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Overview

• Yesterday:
– Introduction
– Basics on large deviations (light and heavy tails)
– Rare events in FIFO queues

• Today:
– LIFO, PS, SRPT, ...
– Multi-class and multi-node systems
– Robustness and optimality issues
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Preemptive LIFO

Consider a GI/GI/1 FIFO queue with i.i.d. inter-arrival times (Ai),
i.i.d. service times (Bi), working at speed 1. ρ = E[A]/E[B] < 1.

Assume the service discipline is Preemptive LIFO.

Observation: sojourn time has same distribution as GI/GI/1 busy
period P .

We will review the behavior as P[P > x] as x→∞, both for light tails
and heavy tails.

In both case, assume a job of size B enters an empty system at time 0.
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Upper bound

LetA(x) =
∑N(x)

n=1 Bi be the amount of work arriving to the system (0, x].

N(x) = max{n : A1 + . . . + An ≤ x}.

Upper bound:

P[P > x] ≤ P[B + A(x) > x]

≤ E[esB]E[esA(x)]e−sx.

Mandjes & Zwart (2004), Glynn & Whitt (1991):

lim
x→∞

1

x
logE[esA(x)] = Ψ(s) := −Φ←A

(
1

ΦB(s)

)
.

ΦA(s) = E[esA], ΦB(s) = E[esB].

For M/G/1: Ψ(s) = λ(ΦB(s)− 1).
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Upper bound (2)

Thus,

1

x
log P[P > x] ≤ logE[esB]

x
+ Ψ(s)(1 + o(1))− s.

optimizing over s, we obtain

lim sup
x→∞

1

x
log P[P > x] ≤ −γL,

with

γL = sup
s≥0

[s− Ψ(s)].
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Lower bound

Non-triviality assumption: ρ < 1, P (B > A) > 0.

Under this assumption, Ψ(·) is strictly convex and →∞ as s→∞.

Let s∗ = arg sups≥0[s− Ψ(s)].

Assume that we have exponential inter-arrivals and that Ψ(s) is finite
in a neighborhood of s∗ (for convenience of this talk only). This implies

1 = Ψ′(s∗) = λΦ′B(s∗).

Consider a modified M/G/1, with service times with df proportional to
es

∗xF (dx) and exponential λΦB(s∗) inter-arrival times.

ΦB̃(s) = ΦB(s + s∗)/ΦB(s∗).

Note that

ρ̃ = (λ + s∗)E[B̃] = (λΦB(s∗)Φ′B(s∗)/ΦB(s∗) = 1.
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Lower bound (2)

The idea is to use this "tilted system" to develop a lower bound, like
we did yesterday for FIFO.

Like in the random walk case, we can obtain a fundamental identity:

P[P > x] = E[eΨ(s∗)x−s∗Ã(x)I(P̃ > x)]

≥ E[eΨ(s∗)x−s∗Ã(x)I(P̃ > x)I(Ã(x) < (1 + ε)x)]

≥ e−γLx−εs
∗xP[P̃ > x; Ã(x) < (1 + ε)x].

Since ρ̃ = 1, P̃ has infinite mean, so the probability on the r.h.s. has
zero decay rate. Thus,

lim inf
x→∞

log P[P > x]

x
≥ −γL − εs∗.
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Comments

• M/M/1: γL = µ(1−√ρ)2.

• Proof can be extended to renewal arrivals

• Result still holds without any regularity assumption on Ψ.

• Precise asymptotics are known as well: see Palmowski & Rolski
(2005).

• Intuition: do exponential tilting of service times such that system
becomes critically loaded.
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Comparison with FIFO

Observe

γF = sup{s : ΦA(−s)ΦB(s) ≤ 1}
= sup{s : −s ≤ Φ←A (1/ΦB(s))}
= sup{s : s− Ψ(s) ≥ 0}.

Since Ψ′(0) = ρ, and using strict convexity, it follows that

γL < (1− ρ)γF .

Conclusion: LIFO is not optimal in the light-tailed case.
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Heavy tails:intuition
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• In beginning of busy period (after O(1) time): Huge job arrives if
size x(1− ρ)

• Process drifts down at rate 1− ρ.
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Idea of proof

Based on picture:

P[P > x] ≈ P[Bmax > x− A(x)]

≈ P[Bmax > (1− ρ)x].

Made rigorous for regularly varying service times in Zwart (2001),
extended to lognormal and some Weibullian tails by Jelenkovic &
Momcilovic (2004).

Boxma (1979)/Asmussen (1999): P[Bmax > x] ∼ E[N ]P[B > x].

Conclusion:

P[P > x] ∼ E[N ]P[B > x(1− ρ)].
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Comments

• Essential step of the proof is to show that at least one job of size
≥ εx is necessary.

• Use rate of convergence results in the law of large numbers for trun-
cated random variables

• Proof idea only works in case of square root insensitivity.

Since
P[B > x− A(x)] = P[B > x(1− ρ) + O(

√
x)]

one needs
P[B > x +

√
x] ∼ P[B > x].
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Comparison and optimility

If P[B > x] ∼ L(x)x−α, then

P[P > x] ∼ E[N ](1− ρ)−αP (B > x).

Thus, the sojourn time under LIFO has the same tail as the service
time, up to a constant!

Thus, it is optimal (up to a constant).

Conclusion:
• FIFO outperforms LIFO for light tails (and is optimal)
• LIFO outperforms FIFO for regularly varying tails (and is optimal).
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Processor Sharing

• Processor Sharing is a service discipline where each job in the system
receives the same service rate.

• Old application: time-sharing in computer systems.

• New application: TCP-like bandwidth allocation mechanisms.

server
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How does a large response time occur?

1. Huge amount of work/number of jobs upon arrival

2. Increased amount of work/arrivals during sojourn

3. Unusually large service time

• FIFO: Always case 1.

• LIFO with light tails: case 2

• LIFO with heavy tails: case 2 or 3.

• PS ??
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Heavy tails

One way to achieve sojourn time of length x is that your own service
time is (1− ρ)x.

All other jobs will regard the big job as permanent (separation of
timescales).

PS with one permanent customer is stable, so throughput must be ρ.
Thus, service rate of 1 − ρ is allocated to large customer, leading to
sojourn of x

P[V > x] ∼ P[B > x(1− ρ)]

r
1
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Proof

R(x): amount of service obtained if you stay in system in [0, x].

P[V > x] = P[B > R(x)].

We know: R(x)/x→ 1− ρ a.s.

Can we replace R(x) by x(1− ρ)?

Theorem: yes, if in addition P (B > x) = L(x)x−α and if there exists
ε > 0 such that

P[R(x) < εx] = o(P[B > x]),

then
P[V > x] ∼ P[B > x(1− ρ)]
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Comments

P[V > x] ∼ P[B > x(1− ρ)]

• Called a reduced service rate approximation or reduced load approx-
imation.

• Sojourn time is primarily large because of a large service time.

• "If you stay in the system for a long time, its your own fault".

• References: Z+Boxma00, Jelenkovic+Momcilovic03 (M/G/1)

• More general criteria as above (beyond M/G/1): reviewed in
Borst,Nunez,Z06.
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Light-tailed case

Let P ∗ be the time to empty the system starting from equilibrium.

Upper bound

P[V > x] ≤ P[P ∗ > x]

≤ P[W + A(x)− x > 0]

≤ E[esW ]E[esB]E[esA(x)]e−sx.

Using similar arguments as before (optimizing over s), we obtain

lim sup
x→∞

log P[V > x]

x
≤ − sup

s≥0
[s− Ψ(s)] = −γL.
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Lower bound

Focus on M/G/1 for convenience of this talk.

To get a lower bound, assume all service times of jobs arriving af-
ter 0 are truncated at x0. Take tilted service times B̃ with MGF
ΦB∧x0

(s + sε)/ΦB∧x0
(sε) and arrival rate λ̃ = λΦB∧x0

(sε), such that the
load becomes 1 + ε.

Let Ãx0
(x) be the amount of work arriving in (0, x) in this modified

system.

Note that the number of jobs in the system Q̃(u) at time u in this
modified system is bounded from below by (Ãx0

(u) − u)/x0, so it is
expected to increase at linear rate.
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Lower bound (2)

Let M be some constant. Change of measure (as in LIFO) yields the
magical identity:

P[V > x]

= E[eΨx0
(sε)x−sεÃx0(x)I(Ṽ > x)]

≥ E[eΨx0
(sε)x−s∗Ã(x)I(Ṽ > x)I(uε/2 < Ã(u) < (1 + ε)u), u ∈ (M,x)]

≥ e−x(1+2ε)sε−Ψx0
(sε)P[Ṽ > x;uε/2 < Ã(u) < (1 + ε)u), u ∈ (0, x)].

One can show that Ψx0
→ Ψ and sε → s∗ so that

(1 + 2ε)sε − Ψx0
(sε)→ γL

if first ε ↓ 0 and then x0 →∞.
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Lower bound (3)

We need to show that P[Ṽ > x;uε/2 < Ã(u) < (1 + ε)u), u ∈ (M,x)]
decays to 0 at a rate slower than exponential. The second event has
positive probability by the FLLN (it can be made close to 1 by choosing
M large).
Since Q̃(u) > uε/(2x0) for u ∈ (M,x) we get

P[Ṽ > x;uε/2 < Ã(u) < (1 + ε)u, u ∈ (M,x)]

≥ P[B > M +

∫ x

M

1

1 + uε/(2x0)
du]P[uε/2 < Ã(u) < (1 + ε)u, u ∈ (M,x)]

≥ constP[B > const log x].

This works if P[B > const log x] decays slower than an exponential for
any const.

OK for phase-type, gamma. Not OK for e−ex or bounded support.
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Comments

• For light tails, exponential decay is mainly explained by case 2, al-
though your service time should be long enough. This is a secondary
effect, not always showing in the light-tailed case.

• For deterministic service times, decay rate is not γL, but somewhere
in between γL and γF . It turns out that number of jobs at arrival
already needs to be of O(x).

• Precise asymptotics still not well understood from a probabilistic
point of view. For M/M/1 ROS, Flatto showed that

P (V > x) ∼ c0x
−5/6e−c1x

1/3

e−γLx.

Extends to PS by result of Borst,Boxma,Morrison & Nunez-Queija.

• Extended to M/G/1 by Knessl and Zhen.
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Multi-class and multi node systems

• Discriminatory Processor Sharing: results do not change for light-
tailed case.
• For heavy-tailed case: P[Vi > x] ∼ P[Bi > x(1− ρ)] [not proven in
general so far, but surely is true]
• Bandwidth sharing networks: quite complicated in light-tailed case
(large deviations lower bound in thesis of Regina Egorova for mono-
tone bandwidth sharing networks)
• BS networks with heavy tails: reduced load equivalence proven in
some cases (several topologies under proportional fairness)
• Single-node with mixture of exponential tails and pareto tails: not
well understood:

log P[Vexp > x] = Θ(
√
x)

• GPS: Borst,Boxma,Jelenkovic (2002), Lelarge (2009).
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SRPT

• Heavy-tailed case like PS:

P[V > x] ∼ P[B > x(1− ρ)]

with similar intuition.

• Light tails like LIFO:

P[V > x] ≥ P[V > x;B > x0]

This can be lower bounded by a busy period of jobs smaller than x0,
which has decay rate γL,≤x0

. Then take x0 →∞.

• Does not work if B has bounded support with mass at right end
point xB. In that case, there is a connection with a priority queue,
and the decay rate is in the interval (γL, γF ].
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Other disciplines

• Extension of SRPT to wider family of size-based scheduling disci-
plines, so called "SMART" disciplines (Wierman et al): results stay
qualitatively the same

• Same story for FB.

•What makes a scheduling discipline optimal for light tails, and what
makes it optimal for heavy tails?

• More general framework is needed.
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The setup

• Scheduling discipline π with following properties:
– work-conserving,
– non-anticipative,
– non-learning (scheduling policy is independent of events before
last regeneration epoch).

• Let Vπ,i be sojourn time of ith arriving customer and let N be the
number of customers served during a busy period. Then, if ρ < 1,
Vπ,i

d→ Vπ with

P (Vπ > x) =
1

E[N ]
E

[
N∑
i=1

I(Vπ,i > x)

]
.
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Tail optimal scheduling

•We call a scheduling discipline π0 optimal under P if

lim sup
x→∞

P (Vπ0
> x)

P (Vπ > x)
<∞

for any scheduling discipline π. If the limsup is ≤ 1 we call π0
strongly optimal.

• π0 is weakly optimal if

lim sup
x→∞

P (Vπ0
> x)1+ε

P (Vπ > x)
<∞

for every scheduling discipline π and any ε > 0.

• Challenge: what if we are allowed to vary P (·) as well?



JJ J N I II 29/43JJ J N I II 29/43

How to verify optimality

Lower bounds for any service discipline:

P (Vπ > x) ≥ P (B > x)

P (Vπ > x) =
1

E[N ]
E

[
N∑
i=1

I(Vπ,i > x)

]

≥ 1

E[N ]
E

[
N∑
i=1

I(Vπ,i > x)I(Cmax > x)

]
≥ 1

E[N ]
P (Cmax > x).

Cmax is the maximal amount of work in system during a busy period.

Upper bound: time it takes to empty entire system from stationary just
after an arrival (residual busy period).
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Optimality

• Recall that Cmax is the maximal amount of work in system during a
busy period.

• It can be shown that γCmax = γF , so FIFO is weakly optimal for
light tails. This is shown before in a different setting by Ramanan
& Stolyar (2001).

• If Cramér’s condition is satisfied, then FIFO is optimal: in this case

P (VF > x) ∼ Ce−γFx ∼ C ′P (Cmax > x)

• For heavy tails, PS,LIFO and SRPT are optimal.

• Main question: Can we construct a work-conserving non-anticipative
non-learning scheduling algorithm that will be weakly optimal for
P ∈ P with P containing both light tails and heavy tailed service
times?
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NO!

Some intuition:
• Non-preemptive scheduling disciplines are not optimal, since O(x)
big jobs get stuck after a single big job of size ≥ x arrives. This is
bad in case of heavy tails.

• PS, LIFO and SRPT all have the appealing property that system
stays stable if an infinite-size job is added. This seems a necessary
condition to be optimal for heavy tails.

• Suppose that a scheduling discipline retains stability after adding an
infinite-size job. If you are a large job, you will likely have to wait
for a busy period of small jobs to pass you, leading to busy-period
type behavior, which is bad in case of light tails.

• Proof is actually based on this intuition.
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First observation

For π to be optimal for both light tails and heavy tails we need:

Condition (A):

lim sup
x→∞

P (Vπ > x)

xεP (B > x)
<∞

for any ε > 0, for all heavy tails.

Condition (B):
lim sup
x→∞

e(γF−ε)xP (Vπ > x) <∞

for any ε > 0, for all light tails.
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An implication of Condition (A)

• Let R̄(x) be the amount of service allocated to jobs arriving at the
system after time 0 in the interval (0, x].

• Proposition 1: Let α > 2. If Condition (A) holds, then

lim
x→∞

P (R̄(x) > (ρ−δ)x | B1 > y(1−ρ)x) = 1 ∀δ > 0, y > 1. (1)

• Proof of proposition will be by contradiction: we will show that
Condition (A) cannot hold if (1) does not hold.
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Proof of Proposition 1

• If (1) does not hold, there exists y > 1, δ > 0, γ > 0 and a sequence
(xn) such that xn →∞ and

P (R̄(xn) ≤ (ρ− δ)xn | B1 > y(1− ρ)xn) > γ, n ≥ 1.

• Define

En = {N(xn) ∈ ((λ− γ)xn, (λ + γ)xn), Bi ≤
√
δxn/4,

i ≤ N(xn);A(xn) ≥ (ρ− δ/2− 1)xn}.

• P (En)→ 1 by WLLN and since α > 2.

• Fn = {R̄(xn) ≤ (ρ− δ)xn}.

• P (En ∪ Fn | B1 > y(1− ρ)xn) is bounded away from 0 for n large.
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Proof of Proposition 1 - ctd.

• Under En ∪ Fn, the workload at time xn is at least (δ/2)xn and the
queue length is at least

√
δxn.

• In the interval [xn, xn + (δ/4)xn] the workload will be larger than
(δ/2)xn − (δ/4)xn = (δ/4)xn.

• Consequently, the number of customers that will be in the system
in the interval [xn, xn + (δ/4)xn] will be at least (δ/4)xn/

√
δxn/4 =√

δxn/4.

• In other words: at least
√
δxn/4 customers will have a sojourn time

exceeding δxn/4.

• Consequently, using the cycle formula:

lim inf
n→∞

P (Vπ > (δ/4)xn)√
xnP (B > xn)

> 0.
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Non-technical summary

Recall condition (1):

lim
x→∞

P (R̄(x) > (ρ− δ)x | B1 > y(1− ρ)x) = 1 ∀δ > 0, y > 1.

• This condition is necessary to be optimal for heavy tails. It guaran-
tees that jobs arriving after a large job get a service rate ρ.

• If this condition does not hold, the workload builds up at some rate
δ, causing also the queue length to build up.

• The amount of customers is increasing as least as a square root, and
a fraction of them will also get a large sojourn time.

• So the number of jobs in a cycle having a large sojourn time grows
at least like a square root to infinity if the first job in the cycle is
large.
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A light-tailed counterexample

• Let P (·) now be such that service times are light tailed.

• Recall again the condition (1) necessary for optimality in the heavy-
tailed case:

lim
x→∞

P ∗(R̄(x) > (ρ− δ)x | B1 > y(1− ρ)x) = 1 ∀δ > 0, y > 1,

if B is regularly varying with index α > 2 under P ∗.

•Wish to use this to construct counterexample for light tails, unfor-
tunately, P 6= P ∗.

• Idea: Obtain P from P ∗ using a change of measure argument.
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A light-tailed counterexample (2)

We construct an M/G/1 queue with the following properties:
• Take ε ∈ (0, 1/4). Take B such that P ∗(B > x) = L(x)x−α, α > 2.
Take λ∗ such that ρ∗ = λ∗E∗[B] = 1− ε.

• Define for s ∈ (0, λ∗), P s such that Es[eθB] = Φ∗(θ− s)/Φ∗(−s) and
λs = λ∗ − s.

• Pick s0 such that ρ = ρs0 = λs0E
s0[B] ∈ (ε + ε2, 1 − ε − ε2). Set

P = P s0.

•We obtain γF = s0 and γL = s0 − Ψ(s0).



JJ J N I II 39/43JJ J N I II 39/43

A light-tailed counterexample (3)

• Using a change of measure argument:

P (Vπ > t) = e−γLtE∗[e−s0X(t)I(Vπ > t)],

X(t) = A(t)− t. This is larger than

e−γLtE∗[e−s0X(t)I(Vπ > t),W (0) = 0, X(t) < 0,

R̄(t) > (1− ε + ε2)t, B1 > (ε + ε2)t]

• Apply (1) with y = 1 + ε, δ = ε2, note P ∗(W (0) = 0) = ε, and
X(t)/t→ −ε on P ∗.
• Also observe that R̄(t) > (1 − ε + ε2)t and B1 > (ε + ε2)t imply
Vπ > t.

• Thus, P (Vπ > t) ≥ (1− o(1))εe−γLte−γF (ε+ε2)t.

• γL + (ε + ε2)γF < (1− ρ)γF + (ε + ε2)γF < γF since ρ > ε + ε2.

• Thus, eγF tP (Vπ > t)→∞ at exponential rate if (1) holds.
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Observations

• Proof technique above can be used to show that PS is strongly opti-
mal for heavy tails.

• Conjecture: FIFO is strongly optimal if Cramér’s condition holds.

• Not possible to design tail optimal scheduling algorithm without
knowledge of distribution.

• Proofs suggest that an algorithm that is tail optimal for heavy tails
leads to worst possible behavior for light tails and vice versa.

• Question: What information on distribution is necessary?

• Can we do better than worst case if we know the load ρ?
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Epilogue: Limited Processor Sharing

server
buffer

<=K

• At most K jobs can be served simultaneously, according to PS
• Additional jobs wait in FIFO buffer.
• Idea: clever choice of K, for example as function of ρ.
• Current work with Adam Wierman and Jayakrishnan Nair.
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Some preliminary results

• If P[B > x] ∼ L(x)x−α, then

− log P[V > x] ∼ min{α, (α− 1)k} log x,

with k = inf{n : ρ > (1 − n/K)} the number of big jobs necessary
to saturate the system.

• If B has decay rate γB > 0, then

γLPS−K = inf
a∈[0,1]
{(1− a)γF + aγB/K + sup

s≥0
[sa(1− 1/K)− Ψ(s)]}

• K = d 1
1−ρe seems a robust choice, leading to better than worst case

behavior for large classes of light-tailed and heavy-tailed distribu-
tions.
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