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A s@e problem

Model for an epidemic on a graph:
— Spread of worms, email viruses...
— Diffusion of information, gossip...

Strategic players: Attacker / Defender
— Defender plays first by vaccinating nodes.
— Viral marketing.

Information available: none for the Defender!
Defense has to be decentralized.



A hopeless goal?
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Some hope...
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Acquaintance vaccination

 Proposed by Cohen, Havlin and ben-Avraham
in Phys.Rev.Let. 2003.

e Sample each node uniformly and inoculate a
neighbor of this node taken at random.

e Why does it work?
— Sampling with a bias toward high-degree nodes.
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(1) Percolated Threshold Model

 Bond percolation
with proba. 1 — 7

e Symmetric
threshold
epidemic:
> X > K(dy)
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e Seed of active
nodes




(1) Versatile model for epidemics

Null threshold = contact process
No bond percolation = bootstrap percolation
Some easy general results:

— Monotonicity: only transition passive to active.

— In a finite graph, there is only one possible final
state for the epidemic.

| will concentrate on properties of the final
state, for large random graphs.



(1) Diluted Random Graphs

(d;)} is a sequence of integers with >, d; even
and, for some probability distribution (pr)>2,
independent of n,

(i) #{i: d; =1r}/n — pr as n — oo;
(i) A\ :=>,rpr € (0,00);

Molloy-Reed (95)

(iii) >;d;/m — X as n — oo.



(1) Vaccination and Attack

e Perfect vaccine: remove vaccinated
population from the graph (site percolation).

 Acquaintance vaccination: Sample each node
uniformly and inoculate a neighbor of this
node taken at random.

e Degree based attack: randomly attack a node
with a probability depending on its degree.
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(2) Cascade Condition

e Random graph with degree distribution: D

(configuration model: Molloy-Reed 95)
e Bond percolation: © and threshold: K(d) .
 When can a single active node have a global

impact?

rE[D(D — 1)1 (K(D) = 0)] >

e K =0 Epidemic contagion threshold.

L[ D]




(2) Cascade Condition

e Cascade condition:

7T

e Contagion threshold
K(d)=gd (Watts 02)

CID(D — 1)1 (K(D) =0)] >
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(2) Phase transition

0.9 —
0.8 —
071
0.6 —

0.5

0.4 -
0.3
024

0.1

0

01 02 03 04 05 06 0.7 08 09 1.0 0
o S— o



(2) Vaccination for the contact

process

e Epidemic threshold as a
_ function of vaccinated
" | population.

¢ If E[D?] = oo, uniform
" vaccination is useless.
Acquaintance
vaccination can stop
epidemic!
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(2) Vaccination for threshold model

e Threshold K(d) = qd

|- -> become active when
008 | fraction of active
/- neighbors > ¢

0.06-:
 Contagion threshold as
0.04- /7o .
R a function of mean
0027 | T -~ degree.
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(3) General methodology

e (i) Theorem for the epidemic spread for a
general graph with degree sequence DD and
degree based attack.

* (ii) Proposition: how vaccination modifies the
distribution of D

e (iii) Show that we can apply the first Theorem
on the graph obtained after vaccination.

 The steps (i) and (ii) are independent and can
be used in different context...



(3) Configuration Model

e Vertices = bins and half-edges = balls
Bollobas (80)
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(3) Percolated Threshold Model

 Bond percolation: randomly delete each edge
with probability 1-m.

e Bootstrap percolation with threshold K(d):
Seed of active nodes, S = {i, o; = 1}
Deterministic dynamic: set X; = 1 if

Z.Xj > K;(d;)
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(3) Algorithm

Remove vertices S from graph G
Recursively remove vertices i such that:
dit < d; — K;(d;)
All removed vertices are active and all vertices
left are inactive.

Variations:
— remove edges instead of vertices.
— remove half-edges of type B.



(3) Site percolation

Fountoulakis (07) \__/
Janson (09) \ /
\_/
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(3) Coupling

. TypeAifd,g4 > d; — K
Janson-Luczak (07)
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(3) Deletion in continuous time

e Each white ball has an exponential life time.
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(3) Percolated threshold model

 Bond percolation: immortal balls
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(3) Death processes

e Rate 1 death process (Glivenko-Cantelli):

sSup |N(n)(t)/n —e Y 20
t>0

e Death process with immortal balls:

Usﬁ,r(t)
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~ Psébsr(l — T+ We_t)



(3) Death Processes for white balls

e For the white A and B balls:
A(t) + B(1)

n
e For the white A balls:

~ e YW1 -7+ we ).
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(3)Branching Process
Approximation

e Local structure of G = random tree
e Recursive Distributional Equation:

Y, =1-(1-0y)1 (Z BpiYy < K(di))
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(3) Solving the RDE

z=DP(Y = 0)

M(1l—7m4+72) = h(z)

h(z) = >  7(1— as)pybsr(l — 7+ 72)

s, r>s—¥



To conclude

Acquaintance vaccination is impressively effective!
Economics of epidemics: incentives for vaccination.

Economics of Malware: Epidemic Risks Model, Network
Externalities and Incentives, M.L., Allerton 09

Applications to viral marketing, gossip:
Duncan Watts \ Kempe, Kleinberg, Tardos

Diffusion of innovations on random networks: Understanding the
chasm, M.L., WINE 08.

Technical details : www.di.ens.fr/~lelarge/



