Strategic Customers Behavior in Memoryless Queues

Moshe Haviv

The Hebrew University of Jerusalem

Eindhoven, 19.11.09

M/M/1 queue

- **Poisson arrivals.** Effective rate of λ .
- Subscripts Exponential requirements. Mean $\frac{1}{\mu}$.
- $\rho = \lambda/\mu < 1$, server utilization.
- First-come first-served (FCFS).

Unobservable M/M/1 queue

steady-state, mean waiting time (service inclusive)

$$W = \frac{1}{\mu} \frac{1}{1-\rho} = \frac{1}{\mu - \lambda}$$

for a stand-by (or zero-priority) customer

$$\frac{1}{\mu} \frac{1}{(1-\rho)^2} = \frac{1}{\mu} \frac{1}{(1-\lambda/\mu)^2}$$

To join or not to join

- \checkmark Λ potential arrival rate
- \checkmark C cost per unit of waiting time
- \checkmark K reward for service completion

Assume $K > C/\mu$ (for non triviality).

Unobservable M/M/1 (Edelson and Hildebrand '75)

Nash equilibrium:

- Pure strategies: to join or not to join
- Randomization is allowed
- Join with probability p: A symmetric profile
- An equilibrium p_e : steady-state under $p_e \Rightarrow p_e$ is a best response.

Equilibrium

- $\mu > \Lambda$ and $C/(\mu \Lambda) \leq K \Rightarrow p_e = 1$, dominant strategy
- $C/(\mu \Lambda) \ge K \Rightarrow p_e, \ 0 < p_e < 1$

mixed strategy: p_e solves $C/(\mu - p\Lambda) - K = 0$

Explanation: when all use p_e , one is indifferent between joining or not, $\Rightarrow p_e$ is one's (not uniquely) best response against p_e .

$$p_e = \frac{\mu - \frac{C}{K}}{\Lambda}$$

Stable equilibrium

 p_e is evolutionarily stable strategy (ESS):

If $p \neq p_e$ is best against all playing p_e , then p_e is better than p against all playing p.

Equilibrium

case	λ_e	p_e	$W(\lambda_e)$
$\Lambda \le \mu - \frac{C}{K}$	Λ	1	$rac{1}{\mu - \Lambda}$
$\Lambda \ge \mu - \frac{C}{K}$	$\mu - \frac{C}{K}$	$\frac{\mu - \frac{C}{K}}{\Lambda}$	$\frac{K}{C}$

f(p): Under p, the difference in utility between joining and not.

$$f(p) = K - C/(\mu - p\Lambda) - 0$$

 $f(p) \downarrow p$

The more join, the less appealing is joining.

Best response

Best response against *p*:

- $p \in [0, p_e] \Rightarrow 1$, i.e., join
- $p \in [p_e, 1] \Rightarrow 0$, i.e., do not join

• $p = p_e < 1 \Rightarrow \text{any } p$

Avoid the Crowd

Best response $\downarrow p$

 \Downarrow

Avoid the crowd (ATC)

Social optimization

$$p_{s} = \arg \max_{p} p\Lambda \left(K - \frac{C}{\mu - p\Lambda} \right)$$
$$p_{s} = \begin{cases} 1 & \Lambda < \mu - \sqrt{\frac{C\mu}{K}} \\ \frac{\mu - \sqrt{\frac{C\mu}{K}}}{\Lambda} & \text{otherwise} \end{cases}$$

When $p_s < 1$ social gain equals

$$(\sqrt{K\mu} - \sqrt{C})^2$$

not a function of Λ

Social optimization

When $p_s < 1$,

$$\frac{C}{\mu(1-\frac{p_s\Lambda}{\mu})^2} = K$$

Under the socially optimal arrival rate, a stand-by customer is indifferent between joining and not. He imposes no externalities and under this rate, his and the society interests coincide.

Optimal toll

 $p_e \ge p_s$. Left to themselves, customers overcrowd the system: They ignore the negative externalities they inflict on others.

Optimal toll

 $p_e \ge p_s$. Left to themselves, customers overcrowd the system: They ignore the negative externalities they inflict on others.

Charging an entry fee of $K - \sqrt{CK/\mu}$ or an added cost of $\sqrt{CK\mu} - C$ per unit time in the system \Rightarrow the new p_e coincides with the old p_s .

Optimal toll

 $p_e \ge p_s$. Left to themselves, customers overcrowd the system: They ignore the negative externalities they inflict on others.

Charging an entry fee of $K - \sqrt{CK/\mu}$ or an added cost of $\sqrt{CK\mu} - C$ per unit time in the system \Rightarrow the new p_e coincides with the old p_s .

In both schemes, the added charge coincides with the externality that one who joins inflicts on others under the social optimal joining rate.

All consumer surplus goes to the central planner.

A cab or a bus?

- Waiting for the bus: 5 minutes
- The cab leaves when the 7th arrives
- Unobservable. No regrets
- **Poisson arrival, rate** λ

A cab or a bus? The more use the cab, the more appealing

 \downarrow

it is

Follow the Crowd (FTC)

A cab or a bus?

Symmetric strategy: Take the cab with probability p

If $\lambda < 3/5 \Rightarrow p = 0$ is dominant.

Otherwise three equilibria:

- p = 0 (stable)
- $\blacksquare p = 1$ (stable)
- $p = p_e$ (unstable)

where

$$\frac{3}{p_e\lambda} - 5 = 0$$

social optimization

1. if $\lambda < 3/5 \Rightarrow p = 0$ 2. if $\lambda > 3/5 \Rightarrow p = 1$ 3. if $\lambda = 3/5 \Rightarrow p = 0$ and p = 1

Purchasing priority (Hassin and Haviv '03)

- two priority levels. Within a class, FCFS
- high priority costs θ
- no balking or reneging (K is irrelevant)
- unobservable

Why to have priority at all?

Purchasing priority (Hassin and Haviv '03)

- two priority levels. Within a class, FCFS
- high priority costs θ
- no balking or reneging (K is irrelevant)
- unobservable

Why to have priority at all?

1. to overtake ordinary customers (\Rightarrow ATC)

Purchasing priority (Hassin and Haviv '03)

- two priority levels. Within a class, FCFS
- high priority costs θ
- no balking or reneging (K is irrelevant)
- unobservable

Why to have priority at all?

- 1. to overtake ordinary customers (\Rightarrow ATC)
- 2. to avoid being overtaken by premium customers (\Rightarrow Follow the Crowd (FTC))

Priority purchasing

Strategy *p*: purchase priority with probability pf(p) = difference in utility between purchasing and not purchasing

$$f(p) = \frac{C\lambda}{(\mu - \lambda)(\mu - \lambda p)} - \theta$$

 $f(p)\uparrow p.$

Conclusion: The more purchase priority, the higher its value (FTC).

• $f(0) \ge 0 \Rightarrow p = 1$ is dominant • $f(1) \le 0 \Rightarrow p = 0$ is dominant

- $f(0) \ge 0 \Rightarrow p = 1$ is dominant
- $f(1) \le 0 \Rightarrow p = 0$ is dominant
- $f(0) \le 0 \le f(1)$ three equilibria:
 - p = 0 (stable)
 - p = 1 (stable)
 - $p = p_e$ where $f(p_e) = 0$ (unstable)

- $f(0) \ge 0 \Rightarrow p = 1$ is dominant
- $f(1) \le 0 \Rightarrow p = 0$ is dominant
- $f(0) \le 0 \le f(1)$ three equilibria:
 - p = 0 (stable)
 - p = 1 (stable)
 - $p = p_e$ where $f(p_e) = 0$ (unstable)

Follow the Crowd

When to arrive? Haviv, '09

- 1. a single service will be performed at time ${\cal T}$
- **2.** number interested ~ $Pois(\lambda)$
- 3. all value it by K
- 4. the first to arrive gets it (ties broken randomly)
- 5. cost C per unit of waiting

First-price sealed-bid auction

When to arrive?

Common knowledge: each bidder thinks that the number of other bidders $\sim Pois(\lambda)$

Suits huge population of potential bidders, each becomes a bidder with a tiny probability

When to arrive? (model 1)

- Iosers wait too
- no restrictions on arrival time

When to arrive? (model 1)

Iosers wait too

no restrictions on arrival time

The equilibrium density function of arrival:

$$f(t) = \begin{cases} \frac{1}{\lambda(\frac{K}{C} - (t-a))} & a \le t \le T \\ 0 & \text{otherwise} \end{cases}$$

$$a = T - K(1 - e^{-\lambda})/C$$

f(t) increases with t

Truncated beta (1,0) distribution

When to arrive? (model 2)

- Iosers do not wait
- no restrictions on arrival time

The equilibrium density function of arrival:

$$f(t) = \begin{cases} \frac{1}{\lambda(\frac{K}{C} - (T - t))} & a \le t \le T \\ 0 & \text{otherwise} \end{cases}$$

The equilibrium density function of arrival time is the mirror image of the previous density along the same support.

f(t) decreases with t.

When to arrive? (model 3)

- Iosers wait too
- **•** restriction: no arrivals prior to b > a

When to arrive? (model 3)

- Iosers wait too
- **•** restriction: no arrivals prior to b > a
- 1. arrive at b with probability p

$$K\frac{1-e^{-\lambda p}}{\lambda p} - C(T-b) = Ke^{-\lambda}$$

2. no arrivals in (b,c), $c = T - \frac{K}{C}(e^{-\lambda p} - e^{-\lambda})$

3. arrive in [c,T] with density

$$f(t) = \begin{cases} \frac{1}{\lambda(\frac{K}{C}e^{-\lambda p} - (t-c))} & c \le t \le T\\ 0 & \text{otherwise} \end{cases}$$

When to arrive? (model 4)

- Iosers do not wait
- **•** restriction: no arrivals prior to b > a
- 1. arrive at b with probability q

$$\frac{1 - e^{-\lambda q}}{\lambda q} (K - C(T - b)) = K e^{-\lambda}$$

2. no arrivals in (b, d), $d = T - \frac{K}{C}(e^{-\lambda q} - e^{-\lambda})$

3. arrive in [d, T] with density

$$f(t) = \begin{cases} \frac{1}{\lambda(\frac{K}{C} - (T-t))} & d \le t \le T\\ 0 & \text{otherwise} \end{cases}$$
When to arrive?

For all versions:

- \checkmark individual utility in equilibrium $Ke^{-\lambda}$
- **social utility in equilibrium** $\lambda Ke^{-\lambda}$
- **social utility in optimization** $K(1 e^{-\lambda})$
- price of anarchy (PoA) $\frac{e^{\lambda}-1}{\lambda}$

Biding for priority (version 1) Glazer and Hassin, '86

- The more one pays, the earlier one enters
- With preemption
- Ties are broken on FCFS basis
- No balking or reneging: K is irrelevant

Bidding for priority (version 1)

Equilibrium biding: mix payment continuously between [0, a].

a = difference value between best and worst positions

$$a = \frac{C}{\mu(1-\rho)^2} - \frac{C}{\mu}$$

Equilibrium: Pay in accordance with cumulative distribution function F(x), $0 \le x \le a$

Bidding for priority (version 1)

Finding F(x), $0 \le x \le a$:

$$x + CW_x = 0 + \frac{C}{\mu(1-\rho)^2}, \ \ 0 \le x \le a$$

$$W_x = \frac{1}{\mu(1 - \frac{\lambda(1 - F(x))}{\mu})^2}, \quad 0 \le x \le a$$

$$\Rightarrow \quad F(x) = \frac{1-\rho}{\rho} \left(\sqrt{\frac{1}{1-\frac{x\mu}{C}(1-\rho)^2}} - 1 \right)$$

Biding for priority (version 2) Hassin '95

- As above but with balking
- K is back

Equilibrium joining rate as the socially optimal.

Proof: One who pays nothing imposes no externalities.

Those who join pay with some density along $[0, K - C/\mu]$.

Biding for relative priority Haviv and van der Wal, '97

- 1. no balking
- 2. any payment $x \ge 0$
- 3. if payments of n in line were x_i , $1 \le i \le n$, customer i enters with probability

$$\frac{x_i}{\sum_{j=1}^n x_j}$$

How much to pay?

Biding for relative priority

Unique pure equilibrium: Pay

$$\frac{\rho C}{\mu (1-\rho)(2-\rho)}$$

Random entrance!

Not ATC or FTC

Around the equilibrium, FTC

Retrial queues Hassin and Haviv, '96

- 1. M/M/1
- **2.** λ , μ , C
- 3. no balking or reneging (*K* not relevant)
- 4. if server is busy, retry and retry later
- 5. tries cost *H* each

Decision problem: When to try again?

Retrial queues

The forgetful customers: Times between retrials are exponential with an identical parameter

Retrial queues

The forgetful customers: Times between retrials are exponential with an identical parameter

What is the equilibrium retrial rate?

$$\frac{C\rho + \sqrt{C^2 \rho^2 + 8\mu C H (1-\rho)(2-\rho)}}{4H(1-\rho)}$$

Around the equilibrium, ATC

Socially optimal retrial rate Kulkarni, '83

$$\sqrt{\frac{C\mu}{H}}$$

Having the option of reneging (abandonment) later changes nothing

Explanation: Under M/M/1, memoryless waiting time. If others may renege, one's future improves while waiting.

Deteriorating conditions Hassin and Haviv, '95

Bang-bang: at time T after waiting, K drops to zero.

- to join or not to join?
- when to renege? (customers have a watch)

Unique equilibrium: Join with probability p and then renege at time T (p = 1 is possible).

Continuous deterioration Haviv and Ritov, '01

C(t) waiting cost per unit at time t of waiting. C(0) = 0.

Equilibrium reneging strategy (some technical conditions): For some $T_1 < T_2$,

- 1. do not renege until T_1
- 2. renege with some density in $[T_1, T_2)$
- 3. renege with complementary probability at T_2

Observable M/M/1 queues_{Naor '69}

- M/M/1
- same cost/reward model (C and K)
- queue length inspected upon arrival

To join or not to join?

Equilibrium: { Join $\Leftrightarrow L \leq n_e$ }

$$n_e = \left\lfloor \frac{K\mu}{C} \right\rfloor - 1$$

Equilibrium Hassin and Haviv, '02

Multi-equilibria: For $L \le n_e$ as above. For $L \ge n_e + 1$, anything.

{ Join $\Leftrightarrow L \leq n_e$ }. Unique subgame-perfect equilibrium (SPE).

Social optimization

$$g(n) = \frac{n(1-\rho) - \rho(1-\rho^n)}{(1-\rho)^2}$$

 n_s is with

$$g(n_s - 1) \le \frac{K}{\mu} \le g(n_s)$$

Social optimization: Join if and only if $L < n_s$

Optimal entry fee

A right optimal one-for-all entry fee T with

$$n_s = \left\lfloor \frac{(K-T)\mu}{C} \right\rfloor$$

makes the new n_e coincide with the old n_s .

Optimal entry fee

A right optimal one-for-all entry fee T with

$$n_s = \left\lfloor \frac{(K-T)\mu}{C} \right\rfloor$$

makes the new n_e coincide with the old n_s .

Some surplus stays at the hands of customers: They are more informed than the central planner is.

not-FCFS and social optimization Hassin, '85

- An arrival is placed anywhere but at the last position
- Pre-emption is possible. A must if L = 1

Individuals' dilemma: when to renege?

Answer: renege when n_s customers are ahead: The one at the back inflicts no externalities. His and the society's interests coincide.

Queue-length dependent entry fee

A queue-length dependent fee leaves them with zero surplus:

$$T_n = \begin{cases} K - \frac{C(n+1)}{\mu} & 0 \le n \le n_s - 1 \\ \infty & \text{otherwise} \end{cases}$$

Purchasing priority: Observable case H. and H.,'9

High priority costs θ .

An arrival observes the two queue lengths.

Only the number of regular customers matters. \Rightarrow Assume the number of premium customers is zero.

Purchasing priority: Observable case

A pure threshold equilibrium n: do not pay iff the number of regular customers is below n.

W(n)=mean queueing time of the worst regular customers when all use strategy n.

Result: n is an equilibrium iff

 $\theta - CB \le CW(n) \le \theta$

where $B = 1/(\mu - \lambda)$ (mean busy period)

Purchasing priority: Observable case

- 1. at least one pure equilibrium exists
- 2. consecutive multiple equilibria are possible. At most $\lfloor 1/(1-\rho) \rfloor$ pure equilibria
- 3. both bounds are attainable
- 4. between two pure equilibria, (usually) one mixed.

Inferring quality from long queues, Debo et. al '09

- M/M/1, C = 0, FCFS, observable
- homogeneous service value: low < 0 or high > 0 P(high) = p
- private independent signals: good or bed P(good|high) = P(bad|low) = q.

To queue or not to queue?

Inferring quality from long queues

- Customers with good signals \Rightarrow ATC
- Customers with bad signals \Rightarrow FTC

Equilibrium:

- **good signal:** join with prob. $\alpha > 0$ when n = 0 ($\alpha = 1$ possible). Join when $n \ge 1$.
- **bad signal:** up to $n_e \ge 1$ (exclusive) do not join. At n_e join with prob. β , $0 \le \beta \le 1$. Join when $n > n_e$.

Multiple equilibria

Strategic Customers Behavior in the M/G/1 Queue

Moshe Haviv

The Hebrew University of Jerusalem Joint with Yoav Kerner

Eindhoven, 20.11.09

M/G/1 queue

Single server

- Poisson arrival process (λ)
- *G* Service distribution
 - \overline{x} mean service time

$$\overline{x^2}$$
 - 2^{nd} moment of service time

 $G^*(s) = \int\limits_{x=0}^\infty e^{-sx} dG(x)$ - LST of service time

M/G/1: unobservable case

Conceptually as in M/M/1

- \blacksquare service value, K
 - queueing costs, *C* per unit of time
- The pure strategies: to join or not to join
- Mixed strategy: Randomize between joining and not

Unobservable system

All join with probability
$$p \Rightarrow W_q = \frac{\lambda p \overline{x^2}}{2(1-\lambda p \overline{x})}$$
 (K-P)

Symmetric Nash equilibrium:

$$p_e \in \arg \max_{0 \le p \le 1} p\left(K - \frac{C\lambda p_e \overline{x^2}}{2(1 - \lambda p_e \overline{x})}\right) + (1 - p) \cdot 0$$
$$p_e = \min\left\{\frac{2K}{\lambda(2K\overline{x} + C\overline{x^2})}, 1\right\}$$

Unobservable system

Properties of Nash equilibrium

- Unique
- **• ESS** Evolutionarily Stable Strategy
- **ATC** Avoid the Crowd

M/G/1 and residual service times

The unconditional mean residual service time

$$=\frac{\lambda \overline{x^2}}{2}$$

But:

- the residual service time and the queue length are not independent
- when balking is with queue dependent probabilities, the distribution of the residual service time (given the queue length) is a function of (early) balking probabilities

Partially observable systems Haviv and Kerner, '07

- Same cost/reward model (assume no waiting costs during service)
- Information upon arrival: L = 0, L = 1 or, L = many

All join when informed of L = 0.

Balking strategies

Pure strategies: When $\{L = 1\}$ or $\{L = many\}$, join or not

Mixed strategies: When $\{L = 1\}$ (or $\{L = many\}$), join with probability p (or q), for some p and q

Equilibrium strategies

 $\left(p,q\right) ,$ when selected by all, is also an individual's best response

Qualitative findings:

- p is possible
- $I > 1 \} \Rightarrow \mathsf{ATC}$

Expected residual service, L = 1

Under steady-state, conditioning upon L = 1, Mandelbaum and

Yechiali, '79.

$$\mathsf{E}(R|L=1) = \begin{cases} \frac{\overline{x}}{1-G^*(\lambda p)} - \frac{1}{\lambda p} & p > 0\\ \\ \frac{\overline{x^2}}{2\overline{x}} & p = 0 \end{cases}$$

Example 1: Zero-one service Altman and Hassin '02

$$E(R|L = 1) = \frac{1}{1 - e^{-\lambda p}} - \frac{1}{\lambda p}$$
$$\Downarrow$$
$$E(R|L = 1) \uparrow p$$
$$\Downarrow$$
$$ATC$$
Example 2: $G=Exp(\mu), \mu \sim U(1,2)$

$$\mathsf{E}(R|L=1) = \frac{\log 2}{\lambda p (\log(\lambda p+2) - \log(\lambda p+1))} - \frac{1}{\lambda p}$$

$$\Downarrow$$

$$\mathsf{E}(R|L=1) \downarrow p$$

$$\Downarrow$$

$$FTC$$

Example 3: non-monotone residual

$$x = 0.5$$
 w.p. 0.8 and $x = 3$ w.p. 0.2.

$$\mathsf{E}(R|L=1) = \frac{1}{1 - .2e^{-3\lambda p} - .8e^{-.5\lambda p}} - \frac{1}{\lambda p}$$

Not monotone with p

Nash Equilibrium p_e

● if $\forall p$, $C \in (R(p)|L = 1) \le K \Rightarrow p_e = 1$, 'dominant'

● if
$$\forall p$$
, $C \mathsf{E}(R(p)|L=1) \ge K \Rightarrow p_e = 0$, 'dominant'

• if $C E(R(1)|L=1) \le K \Rightarrow p_e = 1$ • if $C E(R(0)|L=1) \ge K \Rightarrow p_e = 0$ • if $C E(R(p)|L=1) = K \Rightarrow p_e = p$

Increasing service residuals, L=1

Increasing failure rate (IFR) service distribution

Decreasing service residuals, L=1

Decreasing failure rate (DFR) service distribution \downarrow $\mathsf{E}(R(p)|L=1) \downarrow p$ **FTC** If no dominance \Rightarrow three equilibria $p_e = 0$ and $p_e = 1$ are ESS $0 < p_e < 1$ is not ESS

Example 3: non-monotone residual

$$x = 0.5$$
 w.p. 0.8 and $x = 3$ w.p. 0.2.

$$\mathsf{E}(R|L=1) = \frac{1}{1 - .2e^{-3\lambda p} - .8e^{-.5\lambda p}} - \frac{1}{\lambda p}$$

 \parallel

Not monotone with p

If no dominance \Rightarrow multiple equilibria

Some of the equilibria are ESS but some are not

Expected queueing times at arrival times

In terms of:

- Decision variables p,q
- First and second moments of service $\overline{x}, \overline{x^2}$
- The potential arrival rate λ
- LST of service time at a single value, $G^*(\lambda p)$

Mean waiting when $L \geq 2$

Mean queueing time conditioning on $L \ge 2$:

$$\overline{x} + \frac{\lambda q \overline{x^2}}{2(1 - \lambda q \overline{x})} + \frac{\lambda p \overline{x^2}}{2(\lambda p \overline{x} + G^*(\lambda p) - 1)} - \frac{1}{\lambda p}$$

- **Separability** in p and q
- $\ \ \, \mbox{Monotone increasing in } q$

Nash Equilibrium q_e

For any equilibrium $p_e > 0$ there exists a unique q_e such that (p_e, q_e) is an equilibrium

• if
$$\forall q$$
, $\mathsf{E}(W_Q(p_e,q)|L>1) \leq \frac{K}{C} \Rightarrow q_e = 1$, 'dominant'

● if $\forall q$, $\mathsf{E}(W_Q(p_e, q)|L > 1) \ge \frac{K}{C} \Rightarrow q_e = 0$, 'dominant'

• Otherwise, q_e solves:

 $\mathsf{E}(W_Q(p_e,q)|L>1) = K/C$

Nash Equilibrium q_e

$\begin{array}{ll} \forall p \ \ \mathsf{E}(W_Q(p,q)|L>1) & \uparrow q \\ & \Downarrow \\ & \mathsf{ATC} \\ & \Downarrow \\ & q_e \ \mathsf{unique \ and \ ESS} \end{array}$

The fully observable case Kerner, '08, '09

A decision model

- \checkmark service value, K
- \checkmark waiting costs, C

Decision: to join or not to join

 p_n : Joining probability given L = n, $\lambda_n = \lambda p_n$

Problem: the distribution of

$$W|_{L=n} = \sum_{i=1}^{n} X_i + R_n$$

Fully observable M/G/1 queue

A typical profile: $\underline{p} = (p_1, p_2, \ldots)$

Equilibrium strategy: $\underline{p}^e = (p_1^e, p_2^e, ...)$, one's best response when all use it (under steady-state)

 p_1^e as in the partially observable case

 p_n^e are derived recursively:

$$p_n^e \in \arg\max_{0 \le p \le 1} \left\{ p\left(K - C \mathsf{E}(W_n(p_1^e, \dots, p_{n-1}^e, p_n^e)) \right) \right\}$$

Of course, $n \ge K/(C\overline{x}) \Rightarrow p_n = 0$.

The $M_n/G/1$ queue

Join with $p_n \Rightarrow$ when n, is the arrival rate $\lambda_n = \lambda p_n$ The queueing model for analysis:

- Arrival rate when n, $n \ge 0$, customers, λ_n
- $X \sim G$, Service distribution
 - \overline{x} : mean service time
 - $\overline{x^2}$: 2^{nd} moment of service time

 $G^*(s) = \int_{x=0}^{\infty} e^{-sx} dG(x)$ - LST of service time

• Goal: R_n : residual service time (given n)

Recursion in M/G/1 **queues**

 π_i : limit probability of queue length $i, i \ge 0$

a recursion on the limit probabilities is well-known
 $\pi_0 = 1 - \lambda \overline{x}$

 \Downarrow π_i , $i \ge 0$, are computable

Recursion in $M_n/G/1$ **queues**

we developed a recursion on the limit probabilities

• but π_0 is a function of λ_i , $i \ge 0$

No finite way to compute π_i , $i \ge 0$

 \downarrow

But things are better when inspecting the residuals!

Recursion on R_n in $M_n/G/1$

- the case n = 1 was dealt with above
- an arrival who sees $n \ge 2$ upon arrival
 - with prob. $1 G^*(\lambda_n)$: is first during the current service $\Rightarrow R_1$ with λ_n
 - with prob. $G^*(\lambda_n)$: faces the residual of the residual R_{n-1} with $\lambda_1, \ldots, \lambda_{n-1}$.

 \Downarrow R_n , $n \ge 1$, can be solved recursively

Recursion on R_n

 $R_n^*(s)$ =LST of the conditional residual R_n

$$R_1^*(s) = \frac{\lambda_1}{\lambda_1 - s} \frac{G^*(s) - G^*(\lambda_1)}{1 - G^*(\lambda_1)}$$

$$R_n^*(s) = \frac{\lambda_n}{s - \lambda_n} (G^*(\lambda_n) \frac{1 - R_{n-1}^*(s)}{1 - R_{n-1}^*(\lambda_n)} - G^*(s)), n \ge 2$$

Recursion on $E(R_n)$

$$\mathsf{E}(R_1) = \frac{\overline{x}}{1 - G^*(\lambda_1)} - \frac{1}{\lambda_1}$$

$$\mathsf{E}(R_n) = \frac{G^*(\lambda_n)}{1 - R_{n-1}^*(\lambda_n)} \mathsf{E}(R_{n-1}) - \frac{1}{\lambda_n} + \overline{x}, \quad n \ge 2$$

Some properties

$$\pi_n = \frac{\lambda_0 \pi_0}{\lambda_n} \prod_{i=0}^{n-1} \frac{1 - R_i^*(\lambda_{i+1})}{G^*(\lambda_{i+1})}, \quad n \ge 0$$

● An arrival who finds $n \ge 1$ upon arrival, is the first to arrive during the current service with probability $1 - G^*(\lambda_n)$.

In M/G/1, the event of being the first to arrive during the current service period and the number in the system then, are independent.

 \downarrow

Back to decision making

 $\lambda_n \to \lambda p_n$

$$\mathsf{E}(R_n) \to \mathsf{E}(R_n(p_1,\ldots,p_n))$$

Equilibrium:

$$p_n^e \in \arg\min_{0 \le p \le 1} p(K - C(\mathsf{E}(R_n(p_1^e, \dots, p_n^e)) + (n-1)\overline{x}))$$

Equilibrium joining probabilities

For $n \ge 1$,

$$(n-1)\overline{x} + \mathsf{E}(R_n(p_1^e, \dots, p_{n-1}^e, 1)) \leq \frac{K}{C} \Rightarrow p_n^e = 1$$
$$(n-1)\overline{x} + \mathsf{E}(R_n(p_1^e, \dots, p_{n-1}^e, 0)) \geq \frac{K}{C} \Rightarrow p_n^e = 0$$
$$(n-1)\overline{x} + \mathsf{E}(R_n(p_1^e, \dots, p_{n-1}^e, p)) = \frac{K}{C} \Rightarrow p_n^e = p$$
$$(n-1)\overline{x} + \mathsf{E}(R_n(p_1^e, \dots, p_{n-1}^e, p)) = \frac{K}{C} \Rightarrow p_n^e = p$$

Stop when $p_n^e = 0$

Example 1 (cont.)

$$G(x) = \epsilon \mathbf{1}_{x \ge 1} + (1 - \epsilon) \mathbf{1}_{x \ge 0}$$

 $C = 1, K = 0.7$

• $\lambda \le 2.51 \Rightarrow p_1^e = p_2^e = 1$ • $2.51 < \lambda < 2.59 \Rightarrow 0 < p_1^e < 1, p_2^e = 1$ • $\lambda > 2.59 \Rightarrow 0 < p_1^e < p_2^e < 1$

Uniqueness issues

IFR \Rightarrow ATC, unique threshold equilibrium, p_n^e , $n \ge 1$.

DFR \Rightarrow FTC, non-unique equilibrium, p_n^e , $n \ge 1$

Note: $p_n^e < p_{n+1}^e$ is possible

The IFR case

IFR \Rightarrow ATC, unique threshold equilibrium Initialize with $p_0^e = 1$,

$$p_n^e = \begin{cases} 1 & (n-1)\overline{x} + \mathsf{E}(R_n(p_1^e, \dots, p_{n-1}^e, 1)) \leq \frac{K}{C} \\ 0 & (n-1)\overline{x} + \mathsf{E}(R_n(p_1^e, \dots, p_{n-1}^e, 0)) \geq \frac{K}{C} \\ p & (n-1)\overline{x} + \mathsf{E}(R_n(p_1^e, \dots, p_{n-1}^e, p)) = \frac{K}{C} \end{cases}$$

as long as $p_{n-1}^e > 0$.

The DFR case

$\mathsf{DFR} \Rightarrow \mathsf{FTC}$

$$(n-1)\overline{x} + \mathsf{E}(R_n(p_1^e, \dots, p_{n-1}^e, 1)) \le \frac{K}{C} \Rightarrow p_n^e = 0, \text{ 'dominant'}$$
$$(n-1)\overline{x} + \mathsf{E}(R_n(p_1^e, \dots, p_{n-1}^e, 0)) \ge \frac{K}{C} \Rightarrow p_n^e = 1, \text{ 'dominant'}$$
$$(n-1)\overline{x} + \mathsf{E}(R_n(p_1^e, \dots, p_{n-1}^e, p)) = \frac{K}{C} \Rightarrow p_n^e = 0, p_n^e = p, p_n^e = 1$$

Example 2 (cont.) DFR

$$G(x) = 1 - \frac{e^{-x} - e^{-2x}}{x}$$

$$\lambda=1, K=2.81, C=1$$

\downarrow

$p_1^e = p_2^e = 1, \quad \text{unique}$

$$p_3^e = 0, 1, 0.654$$

THANK YOU