Client and Server Games in peer-to-peer networks

Iordanis Koutsopoulos
University of Thessaly, Greece

Joint work with L. Tassiulas, L. Gatzikis

YEQT, Eindhoven, Nov. 19, 2009

Department of Computer and Communications Engineering, University of Thessaly

- Belongs to school of Engineering of University of Thessaly
- Located in Volos, Greece (300km north from Athens)
- Founded in March 2000, first graduates in 2005
- 20 tenure and tenure-track faculty members, 10 visitor instructors
 - > 500 undergrad, 40 grad students

U of Thessaly team

- People
 - Leandros Tassiulas (Prof)
 - Iordanis Koutsopoulos (Assistant Prof)
 - Thanasis Korakis (Lecturer)
 - 4 post-doc researchers
 - 15 graduate students

Research

- OPNEX: FP7 STREP FIRE
 - Optimization-driven Multi-hop Network Design and Optimization
 - Start from first principles optimization theory
 - Develop decentralized algorithms spanning layers from PHY to Transport
 - Translate algorithms into implementable low-overhead protocols
- N-CRAVE: FP7-ICT-2007-1, The Network of the Future, STREP
 - Network Coding for Robust Architectures in Volatile Environments
 - Novel protocols based on Network Coding from access to application layer
 - Implementation of Network coding algorithms
- NADA: FP7 STREP FIRE
 - Nano-data centers
 - Develop a new peer-to-peer network communication paradigm based on set-top box interaction in a peer-to-peer network fashion

Research

- NEWCOM++: FP7-ICT-2007-1, The Network of the Future, NoE
 - WP10: Network Theory
 - WP8: Scheduling and adaptive RRM
 - WP11: Opportunistic wireless Networks
- NET-REFOUND: FP6-Call 5, FET OPEN (under CERTH)
 - Network Research Foundations
 - Fundamental Performance Limits of Networks
 - Ways to approximate and achieve performance limits (Network Coding, techniques migrating from Physics other sciences)
 - Network autonomy
- ONELAB: FP7 IP FIRE
 - Develop a federation of experimentation test-beds
 - Remote capability of experiments
 - Inter test-bed coordination framework

Peer-to-peer networks

- Capture dual client-server role of peers
 - Client: generates requests for content objects, which need to be satisfied by others
 - Server: uploads content to other per their request
- Client: may choose to address parts of its requests to different servers
- Server: may serve requesters with different scheduling disciplines
- Goal: Understand spontaneous interactions of rational peers wishing to exchange content
 - Selfish client peer interaction
 - Selfish client-server peer interaction
- Characterize stable network operating points emerging from peer selfish behavior (in terms of request load splits and service disciplines)

Background

- Orda et.al [93]: Competitive routing in multiuser communication networks
 - Selfish routing of atomic user flows over parallel shared links
 - Uniqueness of NEP for certain classes of link latency functions, among which the one corresponding to M/M/1 queue with FIFO
 - Convergence to NEP shown formally for 2 users

Client and server games in peer-topeer networks

N peers, content exchange

Fluid model for content requests

Client role:

Peer i as client: generates content request load

Poisson, mean rate r_i (requests/sec)₍

Exponentially distributed request size, same mean L=1

• Server role:

- Peer i as server: Service capacity C_i (bits/sec)
- Server is M/M/1 queue, average request service time 1/C_i

Strategies

 Client i strategy set, λ_i: set of feasible request load splits to servers,

$$r_i = \sum_{j \neq i} \lambda_{ij}$$
, for $i=1,...N$

- Server i strategy set, π_i: scheduling disciplines of requests
 - FIFO: requests at server served in order of arrival
 - Preemptive priority: service based on some priority ordering. E.g. N=3, peer 1 serves with Π_1 $\epsilon\{(2,3), (3,2)\}$

Model (1)

- General case
 - peer i interested in content that is available at subset of peers S_i
 - Peer i possesses content of interest to subset of peers CL_i
 - $-S_i(t)$, $CL_i(t)$ evolve with time
- Here, not discriminate in terms of content: S_i, CL_i = {1,...N}
- Collection of client strategies: $\Lambda = (\lambda_1, ..., \lambda_N)$
- Collection of server strategies: $\pi = (\pi_1, ..., \pi_N)$
- Average retrieval delay of peer i: $D_i(\Lambda, \pi) = \sum_{j \neq i} \frac{\lambda_{ij}}{r_i} D_{ij}(\Lambda, \pi_j)$
- Total average retrieval delay: $D_{\text{tot}} = \frac{1}{\sum_i r_i} \sum_{i=1}^N r_i D_i = \frac{1}{\sum_i r_i} \sum_{i=1}^N \sum_{j \neq i}^N \lambda_{ij} D_{ij}$.

Model (2)

- In a peer-to-peer network, retrieval delay of a client depends on:
 - Service delay at server (queuing of requests to server)
 - Overlay network topology specifics (route from server to client, congestion at intermediate nodes, ...): not addressed here
- Peers in Star topology
- Average retrieval delay of client i: $D_i = \sum_{i \neq i} p_{ii} D_{ii}$ depends on:
 - portions of requests addressed to each server j, $p_{ij} = \lambda_{ij} / \lambda_{ij}$
 - D_{ii} depends on service discipline at servers j≠i, and loads Λ_i at servers j (load splits p_{ki} of peers $k \neq i$ to server j)
 - Consider server models:

FIFO M/M/1 queue

M/M/1 pre-emptive priority queue

$$D_{ij} = \frac{1}{C_j - \Lambda_j}.$$

$$D_{ij} = \frac{1}{C_j - \Lambda_j}. \qquad \qquad D_{ij} = \left\{ \begin{array}{l} \frac{1}{C_j - \lambda_{ij}}, & \text{if } \pi_i^j = 1, \\ \frac{C_j}{(C_j - \Lambda_j^{i+})(C_j - \Lambda_j^{i+} - \lambda_{ij})}, & \text{if } \pi_i^j > 1. \end{array} \right.$$

Research Goals

- Resource: Service capacities C_i of servers i=1,...,N
- Peers (as clients) compete in getting attention of servers
 - A peer load splitting strategy changes loads at different servers,
 - Intuitively, a peer chooses to send requests to servers j from which it experiences small delay (high service capacity C_j and light load Λ_i)
 - But then, it affects server loads and thus other peers' delays

Client Games

- Best response dynamics: peer i picks a strategy λ_i that optimizes some performance criterion, given others' strategies
- Parametrize peer behavioral profile based on performance criterion $F_i^{\beta_i}(\Lambda,\pi) = \frac{r_i}{\sum_k r_k} D_i(\Lambda,\pi) + \beta_i \sum_{j \neq i} \frac{r_j}{\sum_k r_k} D_j(\Lambda,\pi).$
 - $-0 \le \beta_i \le 1$
 - β_i = 0 (peer is egotistic) β_i = 1 (peer is altruistic)
- Egotistic: care only for reducing own delay
- Altruistic: consider also for others' delays
- A point $\Lambda^* = (\lambda_1^*, ... \lambda_N^*)$ is NEP if for each i,

$$F_i^{\beta_i}(\lambda_i^*, \lambda_{-i}^*, \pi) \le F_i^{\beta_i}(\lambda_i, \lambda_{-i}^*, \pi)$$

Case of Egotistic Peers (1)

- $\pi = FIFO$
- Each peer at each step solves: $\min_{\lambda_i \in \mathcal{F}_i} D_i(\lambda_i, \lambda_{-i}, \pi)$.
 - Water-filling style Solution

$$\begin{split} \lambda_{ij} &= C_{ij} - \frac{\sqrt{C_{ij}}}{\sum_{j \neq i}^{K_i} \sqrt{C_{ij}}} (\sum_{j \neq i}^{K_i} C_{ij} - r_i), \\ \text{if } j \leq K_i \text{, and } \lambda_{ij} = 0 \text{ otherwise, where} \\ K_i &= \max\{\ell : \sqrt{C_{i\ell}} \geq \frac{(\sum_{j \neq i}^{\ell} C_{ij} - r_i)}{\sum_{j \neq i}^{\ell} \sqrt{C_{ij}}} \}. \end{split}$$
 Residual Capacity
$$C_{ij} = C_j - \Lambda_j^{-i}$$

- Each peer autonomously deduces C_{ij} from delay measurements
 - Measure λ_{ii} at step (n-1)
 - At each step n, measure delay per unit flow, $D_{ij}^{(n)}$
 - Compute residual capacity $C_{ij} = \lambda_{ij} + (1/D_{ij})$.
 - Compute new best response at step n
- NEP is unique [extending proof of Orda et.al., '91]
 - Sequence of best response updates converges to NEP (numerical verification)

Case of Egotistic Peers (2)

- π = any collective priority order profile
 - Each peer i solves again a water-filling style problem
 - Needs to know capacities C_i of servers j
 - Compute λ_{ii} at step (n-1)
 - At each step n, measure delay per unit flow, $D_{ij}^{(n)}$
 - Compute residual capacity $C_{ij}^+ = C_j \Lambda_j^{i+}$ as root of equation $D_{ij}^{(n)} x^2 D_{ij}^{(n)} \lambda_{ij}^{(n)} x C_j = 0$.
 - Rank servers according to $C_{ij}^+/\sqrt{C_j}$
 - Compute new best response at step n
 - NEP uniqueness
 - convergence of BR to NEP

Case of Altruistic Peers (1)

Best response: each peer solves

$$\min_{\boldsymbol{\lambda}_i \in \mathcal{F}_i} \frac{1}{\sum_k r_k} \sum_{j \neq i} \left(\lambda_{ij} D_{ij} + \sum_{k \neq i,j} \lambda_{kj} D_{kj} \right) = \min_{\boldsymbol{\lambda}_i \in \mathcal{F}_i} D_{\text{tot}}(\boldsymbol{\Lambda}, \boldsymbol{\pi})$$

- FIFO
 - Global Problem (e..g: for $C_i = C$)
 - Best response updates:
 - Each client needs to know capacities C_i of servers j
 - Measure λ_{ij} at step (n-1)
 - At each step n, measure delay per unit flow, $D_{ij}^{(n)}$
 - Compute residual capacity $C_{ij} = \lambda_{ij} + (1/D_{ij})$.
 - Compute new best response at step n

Case of Altruistic Peers (2)

- FIFO: Global Problem (e..g: for C_i = C)
 - Problem $\min_{\Lambda \in \mathcal{F}} D_{\text{tot}}(\Lambda) = \frac{1}{\sum_k r_k} \sum_{j=1}^N \frac{\Lambda_j}{C \Lambda_j}$ falls within the class of problems

Problem (P):
$$\min_{\Lambda \in \mathcal{F}} D(\Lambda) = \sum_{j=1}^{N} G(\Lambda_j)$$

- G(.) non-decreasing, convex in load Λ_i
- Any limit point of the sequence of best response updates is a NEP and also an optimal solution of the global problem
- Multiple NEPs, each of them inducing the same server load vector $(\Lambda_1,...\Lambda_N)$ and same D_{tot}
- Proof: along the lines of [Hajek90] "Performance of global load balancing by local adjustment"

Case of Altruistic Peers (3)

- FIFO, Unequal capacities
 - Any limit point of the sequence of best response updates is a NEP and also an optimal solution of the global problem
 - D_{tot} jointly convex w.r.t. strategies
 - Proof: Best response updates are essentially Gauss-Seidel iterations
- Priority scheduling: limit points of best response are NEPs, but local minima of D_{tot}
 - D_{tot} not jointly convex w.r.t. strategies

Client - Server Games (1)

- Besides load splits, each peer i can change scheduling strategies $\pi_{\rm i}$
 - Different ensemble of scheduling strategies $\pi = (\pi_1,...,\pi_N) \rightarrow$ different best response load splits
- Peer i: find a service discipline π_i so that delay D_i at NEP after peers play a client load splitting game is minimum (service disciplines π_i, j ≠ i remain fixed)
 - Idea: peer i realizes that its high delay at some server j, D_{ij} , is due to load of peer k, served with higher priority than i at server j
 - Relies on existence of voluntary signalling
 - Attract k's traffic by offering high service priority to it
 - In general: assign optimal time fraction to each priority order

Client - Server Games (2)

- Here: Two-stage client server games
 - 1st stage: a peer chooses a "best" scheduling strategy (in terms of optimal time fractions for different priorities)
 - Exponential number of priorities
 - 2nd stage: Peers run a client best response load splitting game and reach the (unique) NEP, and so on
 - Existence of NEP (fractions of different priorities equivalent to mixed strategies)
- Issue: need significant amount of overhead information to perform updates
- Currently investigating heuristic "good" response updates
 - Rank peers according to some metrics, related to delay reduction peers cause

Future Work

- First step: full mesh network
 - Assessed impact of selfish load splits and service disciplines on performance
 - Small Price of Anarchy PoA (3-4%) for client games
 - PoA can get larger for client-server games
 - Expect larger PoA for sparser connectivity: what is the exact relationship?
- Impact of different file sizes
- Reciprocity and agreements
- Two-stage games need to be formalized
- Mix of peer behavioral profiles (egotistic-altruistic)

THANK YOU!

- More information:
- I. Koutsopoulos, L. Tassiulas, L. Gatzikis, Client and server games in peer-to-peer networks, IWQoS 2009.
 - telecom.inf.uth.gr
 - www.inf.uth.gr/~jordan