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Replenishment models in make-to-stock queues
Divisible resources

Replenishment control problem (holding costs and backorder
penalties)

Arrival controlled make-to-stock queue

Many types of product, k , and numerous machines

We allow for limited backorders, and limited inventory stockpiling

Markovian, exponential distributions approach via Stochastic
Dynamic Programming

Objective: long-run cost minimization.

{Instantaneous cost rate in state i} = hi+ + bi− + DµI(i = −M)

Numerous natural applications
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Results with non-divisible resources

Ha (1997): hedging point and switching curve optimality, with two
identical demand products

de Vericourt, Karaesman, & Dallery (2000):
distinct bµ values, hedging point optimality

Zheng & Zipkin (1990) and Zipkin (1995):
centralized policy better than local demands served FCFS

Veatch & Wein (1996): Indices good for lost sales, not great for
idling. Perez & Zipkin’s myopic heuristic performed well. No indices
for backorders.
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The Model
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Simplification to a single product problem

As formulated, the K product problem is very hard to solve

Can be seen as a restless bandit, since all queues evolve while some
are being replenished

Our approach: reduction to a single-product subproblem. Two natural
approaches lead to same single-product problem:

1 Introduce a per unit time cost (W ) for machine usage, or

2 Whittle’s Lagrangian relaxation of the multi-product problem
(discussed later)
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DP equation and a change of variables

Easy to form DP

Optimal policy ⇐⇒ Satisfies DP

Uniformization ⇒

∆π
i+1(λ(π(i))− λ(π(i) + 1)) ≤W ≤ ∆π

i+1(λ(π(i)− 1)− λ(π(i)))

Key Idea

Introduce a scalar c on all inventory and backorder costs, and set W = 1.
Clearly a problem with W is equivalent to c = W −1. Why is it fruitful?

Now we can target our monotonicities . . .
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Objectives for the single product problem

State monotonicity

If we increase our inventory level do we desire to use fewer machines?

Cost monotonicity

If we increase the replenishment-costs do we use less replenishment? Yes,
certainly on average.
What about state-wise? This is indexability.
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Non-monotonicity in state

Take N = M = 10, S = 15, h = 0, b = 1.5, D = 50, µ = 0.6. The
production rate model is given by

λ(a) =
0.8a

1 + a
+ 0.05

The uniquely optimal policy P̄(c) in the stationary class when c = 0.0613
is given by

j -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

π∗(j) 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 0

Why does this happen?
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Monotonicity in state

Theorem (State monotonicity)

For λ(S) > µ, fixed model parameters, then there exists D∗ such that

D > D∗ =⇒ State Monotonicity

Furthermore

As we increase c the D we have looks relatively bigger and thus monotonicity
occurs for all large enough c .
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Non-monotonicity in c
non-indexability

Take S = 25, h = 0.05, b = 1.5, D = 50, µ = 0.65. Same convex form for
λ(a) (reciprocal).

The unique optimal stationary policy for P̄(c) is computed at four values
of c as follows:

j -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

π∗(j) 25 25 25 25 25 25 23 20 18 16 12 10 8 6 5 4 3 2 1 1 0 c = 26.4644
π∗(j) 25 25 25 25 25 25 23 21 18 16 12 10 8 6 5 4 3 2 1 1 0 c = 26.6114
π∗(j) 25 25 25 25 25 25 23 21 18 16 12 10 8 6 5 4 3 2 1 0 0 c = 26.7760
π∗(j) 25 25 25 25 25 25 23 21 18 16 13 10 8 6 5 4 3 2 1 0 0 c = 27.0362

Increasing c can make you use less resource! Why?
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Monotonicity in c

Theorem (Cost monotonicity — i.e. Indexability)

For fixed system parameters, there exists h∗ > 0 such that

0 ≤ h < h∗ =⇒ Optimal Policy is state-wise increasing in c

Furthermore, the provably sufficient h∗ is larger than most reasonable
values

Conclusion

For all small (reasonable) h, we have indexability
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Application to lost sales
as a special case of backorders

We can choose a maximal number of allowed backorders equal to 0

Maximum backorder penalty 7→ Lost Sales penalty in state 0

Same results apply

Theorem (State Monotonicity)

For large enough Lost Sales penalty D, we have state monotonicity.

Theorem (Indexability)

For small holding costs h we have indexability
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An algorithm for finding optimal policies

Our proof gives rise to easy to an implement algorithm

∆c
i+1(λ(π(i))− λ(π(i) + 1)) ≤W ≤ ∆c

i+1(λ(π(i)− 1)− λ(π(i)))

Start from c = 0, incrementally find optimal policies for all c
Recall cost function has the form

c × (Backorder & Inventory costs) + Machine costs
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Back to the multi-product problem

Restless bandit, generally very hard

Our single product approach arises from Whittle’s Lagrangian
relaxation approach:

I Relax the total number of machines
I Introduce an average machine usage requirement instead
I Lagrange multiplier W represents a cost per machine per unit time
I Product-wise decomposition follows

Other heuristics exist for S = 1: Zipkin & Perez, Wein & Veatch
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Indices for products
The index heuristic

What are our Indices?

Values of c (or W ) at which the optimal policy transitions. Equivalently,
fair charges for the next unit of machinery in a state.

Greedy heuristic for the multi-product scenario

Record the system state

Allocate machines sequentially using index values (by the highest
bidder) for each new machine

Stop when all S machines allocated, or no queues will pay.

Performance?

Why might indices perform well? Why might they fail?
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Relaxed solution in action

W1(2, 1)W1(2, 2)W1(2, 3)W1(2, 4) W1(2, 0)

W2(4, 4) W2(4, 3) W2(4, 2) W2(4, 1) W2(4, 0)

Queue 2

Queue 1

W

S = 5 and System state (2, 4)

Hodge & Glazebrook (Lancaster Uni.) Indices for replenishment 20th November 2009 18 / 22



Index heuristic in action
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Numerical performance

Policies

A simple myopic policy — maximize the rate of reduction of inventory
costs performs very poorly

Static policy — best fixed allocation of ≤ S servers between queues

Greedy Index heuristic (see above)

We therefore look primarily at benefits of dynamic state-dependent
allocations. Standard machine production rate

λ(a) = λa(a + m)−1 + ε

Fix S = 25, M = 10, N = 10, D = 50, b = 1.5, h = 1/5000, K = 2.
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A backorder model

PARAMETERS POLICIES

λ1 λ2 µ1 µ2 M1 M2
INDEX STATIC

MED MAX MED MAX

1.5 1.5 (1,1.5) (1,1.5) (4,6) (4,6) 0.024 0.116 2.673 27.141
1.5 3.0 (1,1.5) (2,3.0) (4,6) (4,6) 0.018 0.141 2.167 24.205
1.5 4.5 (1,1.5) (3,4.5) (4,6) (4,6) 0.019 0.528 2.177 35.293

1.2 1.2 (1,1.5) (1,1.5) (2,3) (2,3) 0.001 0.016 0.461 4.048
1.2 2.4 (1,1.5) (2,3.0) (2,3) (2,3) 0.001 0.016 0.414 5.640
1.2 3.6 (1,1.5) (3,4.5) (2,3) (2,3) 0.001 0.021 0.267 4.687

1.5 1.2 (1,1.5) (1,1.5) (4,6) (2,3) 0.008 0.114 0.881 8.408
3.0 1.2 (2,3.0) (1,1.5) (4,6) (2,3) 0.006 0.132 0.931 11.049
1.5 2.4 (1,1.5) (2,3.0) (4,6) (2,3) 0.009 0.147 0.840 11.010

Table: Overstretched production – large customer arrival rate
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A lost sales model

POLICIES
INDEX STATIC

MED MAX MED MAX

0.118 0.218 22.094 37.981
0.224 0.437 23.785 35.024
0.366 0.846 22.552 37.493

0.014 0.031 8.244 12.976
0.024 0.066 8.092 12.701
0.036 0.086 7.195 11.675

0.046 0.106 13.937 21.039
0.098 0.214 11.409 18.744
0.057 0.128 14.894 23.272

Table: Moderate demands – medium to large customer arrival rate
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Conclusion and extensions

Conclusions

Have found conditions for indexability in the single-product problem

Understanding of where indexability fails to hold, practical ways to
cope with non-indexability

Complexity reduction from index policies for large K are enormous

Further ideas

Necessary conditions for indexability? Too hard?

Other natural heuristics?

Could we use dynamic indices for non-fixed customer arrival rates?
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