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Examples and MWM

1 2 3

1 2 3

service vectors

i.i.d. arrivals

Three wireless links: 1, 2, 3

Links (1, 2) interfere and cannot transmit 
together; same for links (2, 3)

Links (1, 3) can transmit together
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Examples and MWM

1 2 3

1 2 3

service vectors

i.i.d. arrivals

• Question: Which links should transmit at any given time?  

• Goal: Keep up with arriving packets (rates λ1, λ2, λ3).

• Typical approach: Try after random delay; try again if you fail 
but increase randomization interval.

• Simple but not “maximum throughput”.
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Examples and MWM

1 2 3

1 2 3

service vectors

i.i.d. arrivals

• Maximum Weighted Match:   

• Links (1, 3) should transmit if X1 + X3 > X2

• Link 2 should transmit if X2 > X1 + X3

• If X1 + X3 = X2, flip a coin

Backlogs
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Examples and MWM

1 2 3

1 2 3

service vectors

i.i.d. arrivals

• MWM Examples:  

• (X1, X2, X3) = (3, 6, 2) ⇒ Link 2 should transmit

• (X1, X2, X3) = (3, 4, 2) ⇒ Links 1 and 3 should transmit
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Examples and MWM

1 2 3

1 2 3

service vectors

i.i.d. arrivals

• THEOREM: MWM achieves the maximum throughput!  

• That is, queues are stable as long as

λ1 + λ2 < 1 and λ2 + λ3 < 1

• Key Idea:  
MWM makes X1

2 + X2
2 + X3

2 decrease, on average
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Examples and MWM

1 2 3

1 2 3

service vectors

i.i.d. arrivals

• MWM makes X1
2 + X2

2 + X3
2 decrease, on average

∑

i

E[·|X] ≤ 3K + 2
∑

i

λiXi − 2
∑

i

XiSi.

(Xi + Ai − Si)2 − X2
i

= 2XiAi − 2XiSi − 2AiSi + A2
i + S2

i

E[·|X] ≤ K + 2λiXi − 2XiSi.

Maximized by
MWM
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Examples and MWM

1 2 3

1 2 3

service vectors

i.i.d. arrivals

• MWM makes X1
2 + X2

2 + X3
2 decrease, on average

Tassiulas & Ephremides, 92
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Examples and MWM

• VOB SWITCH 
Can serve (11 and 22) or (12 and 21)

• MWM:  Serve (11 and 22) if X11 + X22 > X12 + X21

• THEOREM: MWM achieves maximum throughput
N. McKeown, A. Mekkittikul, V. Anantharam, J. Walrand, 99
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Examples and MWM

• BUFFERED CROSSBAR SWITCH 
Each crosspoint can hold one packet

• Each input: send to any free crosspoint
Each output: read from any nonempty crosspoint

• THEOREM: Achieves maximum throughput
Shang-Tse Chuang, Sundar Iyer, Nick McKeown, 05



Jean Walrand - Eindhoven Nov. 2009

Longest Queue First

• LQF: 

• First, pick longest queue 

• Next, pick longest among other compatible queues

• Examples:  

• (3, 4, 2) ⇒ Serve queue 2          [Note: MWM: 1 & 3]

• (5, 4, 1) ⇒ Serve queues 1 and 3

1 2 3

1 2 3

service vectors

i.i.d. arrivals

Antonis Dimakis and Jean Walrand, 05
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Longest Queue First

• THEOREM: LQF achieves the maximum throughput (in this network)

• Key Idea: Longest queue decreases, on average

• Say queue 2 is longest ⇒ Decreases under LQF

[LQF serves it at rate 1 and λ2 < 1]

1 2 3

1 2 3

service vectors

i.i.d. arrivals
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Longest Queue First

• THEOREM: LQF achieves the maximum throughput

• Key Idea: Longest queue decreases, on average

• Say queues 1 and 2 are both longest ⇒ decrease

[Set (1, 2) served at rate 1 under LQF and λ1 + λ2 < 1]

• Similar for (2, 3), (1, 3), and (1, 2, 3)

1 2 3

1 2 3

service vectors

i.i.d. arrivals
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Longest Queue First

• Note that for any set L of longest queues,
LQF serves a subset S of those queues at constant rate; that 
rate is larger than the arrival rate in S

• L = {1, 2, 3} ⇒ S = {1, 2}; otherwise, S = L

1 2 3

1 2 3

service vectors

i.i.d. arrivals
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Longest Queue First

• LOCAL POOLING PROPERTY of GRAPH:

For any set L of longest queues,
LQF serves a subset S of those queues at constant rate; that 
rate is larger than the arrival rate in S

• EXAMPLES of graphs with Local Pooling Property:
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Longest Queue First

Note: 6 Cycle does not satisfy local pooling

If L = {1, 2, 3, 4, 5, 6}, there is no subset S of L that LQF 
serves at a constant rate larger than the arrival rate in S.
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Wireless Backpressure

• As before, links (1, 2) conflict and so do (2, 3)

• There is no central coordination

• Links want to keep up with arriving packets
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Wireless Backpressure

• DISTRIBUTED SCHEME: CSMA

• Nodes pick independent random “backoff” delays

• Node with smallest delay starts transmitting

• If next node does not hear anything, it transmits
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Wireless Backpressure

• BACKPRESSURE-BASED BACKOFF

• Di is exponentially distributed with rate Exp{αXi}

• Thus, the mean backoff delay decreases fast with Xi

• The longest queue tends to transmit first, then ...

Libin Jiang and Jean Walrand, Allerton 08



Jean Walrand - Eindhoven Nov. 2009

Wireless Backpressure

• THEOREM: WB achieves the maximum throughput

• Key Ideas:  

• Backoffs with ri → Service rates si(r) of queues

• Minimize d(r) over r:  Minimizer r* such that s(r*)  λ

• Gradient algorithm yields ri =αXi

Libin Jiang and Jean Walrand, 12/08

d(r) = KL-distance between
         (r) and p, where

(r) = inv. dist. of independent 
     sets aj under r
  [when backoff of i is exp.
     with rate exp(ri)]
p = dist. of ind. sets aj s.t. 
     = j pjaj
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Wireless Backpressure

Some details:

• d(r) = Σ pi log(pi/ i(r)) 

• d(r) = - [λ - s(r)]

• r(n+1) = r(n) + α[λ - s(r(n))]+

                = r(n) + α[ expected arrival rate - expected service rate]+

            r(n) + α[ actual arrival rate - actual service rate]+

Also

• q(n+1) = q(n) + α[ actual arrival rate - actual service rate]+

Hence

• r(n) = βq(n)  :  distributed

Justified by stochastic approximation argument
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Wireless Backpressure

• Links want to maximize the “total utility”

    u1(λ1) + u2(λ2) + u3(λ3)

• Approach: CSMA + input rate control

Utility: Concave, increasing
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Wireless Backpressure

• Links want to maximize the “total utility”

    u1(λ1) + u2(λ2) + u3(λ3)

• Approach: CSMA + input rate control

• THEOREM: Achieves Maximum Utility
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Wireless Backpressure

Wireless links, with interference

Goal: maximize total utility of flows

Note: Adjust input rates, scheduling,
  and routing
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Wireless Backpressure

r(b) = rate of link b
Note: per-flow queues
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Wireless Backpressure

Theoretical optimal flow rates: 
0.1111, 0.1667 and 0.1667

One-way interference
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Wireless Backpressure

Multipath routing allowed

Unicast S2 -> D2
Anycast S1 to any D1
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Processing Networks

• Tasks need
  parts and resources

• Goal: maximize utility

• Approach: 

Deficit Maximum Weight

• Note

      MWM Unstable
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PN: Basic Problem

Time 0
Time 1-

Time 1
Time 2-

Task A requires a part from queue 1
Task B requires a part from all queues
Task C requires a part from queue 3

A

B

C

102345Time:

A

B

C

A

B

C

A

B

C

A

B

C
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Time 2 Time 3-

Task A requires a part from queue 1
Task B requires a part from all queues
Task C requires a part from queue 3

Maximum Weighted Matching is not stable.

A

B

C

102345Time:

A

B

C

A

B

C

PN: Basic Problem
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Time 0

Time 2-

Modified scheduling is stable.

Time 1: Do not serve

A

B

C

102345Time:

A

B

C

A

B

C

A

B

C

Task A requires a part from queue 1
Task B requires a part from all queues
Task C requires a part from queue 3

PN: Basic Problem
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Under a reasonable assumption on the arrival processes, one should be 
able to stabilize the network.

For instance, assume that the arrival rates are in the convex hull of 
the service vectors.  Moreover, assume that the distance between the 
arrivals A(t) and their averages t in [0, t] is bounded*.  Then some 
scheme should stabilize the system.

The goal is to find a scheme that automatically adjusts the schedule.

*This condition is called “bounded burstiness.” A weaker condition is presented in the paper.

A1(t)

A2(t)

A3(t)

PN: Basic Problem
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Scheme:  Deficit Maximum Weight (DMW).

1) “Augment State” with virtual backlog.
2) Schedule according to virtual backlog which may be negative, thus 
scheduling a “null activity”.  Schedule with maximum weight. 
3) Prove that the difference between actual and virtual is bounded.  
Thus, waste a finite amount of time.

Extends to utility maximization.

A1(t)

A2(t)

A3(t)

PN: DMW
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q1, Q1 1, 1 0, 1 0, 1 0, 1 1, 2 0, 1

q2, Q2 1, 1 0, 1 0, 1 0, 1 1, 2 0, 1

q3, Q3 0, 0 -1, 0 0, 1 0, 1 0, 1 -1, 0

Activity Arrival B Arrival None Arrival B

Note: Virtual Actual

A

B

C

102345Time:

qi = virtual backlog at queue i.

Qi = actual backlog at queue i.

Repeats forever

PN: DMW

Libin Jiang and Jean Walrand, Allerton 09
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Activation 

of SA’s 

decided by 

MW

Actual queues Q(t), virtual queues q(t)

Allow q(t) to be negative

Queue dynamics

If Qk “underflows”, then activate a “null SA” and 

use “fictitious parts”

“Deficit”

PN: DMW



Jean Walrand - Eindhoven Nov. 2009

Prop. 1: If q(t) is bounded, then both Q(t) and D(t) 
are bounded. Only a finite number of null SA’s occur 
 long-term throughput not a ected.

Prop. 2: If the arrival process is smooth enough, then 
q(t) is bounded

For example, there exists T>0 so that                   

is in the interior of the capacity region (uniformly) for t = 
0, T, 2T, ... .

Mild condition

More random arrivals:

System is still “rate-stable”, although Q(t) may slowly drift to infinity

Tradeo  between queue lengths and throughput

PN: DMW
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Processing Networks

Parts arrive at 1 & 2 
with rate λ1

and at 5 with rate λ2

Task 2 consumes one 
part from 2 and one 
from 3; ...

Tasks 1-2, 1-3, 3-4 
conflict

Algorithm stabilizes 
the queues and 
achieves the max. 
utility
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Summary
Problem: Scheduling of conflicting tasks to 

keep up with arriving jobs, or

maximize the total utility of the tasks

Approach: 

Longest queue first, if local pooling: LQF

Backpressure-based requests for resources

DMW for PNs

References: 

Talk abstract

Web: Jean Walrand, EECS, Berkeley


