Optimizing Admission Control in Balanced Networks

Matthieu Jonckheere 1 , Joint work with Jean Mairesse 2

¹Technical University of Eindhoven, ²LIAFA, CNRS, Paris

YEQT III, november 2009

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

Opt. adm. contr. in balanced net.

YEQT III 1 / 25

Virtues of the Erlang formula

- Robustness : insensitivity to fine traffic statistical properties.
- Computationally simple:

Recursive formula

Consider a birth and death process on $\{0, 1, ..., y\}$ with birth rates ν and death rates $\phi(x)$, then the blocking probability (probability to be in state y) can be recursively evaluated as follows:

$$B(y)^{-1} = 1 + \frac{\phi(y)}{\nu} B(y-1)^{-1}.$$
 (1)

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

Opt. adm. contr. in balanced net.

YEQT III 2 / 25

(日) (周) (日) (日) (日) (日)

Virtues of the Erlang formula

- Robustness : insensitivity to fine traffic statistical properties.
- Computationally simple:

Recursive formula

Consider a birth and death process on $\{0, 1, ..., y\}$ with birth rates ν and death rates $\phi(x)$, then the blocking probability (probability to be in state y) can be recursively evaluated as follows:

$$B(y)^{-1} = 1 + \frac{\phi(y)}{\nu} B(y-1)^{-1}.$$
 (1)

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

Opt. adm. contr. in balanced net.

YEQT III 2 / 25

< □ > < □ > < Ξ > < Ξ > < Ξ > ... Ξ ... のへの

Following Erlang's steps

From a trunk to networks

- Loss networks, (Gibbens, Kelly, Ross...)
- Bandwidth sharing networks, (Roberts, Massoulie, Bonald, Proutiere, Virtamo...)

We aim at obtaining performance evaluation formula and optimization tools for multi-class networks with admission control and load balancing, **restricting the set of policies** to the ones being:

- robust,
- recursively computable.

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

(日本)(周本)(日本)(日本)(日本)

Following Erlang's steps

From a trunk to networks

- Loss networks, (Gibbens, Kelly, Ross...)
- Bandwidth sharing networks, (Roberts, Massoulie, Bonald, Proutiere, Virtamo...)

We aim at obtaining performance evaluation formula and optimization tools for multi-class networks with admission control and load balancing, **restricting the set of policies** to the ones being:

- robust,
- recursively computable.

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

Model

Network model

Network with a finite set of processor sharing nodes \mathcal{I} . \mathcal{I} is partitioned into finitely many non-empty subsets $\mathcal{I}_k, k \in \mathcal{K}$, each customer has a class which is an element of \mathcal{K} , and a customer of class k has to be served by one of the nodes in \mathcal{I}_k .

The process of the number of customers

X a continuous-time birth and death process, on a **finite**, **coordinate-convex** state space \mathcal{X} , with infinitesimal generator $Q = (q(x, y))_{x,y \in \mathcal{X}}$ given by: $\forall x \in \mathcal{X}$,

 $\begin{array}{ll} q(x,x-e_i) &= \phi_i(x) & \text{if } x-e_i \in \mathcal{X} \\ q(x,x+e_i) &= \lambda_i(x) & \text{if } x+e_i \in \mathcal{X} \\ q(x,y) &= 0 & \text{if } y \in \mathcal{X}, \ y \neq x-e_i, x+e_i \ . \end{array}$

LIAFA) Opt. adm. contr. in balanced net.

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

YEQT III 4 / 25

Model

Network model

Network with a finite set of processor sharing nodes \mathcal{I} . \mathcal{I} is partitioned into finitely many non-empty subsets $\mathcal{I}_k, k \in \mathcal{K}$, each customer has a class which is an element of \mathcal{K} , and a customer of class k has to be served by one of the nodes in \mathcal{I}_k .

The process of the number of customers

X a continuous-time birth and death process, on a **finite**, **coordinate-convex** state space \mathcal{X} , with infinitesimal generator $Q = (q(x, y))_{x,y \in \mathcal{X}}$ given by: $\forall x \in \mathcal{X}$,

$$\begin{cases} q(x, x - e_i) = \phi_i(x) & \text{if } x - e_i \in \mathcal{X} \\ q(x, x + e_i) = \lambda_i(x) & \text{if } x + e_i \in \mathcal{X} \\ q(x, y) = 0 & \text{if } y \in \mathcal{X}, \ y \neq x - e_i, x + e_i . \end{cases}$$
(2)

The scalars $\lambda_i(x)$ define the routing /admission policy M. Jonckheere, J. Mairesse (TU/E, LIAFA) Opt. adm. contr. in balanced net.

YEQT III 4 / 25

Total routing intensity

Arrival intensities constraints

$$\forall k \in \mathcal{K}, \quad \sum_{i \in \mathcal{I}_k} \lambda_i(x) \leq \nu_k$$

Maximum total routing intensity

The *intensity* $h:\mathcal{X}\longrightarrow\mathbb{R}^*_+$ of a routing is defined by

$$h(x) = \sum_{i \in \mathcal{I}} \lambda_i(x).$$
(4)

The $\mathit{maximum}$ $\mathit{routing}$ $\mathit{intensity}$ $u:\mathcal{X}\longrightarrow \mathbb{R}^*_+$ is defined by

$$\nu(x) = \sum_{k \in \mathcal{K}} \nu_k \mathbf{1}_{\{\exists i \in \mathcal{I}_k, x + e_i \in \mathcal{X}\}} .$$
(5)

Clearly, the intensity h of any routing satisfies: $\forall x \in \mathcal{X}, \ h(x) \leq \nu(x)$.

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

Opt. adm. contr. in balanced net.

Total routing intensity

Arrival intensities constraints

$$\forall k \in \mathcal{K}, \quad \sum_{i \in \mathcal{I}_k} \lambda_i(x) \leq \nu_k$$

Maximum total routing intensity

The intensity $h: \mathcal{X} \longrightarrow \mathbb{R}^*_+$ of a routing is defined by

$$h(x) = \sum_{i \in \mathcal{I}} \lambda_i(x). \tag{4}$$

The maximum routing intensity $\nu : \mathcal{X} \longrightarrow \mathbb{R}^*_+$ is defined by

$$\nu(x) = \sum_{k \in \mathcal{K}} \nu_k \mathbf{1}_{\{\exists i \in \mathcal{I}_k, x + e_i \in \mathcal{X}\}} .$$
(5)

Clearly, the intensity *h* of any routing satisfies: $\forall x \in \mathcal{X}, h(x) \leq \nu(x)$.

M. Jonckheere, J. Mairesse (TU/E, LIAFA) O

Robustness

Reversibility conditions

We suppose that the service rates are given and balanced:

$$\phi_i(x) = rac{\Phi(x-e_i)}{\Phi(x)} > 0.$$

Then the network is insensitive to the service distribution if and only if:

$$\lambda_i(x) = \frac{\Lambda(x+e_i)}{\Lambda(x)}.$$

We aim at finding a (sub)-optimal Λ .

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Model

A 2classes / four states example

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

Opt. adm. contr. in balanced net.

YEQT III 7 / 25

Robustness

Characterization of the balance function

A 'robust' policy π can be characterized by:

- Its state space $\mathcal{X}^{\pi} \subset \mathcal{X}$.
- Its routing intensity *h*:

$$\Lambda(x) = \frac{1}{h(x)} \sum_{i=1}^{N} \Lambda(x + e_i).$$

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

Opt. adm. contr. in balanced net.

YEQT III

8 / 25

Outline

- Bounds using rectangular functions.
- Recursive formula.
- The case of one arrival process.
- The case of several arrival processes with admission control (only).

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Bounds

Basic functions

Rectangular balance functions

Define a policy having an hyper-rectangle $\{x \le y\}$ as state space and routing intensity g.

The corresponding *rectangular* balance function $\tilde{\Lambda}^{y,g} : \mathbb{N}^{\mathcal{I}} \to \mathbb{R}_+$ associated with y and g is defined by:

$$\tilde{\Lambda}^{y,g}(x) = \begin{cases} 1 & \text{if } x = y \\ g(x)^{-1} \sum_{i \in \mathcal{I}} \tilde{\Lambda}^{y,g}(x + e_i) & \text{if } x \leq y, x \neq y \\ 0 & \text{otherwise} \end{cases}$$

This policy is not necessarily admissible ! For instance if $g(x) = \nu(x), \forall x$.

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

Opt. adm. contr. in balanced net.

YEQT III 10 / 25

Bounds

Basic functions

Rectangular balance functions

Define a policy having an hyper-rectangle $\{x \le y\}$ as state space and routing intensity g.

The corresponding *rectangular* balance function $\tilde{\Lambda}^{y,g} : \mathbb{N}^{\mathcal{I}} \to \mathbb{R}_+$ associated with *y* and *g* is defined by:

$$\tilde{\Lambda}^{y,g}(x) = \begin{cases} 1 & \text{if } x = y \\ g(x)^{-1} \sum_{i \in \mathcal{I}} \tilde{\Lambda}^{y,g}(x + e_i) & \text{if } x \leq y, x \neq y \\ 0 & \text{otherwise} \end{cases}$$

This policy is not necessarily admissible ! For instance if $g(x) = \nu(x), \forall x$.

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

Recursive evaluation

Consider the restriction of a rectangular balance function to a set $\mathcal{Y} \subset \mathcal{X}$. Proposition

The blocking probability of the policy associated with $\tilde{L}_{\mathcal{V}}^{y,g}$ satisfies

$$B_{p}(L_{\mathcal{Y}}^{y,g}) = 1 - \frac{\sum_{j \in \mathcal{K}} p_{j} \nu_{j}^{-1} \sum_{i \in \mathcal{I}_{j}} P^{i}(y,g)}{C(y,g)}.$$
 (6)

The quantities P^i and C can be computed using the recursive schemes:

$$C(y,g) = \mathbf{1}_{\{y \in \mathcal{X}\}} + \sum_{i} C(y - e_i, g)\phi_i(y)g(y - e_i)^{-1},$$
(7)

$$P_j(y,g) = \phi_j(y)\mathbf{1}_{\{y - e_j \in \mathcal{X}\}} + \sum_{i} P_j(y - e_i, g)\phi_i(y)g(y - e_i)^{-1}.$$
(8)

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

YEQT III 11 / 25

Bounds

Upper Bounds

For any balance function define the (weighted) blocking probability by:

$$B_{p} = \sum_{x \in \mathcal{X}} \pi(x) \sum_{k \in \mathcal{K}} p_{k} \left(1 - \frac{\sum_{i \in \mathcal{I}_{k}} \lambda_{i}(x)}{\nu_{k}} \right).$$
(9)

I heorem

For any 'robust' admissible policy π associated with a balance function Λ .

$$B_{\rho}(\Lambda) \ge \min_{v \in \mathcal{X}} B_{\rho}(\Lambda^{y,\nu}).$$
(10)

Proof. One can decompose any balance function Λ as: $\Lambda = \sum_{y \in \mathcal{X}} c_y \Lambda^{y,\nu}$. The blocking probability is a linear function of *normalized* balance functions.

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

Opt. adm. contr. in balanced net.

YEQT III 12 / 25

Bounds

Upper Bounds

For any balance function define the (weighted) blocking probability by:

$$B_{p} = \sum_{x \in \mathcal{X}} \pi(x) \sum_{k \in \mathcal{K}} p_{k} \left(1 - \frac{\sum_{i \in \mathcal{I}_{k}} \lambda_{i}(x)}{\nu_{k}} \right).$$
(9)

Theorem

For any 'robust' admissible policy π associated with a balance function Λ .

$$B_{p}(\Lambda) \geq \min_{y \in \mathcal{X}} B_{p}(\Lambda^{y,\nu}).$$
(10)

Proof. One can decompose any balance function Λ as: $\Lambda = \sum_{y \in \mathcal{X}} c_y \Lambda^{y,\nu}$. The blocking probability is a linear function of *normalized* balance functions.

Opt. adm. contr. in balanced net.

Lower Bounds

Decentralized balance functions

The decentralized policies works as follows. Do not accept customers outside the region y^{\downarrow} . Inside the region $y^{\downarrow} \cap \mathcal{X}$, all possible customers are accepted, *except* in points $x \in y^{\downarrow} \cap \mathcal{X}$ such that

$$\exists k \in \mathcal{K}, \exists i, j \in \mathcal{I}_k, \quad x + e_i \in y^{\downarrow} \cap \mathcal{X}, \ x + e_j \in y^{\downarrow} \cap \mathcal{X}^c.$$
(11)

These policies can be thought of as restriction (to the state space) of rectangular policies. Define g as the arrival intensity of such policies.

Lower Bounds

Decentralized balance functions

The decentralized policies works as follows. Do not accept customers outside the region y^{\downarrow} . Inside the region $y^{\downarrow} \cap \mathcal{X}$, all possible customers are accepted, *except* in points $x \in y^{\downarrow} \cap \mathcal{X}$ such that

$$\exists k \in \mathcal{K}, \exists i, j \in \mathcal{I}_k, \quad x + e_i \in y^{\downarrow} \cap \mathcal{X}, \ x + e_j \in y^{\downarrow} \cap \mathcal{X}^c.$$
(11)

These policies can be thought of as restriction (to the state space) of rectangular policies. Define g as the arrival intensity of such policies.

Lower bound

$$B_p(\Lambda^*) \leq \min_{y \in \mathcal{X}} B_p(\Lambda^{y,g}).$$

(12)

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

Opt. adm. contr. in balanced net.

YEQT III 13 / 25

Outline

- Bounds using rectangular functions.
- Recursive formula.
- The case of one arrival process.
- The case of several arrival processes with admission control (only).

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

Opt. adm. contr. in balanced net.

YEQT III

14 / 25

One class of arrivals

In that case, the rectangular balance functions with intensity $\nu(\cdot)$ are **admissible** and extremal. Hence, the upper bound and the lower bound defined previously coincide.

ecursive formula for the **optimal** blocking probability $(B(\Lambda^y))^{-1} = 1 + \sum_{i\in\mathcal{T}}rac{\phi_i(y)}{
u}(B(\Lambda^{y-e_i}))^{-1},$

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

Opt. adm. contr. in balanced net.

YEQT III 15 / 25

One class of arrivals

In that case, the rectangular balance functions with intensity $\nu(\cdot)$ are **admissible** and extremal. Hence, the upper bound and the lower bound defined previously coincide.

Recursive formula for the optimal blocking probability

$$(B(\Lambda^{y}))^{-1} = 1 + \sum_{i \in \mathcal{I}} \frac{\phi_{i}(y)}{\nu} (B(\Lambda^{y-e_{i}}))^{-1}, \qquad (13)$$

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

Opt. adm. contr. in balanced net.

YEQT III 15 / 25

Outline

- Bounds using rectangular functions.
- Recursive formula.
- The case of one arrival process.
- The case of several arrival processes with admission control (only).

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Coordinate convex balance functions

Ferrers set policies

A *Ferrers set* is a finite subset *E* of \mathbb{N}^k such that:

$$[x \in E, x_i > 0] \implies x - e_i \in E$$
.

Denote $\mathcal{F}(\mathcal{X})$ the set of Ferrers set contained in \mathcal{X} .

Definition

Consider a Ferrers set $C \in \mathcal{F}(\mathcal{X})$. The *coordinate-convex* balance function associated with C is defined by,

$$\tilde{\Lambda}^{\mathcal{C}}(x) = \prod_{i} \nu_{i}^{x_{i}} \mathbf{1}_{x \in \mathcal{C}} .$$

Corresponds to a *coordinate-convex* policy: if $x + e_i \in C$, then $\lambda_i(x) = \nu_i$ if $x + e_i \notin C$, then $\lambda_i(x) = 0$.

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

Opt. adm. contr. in balanced net.

YEQT III 17 / 25

Coordinate convex balance functions

Ferrers set policies

A *Ferrers set* is a finite subset *E* of \mathbb{N}^k such that:

$$[x \in E, x_i > 0] \implies x - e_i \in E$$
.

Denote $\mathcal{F}(\mathcal{X})$ the set of Ferrers set contained in \mathcal{X} .

Definition

Consider a Ferrers set $C \in \mathcal{F}(\mathcal{X})$. The *coordinate-convex* balance function associated with C is defined by,

$$\tilde{\Lambda}^{\mathcal{C}}(x) = \prod_{i} \nu_{i}^{x_{i}} \mathbf{1}_{x \in \mathcal{C}} \ .$$

Corresponds to a *coordinate-convex* policy: if $x + e_i \in C$, then $\lambda_i(x) = \nu_i$, if $x + e_i \notin C$, then $\lambda_i(x) = 0$.

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

Opt. adm. contr. in balanced net.

YEQT III 18 / 25

Extremal balance functions

Extremal policies

Theorem

An admissible balance function Λ can be decomposed as:

$$\Lambda(x) = \sum_{\mathcal{C} \in \mathcal{F}(\mathcal{X})} \beta(\mathcal{C}) \Lambda^{\mathcal{C}}(x),$$

with $\beta(\mathcal{C}) \geq 0$ for all \mathcal{C} and $\sum_{\mathcal{C} \in \mathcal{F}(\mathcal{X})} \beta(\mathcal{C}) = 1$.

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

メロシ 不良 アメヨア オヨア ヨー ろうぐ

Recursive evaluation

Recursion from $C \cup \{x\}$ to C

Lemma

Consider a Ferrers set $C \in \mathcal{F}(\mathcal{X})$ and the corresponding coordinate-convex policy. For a point $x \notin C$ such that $C \cup \{x\}$ is also a Ferrers set, we have:

$$C(\mathcal{C} \cup \{x\}) = C(\mathcal{C}) + \tilde{\Lambda}_d(x)\Phi(x), \qquad (14)$$

$$P_j(\mathcal{C} \cup \{x\}) = P_j(\mathcal{C}) + \tilde{\Lambda}_d(x)\Phi(x - e_j).$$
(15)

メロシ 不良 アメヨア オヨア ヨー ろうぐ

YEQT III

20 / 25

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

Opt. adm. contr. in balanced net.

Comparing C and $C \cup \{x\}$

Lemma

Consider the coordinate-convex policy associated with $C \in \mathcal{F}(\mathcal{X})$ and let x be a point such that $C \cup \{x\} \in \mathcal{F}$. Let X^C be a r.v. distributed as the stationary number of customers. We have :

$$1-B_{p}(\Lambda^{\mathcal{C}})=\sum_{i\in\mathcal{I}}\frac{p_{i}}{\nu_{i}}E[\phi_{i}(X^{\mathcal{C}})].$$

Furthermore, the blocking probabilities satisfy:

$$\left[B_{\rho}(\Lambda^{\mathcal{C}\cup\{x\}}) \le B_{\rho}(\Lambda^{\mathcal{C}})\right] \iff \left[\sum_{i\in\mathcal{I}}\frac{p_{i}}{\nu_{i}}E[\phi_{i}(X^{\mathcal{C}})] \le \sum_{i\in\mathcal{I}}\frac{p_{i}}{\nu_{i}}\phi_{i}(x)\right].$$
(16)

Allows to give conditions under which a complete sharing is optimal.

YEQT III 21 / 25

イロト 不得 トイヨト イヨト ヨー ショウ

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

Opt. adm. contr. in balanced net.

YEQT III 22 / 25

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

Opt. adm. contr. in balanced net.

YEQT III 23 / 25

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < <</p>

M. Jonckheere, J. Mairesse (TU/E, LIAFA)

Opt. adm. contr. in balanced net.

YEQT III 24 / 25

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < <</p>

Conclusion

- The situation becomes more complex for several arrival processes...
- Generic structure of the optimal 'robust' policy still unknown.
- Computable bounds, tight for large networks at moderate loads.
- Complete characterization of extremal/optimal policies for networks with admission control only. Theoretical grip on the structures of optimal policies.

Open question

• When are decentralized policies optimal? (Leino&Virtamo examples).

イロト 不良 アイヨト イヨト 一日 うらや