∗)e−s
∗(x1+...+xn)dF̃ (x1) . . . dF̃ (xn)

=

∫
Rn

I(x1 + . . . + xn > an)enΛ(s∗)e−s
∗(x1+...+xn)dF̃ (x1) . . . dF̃ (xn)

= E[e−s
∗S̃n+nΛ(s∗)I(S̃n > an)].

A second assumption we make is that E[e(s∗+ε)X ] <∞ for some ε > 0.
Since E[esX̃ ] = E[e(s∗+s)X ]/E[es

∗X ]. We see that E[eεX̃ ] <∞, so that all
moments of X̃ are finite.

Verify that E[X̃ ] = a! Thus, F̃ is designed in such a way that the mean
has increased from µ to a, which makes the event of interest more likely.
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Lower bound (3)

We see that

P (an < S̃n < an +
√
n)→ P (0 < U < 1) > 0, (0.1)

with U a normal random variable with zero mean and the same variance
as X̃ .

We are now ready to derive a sharp enough lower bound.

P (Sn > an) = E[e−s
∗S̃n+nΛ(s∗)I(S̃n > an)]

≥ E[e−s
∗S̃n+nΛ(s∗)I(an < S̃n < an +

√
n)]

≥ e−s
∗(an+

√
n)+nΛ(s∗)P (an < S̃n < an +

√
n).

Taking logarithms, dividing by n and letting n → ∞ completes the
proof.



JJ J N I II 14/34JJ J N I II 14/34

Comments

• Large deviations and queueing: Schwarz & Weiss (1995), Ganesh,
O’Connell, Wischik (2004).
• General text: Dembo & Zeitouni (1998).
• Extensions in DZ can be found on

– Cramér for more general sets: P (Sn/n ∈ A) [generally one needs
to tackle topological issues, which I circumvented]

– No regularity condition on distribution of X1

– More general spaces
• "logarithmic asymptotics": logP (Sn > an) ∼ −nΛ∗(a):.
• "Exact asymptotics":

P (Sn > an) ∼ C1√
n
e−nΛ∗(a).

(Bahadur-Rao (1976). See also DZ or Asmussen (2003))
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The GI/GI/1 queue

Consider a GI/GI/1 FIFO queue with i.i.d. inter-arrival times (Ai),
i.i.d. service times (Bi), working at speed 1. ρ = E[A]/E[B] < 1.

LetW be the steady-state waiting time, and V the steady-state sojourn
time, V = W + B.

Well-known result:
W

d
= sup

n≥0
Sn,

with Sn =
∑n

i=1Xi and Xi = Bi − Ai.

Main question: what is the behavior of

P (W > x) = P (sup
n≥0

Sn > x)

as x→∞?

Assume E[eεX ] <∞ for some ε > 0 and E[X ] < 0.
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Reduction to Cramér

The following crude bounds turn out to be sharp enough!

sup
n

P (Sn > x) ≤ P (sup
n

Sn > x) ≤
∞∑
n=0

P (Sn > x).

Upper bound: Let u > 0 be such that E[euX ] < 1, and observe that
∞∑
n=0

P (Sn > x) ≤
∞∑
n=0

E[euSn]e−ux

=
1

1− E[euX ]
e−ux.

Define γF = sup{u : E[euX ] ≤ 1}.
Since the above bound is valid for all u < γF , we see that

lim sup
x→∞

1

x
logP (W > x) ≤ −γF .



JJ J N I II 17/34JJ J N I II 17/34

Lower bound

Use P (Sn > x) with n chosen cleverly: n = dbxe with b = 1/Λ′(γF ).

Intuitively, this makes sense, since under the exponential tilting with
this particular γF , we have E[X̃1] = Λ′(γF ).
Under this new probability distribution, the random walk Sn reaches
level x at time x/Λ′(γF ).

We see that

lim inf
x→∞

1

x
logP (W > x) ≥ lim inf

x→∞

1

x
logP (Sdbxe > x).

The latter liminf can be analyzed by transforming it in a problem of
the type we have seen before.

Assume E[eγFX1] = eΛ(γF ) = 1.
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Lower bound (2)

Define n = dbxe and observe that

P (Sdbxe > x) ≥ P (Sn > n/b).

From Cramér’s theorem, we conclude that

lim inf
x→∞

1

x
logP (Sdbxe > x) ≥ b lim inf

n→∞

1

n
logP (Sn > n/b)

= −b sup
s≥0

[s/b− Λ(s)]

= − sup
s≥0

[s− Λ(s)/Λ′(γF )].

It can be shown that the optimal value of this optimization problem is
γF . Since Λ(γF ) = 0, the corresponding value is γF .

We conclude
lim
x→∞

− logP (W > x)

x
= γF .

We call γF the decay rate of W .
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Example

Consider the M/M/1 queue with arrival rate λ and service rate µ. In
this case

E[esX ] = E[esB]E[e−sA] =
µ

µ− s
λ

λ + s

It can be shown that γF = µ − λ. The tilted distribution in the lower
bound corresponds to switching λ and µ.

Consistent with
P (W > x) = ρe−(µ−λ)x.
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Comments

• The limit

lim
x→∞

− logP (W > x)

x
= γF = sup{s : E[esX ] ≤ 1}

holds also if E[eγFX1] < 1.
• Important interpretation: rare events under light tails typically occur
by a temporary change of the underlying distribution, from F to
some exponentially tilted F̃ .
• In a queueing context, this causes the drift to change from negative
to positive.
• Choosing F̃ typically relates to a minimization problem. In GI/GI/1:
trade off between the slope of the new drift, and the duration of the
change.
• bx can be interpreted as the time to overflow.
• P (W > x) ≤ P (V > x) ≤ E[eγFB]P (W > x), so V and W have
the same decay rate.
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Precise asymptotics

Assume that E[XeγFX ] < ∞ and set τ (x) = inf{n : Sn > x}, and that
X is non-lattice.
As in the lower bound leading to Cramérs theorem, we can show that

P (W > x) = e−γFxE[e−γF (S̃τ(x)−x)],

with F̃ (dx) = eγFxF (dx).

It can be shown, using the key renewal theorem for random walks
(McDonald & Ney (1978)), that the expected value converges to a limit
CF .

Thus, we have exact asymptotics

P (W > x) ∼ CFe
−γFx.
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Heavy tails

The results obtained so far are not very meaningful if

E[eεX ] =∞

for all ε > 0.

In this case, we say that X has a heavy (right) tail.

Examples of heavy tails:
• Pareto: P (X > x) ∼ x−α

• Lognormal: P (X > x) ∼ e−(log x)2

•Weibull: P (X > x) ∼ e−x
α, α ∈ (0, 1).

• Any df with a hazard rate decreasing to 0.
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Classes of HT distributions

X is called long-tailed (and write X ∈ L) if

P (X > x + y)

P (X > x)
→ 1

as x→∞ for every y > 0.

An equivalent way to write this is

P (X > x + y | X > x)→ 1.
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Subexponential distributions

A non-negative random variable X is subexponential if for two indepen-
dent copies X1, X2 of X ,

P (X1 + X2 > x)

P (X1 > x)
→ 2,

as x→∞. We write X ∈ S. Note that

P (max{X1, X2} > x) ∼ 2P (X1 > x),

and that X1 + X2 > max{X1, X2}. Thus, X is subexponential, if the
inequality in

P (X1 + X2 > x) ≥ P (max{X1, X2} > x)

can be replace by "∼", and

P (X1 + X2 > x; max{X1, X2} < x) = o(P (X1 > x)).

Thus, a large sum is most likely due to a large maximum.
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Properties

• X ∈ L and Y ≥ 0 then P (X > x + Y ) ∼ P (X > x).

• If X ∈ S, then F̄ n∗(x)/F̄ (x)→ n.

• If X ∈ S and P (Y > x) = o(P (X > x)) and Y is independent of
X , then P (X + Y > x) ∼ P (X > x).

• If X ∈ S then X ∈ L. This may not hold if X can be negative!

• Kesten: If X is subexponential, then its distribution function F
satisfies the following: for every ε > 0 there exists K <∞ such that
for every n ≥ 2 and x ≥ 0:

F̄ n∗(x)

F̄ (x)
≤ K(1 + ε)n
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Random sums

LetN be a random variable independent of the i.i.d. sequenceX1, X2, ....
Define the random sum Z = X1 + . . . + XN . What can we say about
the tail behavior of Z if X1 ∈ S?

Under the above conditions, if N is also such that E[(1 + ε)N ] <∞ for
some ε > 0, then

lim
x→∞

P (Z > x)

P (X1 > x)
= E[N ].

Proof: Write pn = P (N = n) and observe that

P (Z > x)

P (X1 > x)
=

∞∑
n=0

pn
F̄ n∗(x)

F̄ (x)
.

Interchange of limit and sum is allowed: combine "Kesten" and domi-
nated convergence.
Result is not true if N has heavier tail than X (tomorrow)!
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Application to FIFO waiting time

Let B∗ be a r.v. with density P (B > x)/E[B].

Theorem (Korshunov (1997)). The following are equivalent:
1. W ∈ S,
2. B∗ ∈ S,
3. P (W > x) ∼ ρ

1−ρP (B∗ > x).

Proof: Using Wiener-Hopf factorization for W . For M/G/1:

W
d
=

N∑
i=1

B∗i ,

with P (N = n) = (1− ρ)ρn so E[N ] = ρ
1−ρ.

It can be shown that P (B > x) = o(P (B∗ > x)), so

P (V > x) = P (W + B > x) ∼ P (W > x).
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Example: Regular variation

Part of the previous theorem have been shown by Borovkov (1971),
Cohen (1973), Pakes (1975), Veraverbeke (1977). Extensions to non-iid
input processes exist as well.

An important special case is

P (B > x) = L(x)x−α, α > 1,

with L slowly varying, i.e.

L(ax)/L(x)→ 1

for any a > 0. In this case

P (B∗ > x) =
1

E[B]

∫ ∞

x

P (B > u)du ∼ 1

E[B](α− 1)
L(x)x1−α.

P (W > x) ∼ ρ

1− ρ
1

E[B](α− 1)
L(x)x1−α.
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The principle of a single big jump

Most likely way to obtain the event W > x (Zwart01, Baccelli+Foss02,
Zachary04):
• At some time n, the random walk Sn has the typical value −an,
a = −E[X ].
• Xn+1 = Bn+1 − An+1 is so large that Sn+1 > x. For this to happen,
we need Xn > an + x.
• This can happen at any time n.

P (W > x) ≈ P (∪∞n=1{Sn ≈ −an;Xn+1 > an + x})

≈
∞∑
n=0

P (Xn+1 > an + x) =

∞∑
n=0

F̄ (an + x)

∼ 1

a

∫ ∞

x

F̄ (u)du

∼ 1

a

∫ ∞

x

P̄ (B > u)du =
ρ

1− ρ
P (B∗ > x).
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Summary: The light-tailed case
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x

0

Λ′(γF ) −(1− ρ)

P

• In beginning of busy period: Sample from exponentially(γF ) tilted
distribution until level x is crossed.
• Maximum in busy cycle: x + O(1)
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Summary: The heavy-tailed case

Q
Q
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x

0

−(1− ρ)

P

• In beginning of busy period (after O(1) time): Huge job arrives
• Maximum in busy cycle: x + O(x) (in case of regular variation)
x + O(a(x)) (in general, a(x) is "auxiliary function" from EVT)
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Optimality (1)

For light tails, the main factor e−γFx cannot be improved!

For any scheduling discipline π:

P (Vπ > x) =
1

E[N ]
E

[
N∑
i=1

I(Vπ,i > x)

]

≥ 1

E[N ]
E

[
N∑
i=1

I(Vπ,i > x)I(Cmax > x)

]
≥ 1

E[N ]
P (Cmax > x).

Iglehart (1972): P (Cmax > x) ∼ Ke−γFx.

More generally: − logP (Cmax > x) ∼ γFx.

Optimality of FIFO w.r.t. decay rates is shown by Ramanan & Stolyar
(2001) for single nodes and by Stolyar (2003) for networks.
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Optimality (2)

If service time tails are regularly varying, we see

P (V > x) = O(xP (B > x)).

Intuition: O(x) jobs in a busy period get stuck behind single large job.

Consistent with well known result: E[V ] <∞⇔ E[B2] <∞.

Can we do better?

E[VPS] =
E[B]

1− ρ
, E[VSRPT ] ≤ E[VPS].

Anantharam (1999): Any nonpreemptive scheduling discipline is not
optimal in case of pareto job sizes.
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To be continued...

Tomorrow 13.30


