Optimal index policies for multi-product make-to-stock queues: if resources are more costly would we use less?

D. J. Hodge & K. D. Glazebrook

Lancaster University, UK

November 20th 2009

#### Replenishment models in make-to-stock queues Divisible resources

- Replenishment control problem (holding costs and backorder penalties)
- Arrival controlled make-to-stock queue
- Many types of product, k, and numerous machines
- We allow for limited backorders, and limited inventory stockpiling
- Markovian, exponential distributions approach via Stochastic Dynamic Programming
- Objective: long-run cost minimization.

{Instantaneous cost rate in state i} =  $hi^+ + bi^- + D\mu \mathbb{I}(i = -M)$ 

• Numerous natural applications

## Results with non-divisible resources

- Ha (1997): hedging point and switching curve optimality, with two identical demand products
- de Vericourt, Karaesman, & Dallery (2000): distinct bµ values, hedging point optimality
- Zheng & Zipkin (1990) and Zipkin (1995): centralized policy better than local demands served FCFS
- Veatch & Wein (1996): Indices good for lost sales, not great for idling. Perez & Zipkin's myopic heuristic performed well. No indices for backorders.

# The Model



# Simplification to a single product problem

- As formulated, the K product problem is very hard to solve
- Can be seen as a restless bandit, since all queues evolve while some are being replenished

Our approach: reduction to a single-product subproblem. Two natural approaches lead to same single-product problem:

- **()** Introduce a per unit time cost (W) for machine usage, or
- Whittle's Lagrangian relaxation of the multi-product problem (discussed later)

## DP equation and a change of variables

- Easy to form DP
- Optimal policy  $\iff$  Satisfies DP

 ${\sf Uniformization} \Rightarrow$ 

$$\Delta_{i+1}^{\pi}(\lambda(\pi(i)) - \lambda(\pi(i) + 1)) \leq W \leq \Delta_{i+1}^{\pi}(\lambda(\pi(i) - 1) - \lambda(\pi(i)))$$

#### Key Idea

Introduce a scalar c on all inventory and backorder costs, and set W = 1. Clearly a problem with W is equivalent to  $c = W^{-1}$ . Why is it fruitful?

Now we can target our monotonicities ....

# Objectives for the single product problem

#### State monotonicity

If we increase our inventory level do we desire to use fewer machines?

#### Cost monotonicity

If we increase the replenishment-costs do we use less replenishment? Yes, certainly on average. What about state-wise? This is indexability.

### Non-monotonicity in state

Take N = M = 10, S = 15, h = 0, b = 1.5, D = 50,  $\mu = 0.6$ . The production rate model is given by

$$\lambda(a) = \frac{0.8a}{1+a} + 0.05$$

The uniquely optimal policy  $\overline{P}(c)$  in the stationary class when c = 0.0613 is given by

• Why does this happen?

## Monotonicity in state

Theorem (State monotonicity)

For  $\lambda(S) > \mu$ , fixed model parameters, then there exists  $D^*$  such that

 $D > D^* \implies$  State Monotonicity

#### Furthermore

As we increase c the D we have looks relatively bigger and thus monotonicity occurs for all large enough c.











# Non-monotonicity in *c*

Take S = 25, h = 0.05, b = 1.5, D = 50,  $\mu = 0.65$ . Same convex form for  $\lambda(a)$  (reciprocal).

The unique optimal stationary policy for  $\overline{P}(c)$  is computed at four values of c as follows:

| j          | -10 | -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0  | 1  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |             |
|------------|-----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|----|-------------|
| $\pi^*(j)$ | 25  | 25 | 25 | 25 | 25 | 25 | 23 | 20 | 18 | 16 | 12 | 10 | 8 | 6 | 5 | 4 | 3 | 2 | 1 | 1 | 0  | c = 26.4644 |
| $\pi^*(j)$ | 25  | 25 | 25 | 25 | 25 | 25 | 23 | 21 | 18 | 16 | 12 | 10 | 8 | 6 | 5 | 4 | 3 | 2 | 1 | 1 | 0  | c = 26.6114 |
| $\pi^*(j)$ | 25  | 25 | 25 | 25 | 25 | 25 | 23 | 21 | 18 | 16 | 12 | 10 | 8 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 0  | c = 26.7760 |
| $\pi^*(j)$ | 25  | 25 | 25 | 25 | 25 | 25 | 23 | 21 | 18 | 16 | 13 | 10 | 8 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 0  | c = 27.0362 |

Increasing c can make you use less resource! Why?

# Monotonicity in c

Theorem (Cost monotonicity — i.e. Indexability)

For fixed system parameters, there exists  $h^* > 0$  such that

 $0 \le h < h^* \Longrightarrow Optimal Policy is state-wise increasing in c$ 

Furthermore, the provably sufficient  $h^*$  is larger than most reasonable values

Conclusion

For all small (reasonable) h, we have indexability

#### Application to lost sales as a special case of backorders

- We can choose a maximal number of allowed backorders equal to 0
- Maximum backorder penalty  $\mapsto$  Lost Sales penalty in state 0

Same results apply

#### Theorem (State Monotonicity)

For large enough Lost Sales penalty D, we have state monotonicity.

#### Theorem (Indexability)

For small holding costs h we have indexability

## An algorithm for finding optimal policies

Our proof gives rise to easy to an implement algorithm

 $\Delta_{i+1}^{c}(\lambda(\pi(i)) - \lambda(\pi(i) + 1)) \leq W \leq \Delta_{i+1}^{c}(\lambda(\pi(i) - 1) - \lambda(\pi(i)))$ 

Start from c = 0, incrementally find optimal policies for all cRecall cost function has the form

 $c \times (Backorder \& Inventory costs) + Machine costs$ 











## Back to the multi-product problem

- Restless bandit, generally very hard
- Our single product approach arises from Whittle's Lagrangian relaxation approach:
  - Relax the total number of machines
  - Introduce an average machine usage requirement instead
  - Lagrange multiplier W represents a cost per machine per unit time
  - Product-wise decomposition follows
- Other heuristics exist for S = 1: Zipkin & Perez, Wein & Veatch

# Indices for products

The index heuristic

#### What are our Indices?

Values of c (or W) at which the optimal policy transitions. Equivalently, fair charges for the next unit of machinery in a state.

#### Greedy heuristic for the multi-product scenario

- Record the system state
- Allocate machines sequentially using index values (by the highest bidder) for each new machine
- Stop when all S machines allocated, or no queues will pay.

#### Performance?

Why might indices perform well? Why might they fail?

## Relaxed solution in action



Hodge & Glazebrook (Lancaster Uni.)

## Index heuristic in action



# Numerical performance

#### Policies

- A simple myopic policy maximize the rate of reduction of inventory costs performs very poorly
- Static policy best fixed allocation of  $\leq S$  servers between queues
- Greedy Index heuristic (see above)

We therefore look primarily at benefits of dynamic state-dependent allocations. Standard machine production rate

$$\lambda(a) = \lambda a(a+m)^{-1} + \epsilon$$

Fix S = 25, M = 10, N = 10, D = 50, b = 1.5, h = 1/5000, K = 2.

## A backorder model

|     |     | PARA     | METERS   | 5     |       |       | POL   | ICIES |        |
|-----|-----|----------|----------|-------|-------|-------|-------|-------|--------|
| ۸.  | ٨a  |          | 110      | ٨/.   | Ma    | INE   | DEX   | ST    | ATIC   |
| 71  | 72  | $\mu_1$  | $\mu_2$  | 111   | 1012  | MED   | MAX   | MED   | MAX    |
| 1.5 | 1.5 | (1, 1.5) | (1, 1.5) | (4,6) | (4,6) | 0.024 | 0.116 | 2.673 | 27.141 |
| 1.5 | 3.0 | (1, 1.5) | (2,3.0)  | (4,6) | (4,6) | 0.018 | 0.141 | 2.167 | 24.205 |
| 1.5 | 4.5 | (1,1.5)  | (3,4.5)  | (4,6) | (4,6) | 0.019 | 0.528 | 2.177 | 35.293 |
| 1.2 | 1.2 | (1,1.5)  | (1,1.5)  | (2,3) | (2,3) | 0.001 | 0.016 | 0.461 | 4.048  |
| 1.2 | 2.4 | (1, 1.5) | (2,3.0)  | (2,3) | (2,3) | 0.001 | 0.016 | 0.414 | 5.640  |
| 1.2 | 3.6 | (1,1.5)  | (3,4.5)  | (2,3) | (2,3) | 0.001 | 0.021 | 0.267 | 4.687  |
| 1.5 | 1.2 | (1,1.5)  | (1,1.5)  | (4,6) | (2,3) | 0.008 | 0.114 | 0.881 | 8.408  |
| 3.0 | 1.2 | (2,3.0)  | (1, 1.5) | (4,6) | (2,3) | 0.006 | 0.132 | 0.931 | 11.049 |
| 1.5 | 2.4 | (1, 1.5) | (2,3.0)  | (4,6) | (2,3) | 0.009 | 0.147 | 0.840 | 11.010 |

Table: Overstretched production – large customer arrival rate

### A lost sales model

| POLICIES |       |        |        |  |  |  |  |  |  |
|----------|-------|--------|--------|--|--|--|--|--|--|
| IND      | DEX   | STATIC |        |  |  |  |  |  |  |
| MED      | MAX   | MED    | MAX    |  |  |  |  |  |  |
| 0.118    | 0.218 | 22.094 | 37.981 |  |  |  |  |  |  |
| 0.224    | 0.437 | 23.785 | 35.024 |  |  |  |  |  |  |
| 0.366    | 0.846 | 22.552 | 37.493 |  |  |  |  |  |  |
| 0.014    | 0.031 | 8.244  | 12.976 |  |  |  |  |  |  |
| 0.024    | 0.066 | 8.092  | 12.701 |  |  |  |  |  |  |
| 0.036    | 0.086 | 7.195  | 11.675 |  |  |  |  |  |  |
| 0.046    | 0.106 | 13.937 | 21.039 |  |  |  |  |  |  |
| 0.098    | 0.214 | 11.409 | 18.744 |  |  |  |  |  |  |
| 0.057    | 0.128 | 14.894 | 23.272 |  |  |  |  |  |  |
|          |       |        |        |  |  |  |  |  |  |

Table: Moderate demands - medium to large customer arrival rate

# Conclusion and extensions

#### Conclusions

- Have found conditions for indexability in the single-product problem
- Understanding of where indexability fails to hold, practical ways to cope with non-indexability
- Complexity reduction from index policies for large K are enormous

#### Further ideas

- Necessary conditions for indexability? Too hard?
- Other natural heuristics?
- Could we use dynamic indices for non-fixed customer arrival rates?