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Overview

e Yesterday:

— Introduction
— Basics on large deviations (light and heavy tails)
— Rare events in FIFO queues

e Today:
— LIFO, PS, SRPT, ...

— Multi-class and multi-node systems
— Robustness and optimality issues
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Preemptive LIFO

Consider a GI/GI/1 FIFO queue with i.i.d. inter-arrival times (A;),
i.i.d. service times (B;), working at speed 1. p = E[A]/E[B] < 1.

Assume the service discipline is Preemptive LIFO.

Observation: sojourn time has same distribution as GI/GI/1 busy
period P.

We will review the behavior as P[P > x] as & — o0, both for light tails
and heavy tails.

In both case, assume a job of size B enters an empty system at time 0.
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Upper bound

Let A(z) = ZHNS) B; be the amount of work arriving to the system (0, x].
N(z)=max{n: A +...+ A, <z}
Upper bound:

P[P > x] P[B + A(z) > z

E[esB}E[esA(x)]e—sx.

IA A

Mandjes & Zwart (2004), Glynn & Whitt (1991):

r—00 U

1 1
lim — log E[e*4®] = U(s) := —dF ( ) :

Dy(s) = E[e*d],  ®p(s) = Ele*?].
For M/G/1: U(s) = A(Pp(s) — 1).
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Upper bound (2)

Thus,

log Ele*”]

1
—log P[P > z] <
T x

+ WU(s)(1+o(1)) — s.

optimizing over s, we obtain

1
limsup —log P[P > x] < —~;,

r—00 X

with

VL = sup[s — ¥(s)].

s>0
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Lower bound

Non-triviality assumption: p < 1, P(B > A) > 0.
Under this assumption, W(-) is strictly convex and — oo as s — o0,
Let s* = argsup,.ols — ¥(s)].

Assume that we have exponential inter-arrivals and that W(s) is finite
in a neighborhood of s* (for convenience of this talk only). This implies

1 =U'(s") = AD(s").
Consider a modified M /G /1, with service times with df proportional to
e’ *F(dr) and exponential A®g(s*) inter-arrival times.

(DBE(S) = q)B(S + S*)/CDB(S*).
Note that

p=(A+s")E[B] = (APp(s")Pp(s")/Pp(s") = 1.
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Lower bound (2)

The idea is to use this "tilted system" to develop a lower bound, like
we did yesterday for FIFO.

Like in the random walk case, we can obtain a fundamental identity:

P[P > z] = E[e"¢ 4@ (P > )]
E[e?)* A0 [(P > 2)I(A(z) < (1 + €)z)]
+

(
e TS TPIP > g0 A(z) < (1 + €)a.

VARV,

Since p = 1, P has infinite mean, so the probability on the r.h.s. has
zero decay rate. Thus,

log P|P
lim inf —2 P> 7] > —vyp — €5,
r—00 T
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Comments

o M/M/1: vz = p(l — \/p)*.
e Proof can be extended to renewal arrivals

e Result still holds without any regularity assumption on W.

e Precise asymptotics are known as well: see Palmowski & Rolski

(2005).

e Intuition: do exponential tilting of service times such that system
becomes critically loaded.
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Comparison with FIFO

Observe

vr = sup{s: Ga(—s)Pp(s) <1}
= sup{s : —s < &} (1/Pp(s))}
= sup{s:s— VU(s) > 0}.

Since W'(0) = p, and using strict convexity, it follows that

YL < (1= p)yr.
Conclusion: LIFO is not optimal in the light-tailed case.
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Heavy tails:intuition

v

e In beginning of busy period (after O(1) time): Huge job arrives if
size z(1 — p)

e Process drifts down at rate 1 — p.
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Idea of proof

Based on picture:

P[P > x] P[B,.: > x — A(z)]

P[Bmaaz > (1 o p):l?]

Q &

Made rigorous for regularly varying service times in Zwart (2001),
extended to lognormal and some Weibullian tails by Jelenkovic &
Momcilovic (2004).

Boxma (1979)/Asmussen (1999): P[B,... > x| ~ E[N]|P[B > z|.

Conclusion:

P[P > 1] ~ E[N]P[B > (1 — p)l.
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Comments

e Lissential step of the proof is to show that at least one job of size
> €x 1S necessary.

e Use rate of convergence results in the law of large numbers for trun-
cated random variables

e Proof idea only works in case of square root insensitivity.

Since
PB >z — A(x)] =P[B > z(1 — p) + O(Vx)]

one needs
P[B >z + v/z] ~ P[B > z.
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Comparison and optimility

If P[B > x| ~ L(x)x™®, then

P[P > 2] ~ E[N](1 — p)P(B > x).

Thus, the sojourn time under LIFO has the same tail as the service
time, up to a constant!

Thus, it is optimal (up to a constant).

Conclusion:
e FIFO outperforms LIFO for light tails (and is optimal)
e LIFO outperforms FIFO for regularly varying tails (and is optimal).
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Processor Sharing

e Processor Sharing is a service discipline where each job in the system
receives the same service rate.

e Old application: time-sharing in computer systems.

e New application: TCP-like bandwidth allocation mechanisms.

- | I -
—
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How does a large response time occur?

1. Huge amount of work/number of jobs upon arrival
2. Increased amount of work/arrivals during sojourn

3. Unusually large service time

e FIFO: Always case 1.
e LIFO with light tails: case 2
e LIFO with heavy tails: case 2 or 3.

o PS 77
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Heavy tails

One way to achieve sojourn time of length x is that your own service
time is (1 — p)x.

All other jobs will regard the big job as permanent (separation of
timescales).

PS with one permanent customer is stable, so throughput must be p.
Thus, service rate of 1 — p is allocated to large customer, leading to
sojourn of x

PV > z] ~P[B > z(1 — p)]
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Proot

R(x): amount of service obtained if you stay in system in [0, x].

PV > z| = P[B > R(z)).

We know: R(z)/z — 1—p as.
Can we replace R(x) by z(1 — p)?

Theorem: yes, if in addition P(B > z) = L(x)x™® and if there exists
e > 0 such that
P[R(z) < ex] = o(P|B > z]),

then
PV > z] ~P[B > z(1 — p)]
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Comments

PV > z] ~P[B > x(1 — p)]

e Called a reduced service rate approximation or reduced load approx-
imation.

e Sojourn time is primarily large because of a large service time.
e "[f you stay in the system for a long time, its your own fault".

e References: Z+Boxma00, Jelenkovic+Momecilovic03 (M/G/1)

e More general criteria as above (beyond M/G/1): reviewed in
Borst,Nunez,Z06.
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Light-tailed case

Let P* be the time to empty the system starting from equilibrium.

Upper bound

PV > z] < P[P* > 1]
< PW+ A(z) —x > 0]
< E[GSW]E[GSB]E[GSA(‘T)]e_sw.

Using similar arguments as before (optimizing over s), we obtain

log P
lim sup PV > 2 < —supls — ¥Y(s)] = —r.

T—00 T s>0
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Lower bound

Focus on M /G/1 for convenience of this talk.

To get a lower bound, assume all service times of jobs arriving af-
ter 0 are truncated at z,. Take tilted service times B with MGF

Dprzo (s + S)/Ppps,(Sec) and arrival rate A= AP gz, (), such that the
load becomes 1 + €.

Let A, (z) be the amount of work arriving in (0,) in this modified
system.

Note that the number of jobs in the system Q(u) at time w in this

modified system is bounded from below by (A, (u) — u)/xg, so it is
expected to increase at linear rate.
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Lower bound (2)

Let M be some constant. Change of measure (as in LIFO) yields the
magical identity:

[V>:C]
_ [ st (z) g )]
Ele" xSAx](V )1 (ue/2 < A(u) < (1+ €)u),u € (M, z)]

AVARLY,
Q)

—e(20s Vo SIPIV > g ue/2 < A(u) < (1 + €)u),u € (0,z))].

One can show that ¥, — V¥ and s, — s* so that
(1 B 26)86 — \Ifx()(SE) — VL

if first € | 0 and then x5 — oc.
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Lower bound (3)

We need to show that P[V > x;ue/2 < A(u) < (14 €)u),u € (M, z)]
decays to 0 at a rate slower than exponential. The second event has

positive probability by the FLLN (it can be made close to 1 by choosing
M large).
Since Q(u) > ue/(2xy) for u € (M, x) we get

PV > z;ue/2 < A(u) < (14 €)u,u € (M, z)]
P[B > M+/ 1 du]lPue/2 < A(u) < (1 + €)u,u € (M, z)]

>
— v 1+ ue/(2x)
> constP|B > const log z|.

This works if P|B > constlog x] decays slower than an exponential for
any const.

OK for phase-type, gamma. Not OK for e ¢ or bounded support.
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Comments

e For light tails, exponential decay is mainly explained by case 2, al-
though your service time should be long enough. This is a secondary
effect, not always showing in the light-tailed case.

e For deterministic service times, decay rate is not v, but somewhere
in between 7, and yg. It turns out that number of jobs at arrival
already needs to be of O(z).

e Precise asymptotics still not well understood from a probabilistic
point of view. For M/M/1 ROS, Flatto showed that

— —enpl/3
P(V > z) ~ cyz*be™a® "1,

Extends to PS by result of Borst,Boxma,Morrison & Nunez-Queija.

e Extended to M/G/1 by Knessl and Zhen.

“« <A>» 23/43‘



Multi-class and multi node systems

e Discriminatory Processor Sharing: results do not change for light-
tailed case.

e For heavy-tailed case: P|V; > z] ~ P|[B; > z(1 — p)] [not proven in
general so far, but surely is true]

e Bandwidth sharing networks: quite complicated in light-tailed case
(large deviations lower bound in thesis of Regina Egorova for mono-
tone bandwidth sharing networks)

e BS networks with heavy tails: reduced load equivalence proven in
some cases (several topologies under proportional fairness)

e Single-node with mixture of exponential tails and pareto tails: not
well understood:

log P[Vepp > z] = O(V/)
e GPS: Borst,Boxma,Jelenkovic (2002), Lelarge (2009).
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SRPT

e Heavy-tailed case like PS:
PV > z] ~P[B > x(1 — p)]

with similar intuition.

e Light tails like LIFO:
PV > z| > P[V > z; B > x|

This can be lower bounded by a busy period of jobs smaller than x,
which has decay rate v, ,,. Then take zy — oo.

e Does not work if B has bounded support with mass at right end
point xp. In that case, there is a connection with a priority queue,
and the decay rate is in the interval (v, vg].
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Other disciplines

e Extension of SRPT to wider family of size-based scheduling disci-
plines, so called "SMART" disciplines (Wierman et al): results stay
qualitatively the same

e Same story for FB.

e What makes a scheduling discipline optimal for light tails, and what
makes it optimal for heavy tails?

e More general framework is needed.
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The setup

e Scheduling discipline 7 with following properties:

— work-conserving,

— non-anticipative,

— non-learning (scheduling policy is independent of events before
last regeneration epoch).

e Let V. ; be sojourn time of ith arriving customer and let N be the
number of customers served during a busy period. Then, if p < 1,

V,: -5 V. with

PV, > x) ﬁE

zN:](VM > :U)] .

i=1
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Tail optimal scheduling

e We call a scheduling discipline 7, optimal under P if

, P(V,, > x)
lim sup < 00

r—o P(Vi> 1)

for any scheduling discipline 7. If the limsup is < 1 we call 7
strongly optimal.

e 7, is weakly optimal if

. P(V;ro > ZL’)1+€
lim sup PV > 2) < 00

for every scheduling discipline m and any € > 0.

e Challenge: what if we are allowed to vary P(-) as well?
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How to verify optimality

Lower bounds for any service discipline:

P\V,>zx) > P(B>x)

PV, >zx) = —NE ZN:I(VM- > x)]

> ﬁE ZI(VM > 1) (Chrar > :1:)]

1

Z mp(cmax > Qf)

Chae 18 the maximal amount of work in system during a busy period.

Upper bound: time it takes to empty entire system from stationary just
after an arrival (residual busy period).
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Optimality

e Recall that C),,, is the maximal amount of work in system during a
busy period.

= vp, so FIFO is weakly optimal for
light tails. This is shown before in a different setting by Ramanan
& Stolyar (2001).

e [t can be shown that ¢

e [f Cramér’s condition is satisfied, then FIFO is optimal: in this case
P(Ve > x) ~Ce 7™ ~ C'P(Choz > )

e For heavy tails, PS,.LIFO and SRPT are optimal.

e Main question: Can we construct a work-conserving non-anticipative
non-learning scheduling algorithm that will be weakly optimal for
P € P with P containing both light tails and heavy tailed service
times?
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NO!

Some intuition:

e Non-preemptive scheduling disciplines are not optimal, since O(z)
big jobs get stuck after a single big job of size > x arrives. This is
bad in case of heavy tails.

e PS, LIFO and SRPT all have the appealing property that system
stays stable if an infinite-size job is added. This seems a necessary
condition to be optimal for heavy tails.

e Suppose that a scheduling discipline retains stability after adding an
infinite-size job. If you are a large job, you will likely have to wait
for a busy period of small jobs to pass you, leading to busy-period
type behavior, which is bad in case of light tails.

e Proof is actually based on this intuition.
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First observation

For 7 to be optimal for both light tails and heavy tails we need:

Condition (A):
PV, > x)

lim sup < 00

100 TP(B > x)
for any € > 0, for all heavy tails.

Condition (B):
lim sup """ P(V, > ) < 00

r—00

for any € > 0, for all light tails.
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An implication of Condition (A)

e Let R(z) be the amount of service allocated to jobs arriving at the
system after time 0 in the interval (0, z].

e Proposition 1: Let a > 2. If Condition (A) holds, then

lim P(R(x) > (p—0)x | By >y(l—p)x)=1 Vo6 >0,y >1. (1)

Tr—00

e Proof of proposition will be by contradiction: we will show that
Condition (A) cannot hold if (1) does not hold.
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Proot of Proposition 1

e If (1) does not hold, there exists y > 1,d > 0,7 > 0 and a sequence
(x,) such that x,, — oo and

P(R(z,) < (p—0)z, | B > y(1 —p)z,) >, n>1

e Define

E, = {N(z,) € (A —7Y)xn, A+7)x,), Bi < \/dx,/4,
0t < N(n); Alzn) = (p = 0/2 = 1)an}.

e P(E,) — 1 by WLLN and since a > 2.
o [, = {R(xn) < (p—9d)zn}.

e P(E,UF, | B >y(l — p)x,) is bounded away from 0 for n large.
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Proot of Proposition 1 - ctd.

e Under E, U F),, the workload at time x,, is at least (0/2)x, and the
queue length is at least v/dx,,.

e In the interval [x,,x, + (0/4)x,] the workload will be larger than
(0/2)x, — (0/4)x, = (0/4)z,.

e Consequently, the number of customers that will be in the system

in the interval [x,, z, + (0/4)x,] will be at least (§/4)x,/\/dx,/4 =

\ox, /4.

e In other words: at least y/dx, /4 customers will have a sojourn time
exceeding 0x,, /4.

e Consequently, using the cycle formula:

oo PV > (6/4)00)

> ().
n—00 mP(B > CI?n)
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Non-technical summary

Recall condition (1):

lim P(R(x) > (p—08)x | Bi>y(l—p)x)=1 Vo >0,y > 1.

r—00

e This condition is necessary to be optimal for heavy tails. It guaran-
tees that jobs arriving after a large job get a service rate p.

e [f this condition does not hold, the workload builds up at some rate
0, causing also the queue length to build up.

e The amount of customers is increasing as least as a square root, and
a fraction of them will also get a large sojourn time.

e So the number of jobs in a cycle having a large sojourn time grows
at least like a square root to infinity if the first job in the cycle is
large.

«“< <AD>» 36/43‘



A light-tailed counterexample

e Let P(-) now be such that service times are light tailed.

e Recall again the condition (1) necessary for optimality in the heavy-
tailed case:

lim P*(R(z) > (p—08)xz | Bi>y(l—p)x)=1 V§>0,y > 1,

T—00

if B is regularly varying with index a > 2 under P*.

e Wish to use this to construct counterexample for light tails, unfor-
tunately, P # P*.

e [dea: Obtain P from P* using a change of measure argument.
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A light-tailed counterexample (2)

We construct an M /G /1 queue with the following properties:

e Take € € (0,1/4). Take B such that P*(B > z) = L(z)x™*, a > 2.
Take \* such that p* = N*E*[B] =1 —e.

e Define for s € (0, \*), P?® such that E*[e’?] = &*(0 — s)/P*(—s) and
A=\ —s.

e Pick sy such that p = py,, = A E*[B] € (e + €,1 — € — €°). Set
P = P>,

e We obtain vp = s¢ and v = s — W(sp).
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A light-tailed counterexample (3)

e Using a change of measure argument:
PV, > t)=e ™ME eIV, > 1),
X(t) = A(t) —t. This is larger than
e E e XO[(V, > 1), W(0) =0, X(t) <0,
R(t) > (1 — e+ e)t, B, > (e + €)Y

e Apply (1) with y = 1 +¢€, 6 = €, note P*(W(0) = 0) = ¢, and
X(t)/t - —e on P*.

e Also observe that R(t) > (1 — e + €2t and B, > (e + €)t imply
V. >t

e Thus, P(V, > t) > (1 — o(1))ee 1ter(c+<)t,
o v+ (e+ )y < (1 — p)yp + (e + €)yp < yr since p > €+ €.
e Thus, ' P(V, > t) — oo at exponential rate if (1) holds.
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Observations

e Proof technique above can be used to show that PS is strongly opti-
mal for heavy tails.

e Conjecture: FIFO is strongly optimal if Cramér’s condition holds.

e Not possible to design tail optimal scheduling algorithm without
knowledge of distribution.

e Proofs suggest that an algorithm that is tail optimal for heavy tails
leads to worst possible behavior for light tails and vice versa.

e Question: What information on distribution is necessary?

e Can we do better than worst case if we know the load p?
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Epilogue: Limited Processor Sharing

buffer T <
s SErver

e At most K jobs can be served simultaneously, according to PS
e Additional jobs wait in FIFO buffer.
e [dea: clever choice of K, for example as function of p.

e Current work with Adam Wierman and Jayakrishnan Nair.
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Some preliminary results

o [f PIB >z~ L(z)z™, then
—log P[V > z| ~ min{a, (a — 1)k} log z,

with k = inf{n : p > (1 — n/K)} the number of big jobs necessary
to saturate the system.

e [f B has decay rate vz > 0, then

VLPS—K = aér[gl]{(l —a)yr + ayg/K +sup[sa(l — 1/K) — ¥(s)]}

s>0

o K = (fp] seems a robust choice, leading to better than worst case

behavior for large classes of light-tailed and heavy-tailed distribu-
tions.

“«<Ar>» 42/43‘



References

e S.C. Borst, S. Nunez-Queija, B. Zwart. Sojourn time asymptotics in
processor sharing queues. Queueing Systems 53, 31-51, 2006.

e O.J. Boxma, B. Zwart. Tails in scheduling. Performance Evaluation
Review 34, 13-20, 2007.

e A. Wierman, B. Zwart. Is tail-optimal scheduling possible?
http://www.cs.caltech.edu/ adamw/papers/impossibility.pdf

«“< <AD>» 43/43‘



