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Scheduling

e Area at the core of OR and CS

e Many applications (not only in computer systems)

e Playground for theoreticians, leading to different paradigms
— Worst-case analysis (many books, for e.g. Pinedo (2008)), opti-
mization /complexity /approximation algorithms; ...
— Average case analysis (closer to queueing/performance analysis)
— "something in between"
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Focus: "something in between"

e Main scheduling paradigms: average case analysis and worst case
analysis

e Many impressive results are available
e Disjoint communities

e Focus in this tutorial: probabilistic (not worst-case) but focusing on
bad events (i.e. not average case)

e Main performance measure: response time (a.k.a. processing time)
of a job
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Typical questions

e How likely is it that a long sojourn time will occur?

e If a long sojourn time occurs, how does it occur? How can we avoid
this?

e Can we avoid long-sojourn times effectively if we don’t know much
about the distribution of the job sizes?

e How do we deal with multiple job classes?

e Central question: how do we choose a scheduling policy in order to
effectively mitigate the negative impact of rare events?

e Use tools from large deviations theory

<« <A D> » 4/34‘



Some common scheduling disciplines

Key notions:
e Work-conserving
e Preemptive vs. non-preemptive
e Blind vs. size based
e Adaptive vs. non-adaptive
Key examples:
e FCFS/FIFO
e ROS (Random order of Service)
e LCFS/LIFO (Last come first served)
e PS (Processor Sharing)
e SRPT (Shortest Remaining Processing Time)
e I'B (Foreground background PS)

«“< <AD>» 5/34‘



Overview

e Tutotial on intersection of:

— Scheduling
— Queueing /Performance analysis
— Large deviations

e Today:

— Introduction
— Basics on large deviations (light and heavy tails)
— Rare events in FIFO queues

e Tomorrow:

— LIFO, PS, SRPT, ...
— Robustness and optimality issues
— Multi-class and multi-node systems
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Large deviations for light tails

Let X;,7 > 1 be an i.i.d. sequence with u = F[X}].
Let Sy=0andforn>1,1et 5, =X, +...+ X,,.
We first recall some more basic limit theorems:

Laws of Large Numbers:
The strong law of large numbers (SLLN) states that

P(lim S,/n=pu) =1,

n—oo

we often say that S, /n — p almost surely (a.s.).

The weak law of large numbers (WLLN) states that
lim P(|S,/n—pu| >¢€) =0

for every e > 0.
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Correcting the LLN

The LLN says that .S, = un for n large.

Two basic questions:
1. Can we refine S,, — un?
2. How fast is the convergence to 0 in the WLLN?

Answer to question 1: Central limit theorem. Suppose E[X7] < oo.

A (3

o\ 1N

as n — 0.

Naive answer to question 2:
P(S, — pun > en) ~ P(cU > ey/n)

Not accurate if X7 is non-normal (no uniform convergence)!
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Rare events: simple estimates

We are interested in the event {5, > an} with a > p. Assume P(X; >
a) > 0. Observe:

P(S, >an)> P(X; > a,i=1,...n) = P(X; > a)".

Thus, rate of convergence in WLLN is at most exponentially fast.

To get a simple upper bound, observe
P(S, > an) < El[e*M]"e ",
Optimizing over s leads to the Chernoff bound
P(S, > an) < ¢ suPsolas—log Blexp{sX1}]

)

Note: two exponential bounds do not agree with one another.

Note: bound only non-trivial if @ > p and E[e“*] < oo for some € > 0.
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Rare events: Cramérs theorem

Some notation:
e Cumulant generating function of X;: A(s) = log E[e**1]
e Convex conjugate of A: A*(a) = sup,-qlas — A(s)].
e \* is convex, and strictly convex if X; is non-deterministic
e Let s* be such that A*(a) = as™ — A(s").

Cramérs theorem states that the Chernoftf bound is in some sense sharp:

1
lim —log P(S,, > an) = —A*(a).

n—oo 1,

Proof: need sharp lower bound.

We will continue to assume P(X > a) > 0.
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Lower bound

Define the subset A, of R" by
A, ={(z1,...,x,) t 21+ ...+ 2, >an}.
Observe that

P(S, > an) / dF(z1). .. dF(w,),

with F'(x) = P(X < x). Given s*, we define the so-called tilted distri-
bution F' of F' as follows:

= B dF(x).

define S, = X; +. X

Let Xi,j > 1 be an i.i.d. sequence with distribution function F and
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Lower bound (2)

We see that
P(S, > an)
= / dF(zy)...dF(x,)
An

_ / A g it B (1) dE ()
Ay

~

= / (214 ...+ z, > an)e™ e~ @ttwlgp(p))  dF(x,)
RTL

= Ele 5 [(S, > an)).

A second aissumption we make is that E[e**9¥] < oo for some € > 0.
Since Ele**] = Elet+9X] / ElesX]. We see that E[eX] < 0o, so that all

moments of X are finite.

Verify that E[X] = a! Thus, F is designed in such a way that the mean
has increased from p to a, which makes the event of interest more likely.
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Lower bound (3)

We see that
Plan < S, <an++/n) — P(0<U < 1) > 0, (0.1)

Witlg U a normal random variable with zero mean and the same variance
as X.

We are now ready to derive a sharp enough lower bound.

E[e* 5+ [(S, > an)]
Ele= M [(an < S, < an + v/n)]
et VA Plan < S, < an 4+ /n).

P(S, > an)

VARV,

Taking logarithms, dividing by n and letting n — oo completes the
proof.
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Comments

e Large deviations and queueing: Schwarz & Weiss (1995), Ganesh,
O’Connell, Wischik (2004).

e General text: Dembo & Zeitouni (1998).
e [xtensions in DZ can be found on

— Cramér for more general sets: P(S,/n € A) |generally one needs
to tackle topological issues, which I circumvented|

— No regularity condition on distribution of X;
— More general spaces

e "logarithmic asymptotics": log P(S, > an) ~ —nA\*(a):.

e "Exact asymptotics":

C .
P(S, > an) ~ —=e "N@,

Vn
(Bahadur-Rao (1976). See also DZ or Asmussen (2003))
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The GI/GI/1 queue

Consider a GI/GI/1 FIFO queue with i.i.d. inter-arrival times (A;),
i.i.d. service times (B;), working at speed 1. p = E[A]/E[B] < 1.

Let W be the steady-state waiting time, and V' the steady-state sojourn
time, V =W + B.

Well-known result: ;
W =supS,,

n>0
Main question: what is the behavior of

P(W > x) = P(sup S, > z)

n>0

as ¥ — o7

Assume Ee*] < oo for some € > 0 and E[X] < 0.
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Reduction to Cramér

The following crude bounds turn out to be sharp enough!

sup P(S, > z) < P(sup S, > z) < ZP(Sn > ).

n=0

Upper bound: Let u > 0 be such that E[e“*] < 1, and observe that

Z P(S,>x) < Z Ele"n])e
n=0 n=0
1 —uxr
= e
1 — Ele"X]

Define v = sup{u : E[e"*] < 1}.
Since the above bound is valid for all © < v, we see that

1
limsup —log P(W > z) < —vp.

r—00 X
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Lower bound

Use P(S, > x) with n chosen cleverly: n = [bx] with b = 1/A(vx).

Intuitively, this makes sense, since under the exponential tilting with
this particular vz, we have E[X;] = AN'(vr).

Under this new probability distribution, the random walk S, reaches
level x at time x /A (vr).

We see that

lim mf—log P(W > z) > lim mf—log P(Sp1 > ).

r—oo U r—oo U

The latter liminf can be analyzed by transforming it in a problem of
the type we have seen before.

Assume E[e7X1] = 20r) = 1,
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Lower bound (2)

Define n = [bx| and observe that
P(S[bﬂ > ZIZ) > P(Sn > n/b)

From Cramér’s theorem, we conclude that

1 1
liminf —log P(Sp,) > «) > bliminf —log P(S, > n/b)

e v _ —bns:gg[s% — A(s)]
= — i{;g[s — A(S)/A/(’YF)]'

[t can be shown that the optimal value of this optimization problem is
vr. Since A(vyr) = 0, the corresponding value is vp.

We conclude
. —log P(W > x)
lim = Yp.
T—00 T

We call v the decay rate of W.
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Example

Consider the M /M /1 queue with arrival rate A and service rate pu. In
this case

A
Ele*X] = Ele*®|Ble ] = -
—SA+s

It can be shown that v = p — A. The tilted distribution in the lower
bound corresponds to switching A and pu.

Consistent with
P(W > ) = pe W7,
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Comments

e The limit
i = log P(W > x)
T—00 T

holds also if Ele"*1] < 1.

e Important interpretation: rare events under light tails typically occur
by a temporary change of the underlying distribution, from F' to
some exponentially tilted F'.

= yp = sup{s : B[e**] < 1}

e In a queueing context, this causes the drift to change from negative
to positive.

e Choosing F typically relates to a minimization problem. In GI/GI/1:
trade off between the slope of the new drift, and the duration of the
change.

e bx can be interpreted as the time to overflow.

e PW > 1z) < P(V > z) < E[eP]P(W > z), so V and W have

the same decay rate.
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Precise asymptotics

Assume that E[Xe"*] < oo and set 7(x) = inf{n : S, > z}, and that
X is non-lattice.
As in the lower bound leading to Cramérs theorem, we can show that

P(W > :13) — e—vFﬂﬁE[e—’VF(ST(r)_x)],
with F(dz) = e F(dz).

[t can be shown, using the key renewal theorem for random walks
(McDonald & Ney (1978)), that the expected value converges to a limit
Ck.

Thus, we have exact asymptotics

P(W > z) ~ Cpe ™.
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Heavy tails

The results obtained so far are not very meaningful if
E[e*] = 00

for all € > 0.
In this case, we say that X has a heavy (right) tail.

Examples of heavy tails:
e Pareto: P(X > x) ~ax™®

e Lognormal: P(X > x) ~ ¢—(logz)”
o Weibull: P(X > z) ~e ™™, a € (0,1).

e Any df with a hazard rate decreasing to 0.
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Classes of HT distributions

X is called long-tailed (and write X € L) if

P(X >z +vy)
PX >2)

as x — oo for every y > 0.

An equivalent way to write this is

PX>zx+y|X>2)— L
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Subexponential distributions

A non-negative random variable X is subexponential if for two indepen-
dent copies X;, X5 of X,

P(X1+X2>:13)
P(X1>CC)

as £ — 0o. We write X € §. Note that

— 2,

P(max{X;, X5} > z) ~ 2P(X; > x),

and that X; + X5 > max{X;, Xy}. Thus, X is subexponential, if the
inequality in

P(X;+ Xy > x) > P(max{ Xy, Xp} > z)

!

can be replace by "~" and

P(X, 4+ Xy > x;max{ X, Xb} < z) = o(P(X; > x)).

Thus, a large sum is most likely due to a large maximum.
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Properties

e XcLandY >0then P(X >x+Y)~ P(X > x).
o If X € S, then F™(z)/F(z) — n.

olf X € Sand P(Y > z) = o(P(X > x)) and Y is independent of
X, then P(X +Y >x) ~ P(X > z).

o [f X € S then X € L. This may not hold if X can be negative!

e Kesten: If X is subexponential, then its distribution function F
satisfies the following: for every € > 0 there exists K < oo such that
for every n > 2 and x > 0:

F(x)
F(z)

< K(1+¢)"
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Random sums

Let NV be a random variable independent of the i.2.d. sequence X, X, ...
Define the random sum Z = X; + ... + Xy. What can we say about
the tail behavior of Z if X; € §7

Under the above conditions, if NV is also such that E[(1+ €)"] < oo for

some € > 0, then
. P(Z > x)
lim

T—00 P(Xl > CU)
Proof: Write p, = P(IN = n) and observe that

— E[N].

P(Z>z) ~~ F™()
P(X,>a) 2P Fz)

n—=

Interchange of limit and sum is allowed: combine "Kesten" and domi-
nated convergence.
Result is not true if N has heavier tail than X (tomorrow)!
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Application to FIFO waiting time

Let B* be a r.v. with density P(B > z)/FE|B].

Theorem (Korshunov (1997)). The following are equivalent:
1. WesS,
2. B €S,
3. P(W >z) ~ {£P(B" > x).

Proof: Using Wiener-Hopf factorization for W. For M/G/1:

LN e
W=y B
=1

with P(N =n) = (1 — p)p" so E[N] = :£.

p

It can be shown that P(B > x) = o(P(B* > x)), so
PV>xz)=PW+B>z)~PW >uz).
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Example: Regular variation

Part of the previous theorem have been shown by Borovkov (1971),
Cohen (1973), Pakes (1975), Veraverbeke (1977). Extensions to non-iid
input processes exist as well.

An important special case is
P(B>zx)=Lx)z % a>1,
with L slowly varying, i.e.
L(ax)/L(z) — 1

for any a > 0. In this case

P(B* > 1) = ﬁ /OO P(B > u)du ~ E[B](loz — 1)1)(:6):1:1_0‘
14 1 1—a
P(W > x) ~ T — BB - 1)L(x)3}
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The principle of a single big jump

Most likely way to obtain the event W > x (Zwart01, Baccelli+Foss02,
Zachary04):

e At some time n, the random walk S, has the typical value —an,

a=—FE[X].

e X, =B, — A, is so large that S, ;1 > x. For this to happen,
we need X,, > an + x.

e This can happen at any time n.
P(W >z) = ( S = —an; X, > an+:c})
~ ZP nil > an+x) = ZF(CLn—l—CU)
n=0

n=0

oL / " F(w)du
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Summary: The light-tailed case

N (r) —(1=p)

v

e In beginning of busy period: Sample from exponentially(yr) tilted
distribution until level x is crossed.

e Maximum in busy cycle: z + O(1)
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Summary: The heavy-tailed case

—(1—p)

~

e In beginning of busy period (after O(1) time): Huge job arrives

e Maximum in busy cycle: z + O(z) (in case of regular variation)
x + O(a(x)) (in general, a(x) is "auxiliary function" from EVT)
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Optimality (1)

For light tails, the main factor e™** cannot be improved!

For any scheduling discipline 7r:

P(Vo> 1) = =B > IV > x)]

N
> —NE ;I(Vm > 1) [(Chpe > x)]
2 —NP(Cmax > l’)
Iglehart (1972): P(Chue > ) ~ Ke 77
More generally: —log P(Clup > ) ~ Ypx.

Optimality of FIFO w.r.t. decay rates is shown by Ramanan & Stolyar
(2001) for single nodes and by Stolyar (2003) for networks.
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Optimality (2)

[f service time tails are regularly varying, we see
PV >2z)=0(xP(B > x)).

Intuition: O(z) jobs in a busy period get stuck behind single large job.
Consistent with well known result: E[V] < oo < E[B?] < co.

Can we do better?

EB
E[Vps| = 1[?2, E[Vsrpr] < E[Vps).
Anantharam (1999): Any nonpreemptive scheduling discipline is not
optimal in case of pareto job sizes.
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To be continued...

Tomorrow 13.30
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