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M/M/1 queue

Poisson arrivals. Effective rate of λ.

Exponential requirements. Mean 1
µ
.

ρ = λ/µ < 1, server utilization.

First-come first-served (FCFS).



Unobservable M/M/1 queue

steady-state, mean waiting time (service inclusive)

W =
1

µ

1

1 − ρ
=

1

µ − λ

for a stand-by (or zero-priority) customer

1

µ

1

(1 − ρ)2
=

1

µ

1

(1 − λ/µ)2



To join or not to join

Λ - potential arrival rate

C - cost per unit of waiting time

K - reward for service completion

Assume K > C/µ (for non triviality).



Unobservable M/M/1(Edelson and Hildebrand ’75)

Nash equilibrium:

Pure strategies: to join or not to join

Randomization is allowed

Join with probability p: A symmetric profile

An equilibrium pe:
steady-state under pe ⇒ pe is a best response.



Equilibrium

µ > Λ and C/(µ − Λ) ≤ K ⇒ pe = 1, dominant strategy

C/(µ − Λ) ≥ K ⇒ pe, 0 < pe < 1

mixed strategy: pe solves C/(µ − pΛ) − K = 0

Explanation: when all use pe, one is indifferent between
joining or not, ⇒ pe is one’s (not uniquely) best
response against pe.

pe =
µ − C

K

Λ



Stable equilibrium

pe is evolutionarily stable strategy (ESS):

If p 6= pe is best against all playing pe, then pe is better than p
against all playing p.



Equilibrium

case λe pe W (λe)

Λ ≤ µ − C
K

Λ 1 1
µ−Λ

Λ ≥ µ − C
K

µ − C
K

µ− C
K

Λ
K
C



f(p): Under p, the difference in utility between joining and
not.

f(p) = K − C/(µ − pΛ) − 0

f(p) ↓ p

The more join, the less appealing is joining.



Best response

Best response against p:

p ∈ [0, pe] ⇒ 1, i.e., join

p ∈ [pe, 1] ⇒ 0, i.e., do not join

p = pe < 1 ⇒ any p

1

1

Best response

pe

p

Best response ↓ p ⇒ Avoid the crowd

45o



Avoid the Crowd

Best response ↓ p

⇓

Avoid the crowd (ATC)



Social optimization

ps = arg max
p

pΛ

(

K − C

µ − pΛ

)

ps =







1 Λ < µ −
√

Cµ
K

µ−
√

Cµ

K

Λ otherwise

When ps < 1 social gain equals

(
√

Kµ −
√

C)2

not a function of Λ



Social optimization

When ps < 1,

C

µ(1 − psΛ
µ )2

= K

Under the socially optimal arrival rate, a stand-by customer
is indifferent between joining and not. He imposes no
externalities and under this rate, his and the society
interests coincide.



Optimal toll

pe ≥ ps. Left to themselves, customers overcrowd the
system: They ignore the negative externalities they inflict on
others.



Optimal toll

pe ≥ ps. Left to themselves, customers overcrowd the
system: They ignore the negative externalities they inflict on
others.

Charging an entry fee of K −
√

CK/µ or an added cost of√
CKµ − C per unit time in the system ⇒ the new pe

coincides with the old ps.



Optimal toll

pe ≥ ps. Left to themselves, customers overcrowd the
system: They ignore the negative externalities they inflict on
others.

Charging an entry fee of K −
√

CK/µ or an added cost of√
CKµ − C per unit time in the system ⇒ the new pe

coincides with the old ps.

In both schemes, the added charge coincides with the
externality that one who joins inflicts on others under the
social optimal joining rate.

All consumer surplus goes to the central planner.



A cab or a bus?

Waiting for the bus: 5 minutes

The cab leaves when the 7th arrives

Unobservable. No regrets

Poisson arrival, rate λ

A cab or a bus? The more use the cab, the more appealing

it is
⇓

Follow the Crowd (FTC)



A cab or a bus?

Symmetric strategy: Take the cab with probability p

If λ < 3/5 ⇒ p = 0 is dominant.

Otherwise three equilibria:

p = 0 (stable)

p = 1 (stable)

p = pe (unstable)

where
3

peλ
− 5 = 0



social optimization

1. if λ < 3/5 ⇒ p = 0

2. if λ > 3/5 ⇒ p = 1

3. if λ = 3/5 ⇒ p = 0 and p = 1



Purchasing priority(Hassin and Haviv ’03)

two priority levels. Within a class, FCFS

high priority costs θ

no balking or reneging (K is irrelevant)

unobservable

Why to have priority at all?
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Purchasing priority(Hassin and Haviv ’03)

two priority levels. Within a class, FCFS

high priority costs θ

no balking or reneging (K is irrelevant)

unobservable

Why to have priority at all?

1. to overtake ordinary customers (⇒ ATC)

2. to avoid being overtaken by premium customers (⇒
Follow the Crowd (FTC))



Priority purchasing

Strategy p: purchase priority with probability p

f(p) = difference in utility between purchasing and not
purchasing

f(p) =
Cλ

(µ − λ)(µ − λp)
− θ

f(p) ↑ p.

Conclusion: The more purchase priority, the higher its value
(FTC).



Purchasing priority

f(0) ≥ 0 ⇒ p = 1 is dominant
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Purchasing priority

f(0) ≥ 0 ⇒ p = 1 is dominant

f(1) ≤ 0 ⇒ p = 0 is dominant

f(0) ≤ 0 ≤ f(1) three equilibria:
p = 0 (stable)
p = 1 (stable)
p = pe where f(pe) = 0 (unstable)



Purchasing priority

f(0) ≥ 0 ⇒ p = 1 is dominant

f(1) ≤ 0 ⇒ p = 0 is dominant

f(0) ≤ 0 ≤ f(1) three equilibria:
p = 0 (stable)
p = 1 (stable)
p = pe where f(pe) = 0 (unstable)



Follow the Crowd

The best response function ↑ p

⇓
Follow the crowd (FTC)

1 1

1 1

1

ppp
45

o

pe

1



When to arrive? Haviv, ’09

1. a single service will be performed at time T

2. number interested ∼ Pois(λ)

3. all value it by K

4. the first to arrive gets it (ties broken randomly)

5. cost C per unit of waiting

First-price sealed-bid auction



When to arrive?

Common knowledge: each bidder thinks that the number of
other bidders ∼ Pois(λ)

Suits huge population of potential bidders, each becomes a
bidder with a tiny probability



When to arrive? (model 1)

losers wait too

no restrictions on arrival time



When to arrive? (model 1)

losers wait too

no restrictions on arrival time

The equilibrium density function of arrival:

f(t) =

{

1
λ(K

C
−(t−a))

a ≤ t ≤ T

0 otherwise

a = T − K(1 − e−λ)/C

f(t) increases with t

Truncated beta (1,0) distribution



When to arrive? (model 2)

losers do not wait

no restrictions on arrival time

The equilibrium density function of arrival:

f(t) =

{

1
λ(K

C
−(T−t))

a ≤ t ≤ T

0 otherwise

The equilibrium density function of arrival time is the mirror
image of the previous density along the same support.

f(t) decreases with t.



When to arrive? (model 3)

losers wait too

restriction: no arrivals prior to b > a



When to arrive? (model 3)

losers wait too

restriction: no arrivals prior to b > a

1. arrive at b with probability p

K
1 − e−λp

λp
− C(T − b) = Ke−λ

2. no arrivals in (b, c), c = T − K
C (e−λp − e−λ)

3. arrive in [c, T ] with density

f(t) =

{

1
λ(K

C
e−λp−(t−c))

c ≤ t ≤ T

0 otherwise



When to arrive? (model 4)

losers do not wait

restriction: no arrivals prior to b > a

1. arrive at b with probability q

1 − e−λq

λq
(K − C(T − b)) = Ke−λ

2. no arrivals in (b, d), d = T − K
C (e−λq − e−λ)

3. arrive in [d, T ] with density

f(t) =

{

1
λ(K

C
−(T−t))

d ≤ t ≤ T

0 otherwise



When to arrive?

For all versions:

individual utility in equilibrium Ke−λ

social utility in equilibrium λKe−λ

social utility in optimization K(1 − e−λ)

price of anarchy (PoA) eλ
−1
λ



Biding for priority (version 1) Glazer and Hassin, ’86

The more one pays, the earlier one enters

With preemption

Ties are broken on FCFS basis

No balking or reneging: K is irrelevant



Bidding for priority (version 1)

Equilibrium biding: mix payment continuously between
[0, a].

a = difference value between best and worst positions

a =
C

µ(1 − ρ)2
− C

µ

Equilibrium: Pay in accordance with cumulative distribution
function F (x), 0 ≤ x ≤ a



Bidding for priority (version 1)

Finding F (x), 0 ≤ x ≤ a:

x + CWx = 0 +
C

µ(1 − ρ)2
, 0 ≤ x ≤ a

Wx =
1

µ(1 − λ(1−F (x))
µ )2

, 0 ≤ x ≤ a

⇒ F (x) =
1 − ρ

ρ

(√

1

1 − xµ
C

(1 − ρ)2
− 1

)



Biding for priority (version 2) Hassin ’95

As above but with balking

K is back

Equilibrium joining rate as the socially optimal.

Proof: One who pays nothing imposes no externalities.

Those who join pay with some density along [0,K − C/µ].



Biding for relative priority Haviv and van der Wal, ’97

1. no balking

2. any payment x ≥ 0

3. if payments of n in line were xi, 1 ≤ i ≤ n, customer i
enters with probability

xi
∑n

j=1 xj

How much to pay?



Biding for relative priority

Unique pure equilibrium: Pay

ρC

µ(1 − ρ)(2 − ρ)

Random entrance!

Not ATC or FTC

Around the equilibrium, FTC



Retrial queues Hassin and Haviv, ’96

1. M/M/1

2. λ, µ, C

3. no balking or reneging (K not relevant)

4. if server is busy, retry and retry later

5. tries cost H each

Decision problem: When to try again?



Retrial queues

The forgetful customers: Times between retrials are
exponential with an identical parameter



Retrial queues

The forgetful customers: Times between retrials are
exponential with an identical parameter

What is the equilibrium retrial rate?

Cρ +
√

C2ρ2 + 8µCH(1 − ρ)(2 − ρ)

4H(1 − ρ)

Around the equilibrium, ATC

Socially optimal retrial rate Kulkarni, ’83

√

Cµ

H



Reneging

Having the option of reneging (abandonment) later changes
nothing

Explanation: Under M/M/1, memoryless waiting time. If
others may renege, one’s future improves while waiting.



Deteriorating conditions Hassin and Haviv, ’95

Bang-bang: at time T after waiting, K drops to zero.

to join or not to join?

when to renege? (customers have a watch)

Unique equilibrium: Join with probability p and then renege
at time T (p = 1 is possible).



Continuous deterioration Haviv and Ritov, ’01

C(t) waiting cost per unit at time t of waiting. C(0) = 0.

Equilibrium reneging strategy (some technical conditions):

For some T1 < T2,

1. do not renege until T1

2. renege with some density in [T1, T2)

3. renege with complementary probability at T2



Observable M/M/1 queuesNaor ’69

M/M/1

same cost/reward model (C and K)

queue length inspected upon arrival

To join or not to join?

Equilibrium: { Join ⇔ L ≤ ne }

ne =

⌊

Kµ

C

⌋

− 1



Equilibrium Hassin and Haviv, ’02

Multi-equilibria: For L ≤ ne as above. For L ≥ ne + 1,
anything.

{ Join ⇔ L ≤ ne }. Unique subgame-perfect equilibrium
(SPE).



Social optimization

g(n) =
n(1 − ρ) − ρ(1 − ρn)

(1 − ρ)2

ns is with

g(ns − 1) ≤ K

µ
≤ g(ns)

Social optimization: Join if and only if L < ns



Optimal entry fee

A right optimal one-for-all entry fee T with

ns =

⌊

(K − T )µ

C

⌋

makes the new ne coincide with the old ns.



Optimal entry fee

A right optimal one-for-all entry fee T with

ns =

⌊

(K − T )µ

C

⌋

makes the new ne coincide with the old ns.

Some surplus stays at the hands of customers: They are
more informed than the central planner is.



not-FCFS and social optimization Hassin, ’85

An arrival is placed anywhere but at the last position

Pre-emption is possible. A must if L = 1

Individuals’ dilemma: when to renege?

Answer: renege when ns customers are ahead: The one at
the back inflicts no externalities. His and the society’s
interests coincide.



Queue-length dependent entry fee

A queue-length dependent fee leaves them with zero
surplus:

Tn =

{

K − C(n+1)
µ

0 ≤ n ≤ ns − 1

∞ otherwise



Purchasing priority: Observable case H. and H.,’97

High priority costs θ.

An arrival observes the two queue lengths.

Only the number of regular customers matters.
⇒ Assume the number of premium customers is zero.



Purchasing priority: Observable case

A pure threshold equilibrium n: do not pay iff the number of
regular customers is below n.

W (n)=mean queueing time of the worst regular customers
when all use strategy n.

Result: n is an equilibrium iff

θ − CB ≤ CW (n) ≤ θ

where B = 1/(µ − λ) (mean busy period)



Purchasing priority: Observable case

1. at least one pure equilibrium exists

2. consecutive multiple equilibria are possible. At most
⌊1/(1 − ρ)⌋ pure equilibria

3. both bounds are attainable

4. between two pure equilibria, (usually) one mixed.



Inferring quality from long queues, Debo et. al ’09

M/M/1, C = 0, FCFS, observable

homogeneous service value: low < 0 or high > 0
P(high) = p

private independent signals: good or bed
P(good|high) = P (bad|low) = q.

To queue or not to queue?



Inferring quality from long queues

Customers with good signals ⇒ ATC

Customers with bad signals ⇒ FTC

Equilibrium:

good signal : join with prob. α > 0 when n = 0 (α = 1
possible). Join when n ≥ 1.

bad signal : up to ne ≥ 1 (exclusive) do not join. At ne join
with prob. β, 0 ≤ β ≤ 1. Join when n > ne.

Multiple equilibria



Strategic Customers Behavior in the
M/G/1 Queue

Moshe Haviv

The Hebrew University of Jerusalem

Joint with Yoav Kerner

Eindhoven, 20.11.09



M/G/1 queue

Single server

Poisson arrival process (λ)

G - Service distribution

x - mean service time

x2 - 2nd moment of service time

G∗(s) =
∞
∫

x=0

e−sxdG(x) - LST of service time



M/G/1: unobservable case

Conceptually as in M/M/1

service value, K

queueing costs, C per unit of time

The pure strategies: to join or not to join

Mixed strategy: Randomize between joining and not



Unobservable system

All join with probability p ⇒ Wq = λpx2

2(1−λpx) (K-P)

Symmetric Nash equilibrium:

pe ∈ arg max
0≤p≤1

p

(

K − Cλpex2

2(1 − λpex)

)

+ (1 − p) · 0

pe = min

{

2K

λ(2Kx + Cx2)
, 1

}



Unobservable system

Properties of Nash equilibrium

Unique

ESS Evolutionarily Stable Strategy

ATC Avoid the Crowd



M/G/1 and residual service times

The unconditional mean residual service time

=
λx2

2

But:

the residual service time and the queue length are not
independent

when balking is with queue dependent probabilities, the
distribution of the residual service time (given the queue
length) is a function of (early) balking probabilities



Partially observable systems Haviv and Kerner, ’07

Same cost/reward model (assume no waiting costs
during service)

Information upon arrival: L = 0, L = 1 or, L = many

All join when informed of L = 0.



Balking strategies

Pure strategies: When {L = 1} or {L = many}, join or not

Mixed strategies: When {L = 1} (or {L = many}), join with
probability p (or q), for some p and q



Equilibrium strategies

(p, q), when selected by all, is also an individual’s best
response

Qualitative findings:

q > p is possible

{L = 1} ⇒ Both ‘avoid the crowd’ (ATC) and ‘follow the
crowd’ (FTC) (or none) are possible (it depends on G)

{L > 1} ⇒ ATC



Expected residual service, L = 1

Under steady-state, conditioning upon L = 1, Mandelbaum and

Yechiali, ’79:

E(R|L = 1) =











x
1−G∗(λp) −

1
λp p > 0

x2

2x p = 0



Example 1: Zero-one service Altman and Hassin ’02

E(R|L = 1) =
1

1 − e−λp
− 1

λp

⇓
E(R|L = 1) ↑ p

⇓
ATC



Example 2: G=Exp(µ), µ ∼ U(1,2)

E(R|L = 1) =
log 2

λp(log(λp + 2) − log(λp + 1))
− 1

λp

⇓
E(R|L = 1) ↓ p

⇓
FTC



Example 3: non-monotone residual

x = 0.5 w.p. 0.8 and x = 3 w.p. 0.2.

⇓

E(R|L = 1) =
1

1 − .2e−3λp − .8e−.5λp
− 1

λp

Not monotone with p



Nash Equilibrium pe

if ∀p, CE(R(p)|L = 1) ≤ K ⇒ pe = 1, ‘dominant’

if ∀p, CE(R(p)|L = 1) ≥ K ⇒ pe = 0, ‘dominant’

if CE(R(1)|L = 1) ≤ K ⇒ pe = 1

if CE(R(0)|L = 1) ≥ K ⇒ pe = 0

if CE(R(p)|L = 1) = K ⇒ pe = p



Increasing service residuals, L=1

Increasing failure rate (IFR) service distribution

⇓

E(R(p)|L = 1) ↑ p

⇓
ATC

⇓

pe unique and ESS



Decreasing service residuals, L=1

Decreasing failure rate (DFR) service distribution
⇓

E(R(p)|L = 1) ↓ p

⇓
FTC

If no dominance ⇒ three equilibria
⇓

pe = 0 and pe = 1 are ESS

0 < pe < 1 is not ESS



Example 3: non-monotone residual

x = 0.5 w.p. 0.8 and x = 3 w.p. 0.2.

⇓

E(R|L = 1) =
1

1 − .2e−3λp − .8e−.5λp
− 1

λp

Not monotone with p

If no dominance ⇒ multiple equilibria

Some of the equilibria are ESS but some are not



Expected queueing times at arrival times

In terms of:

Decision variables p,q

First and second moments of service x, x2

The potential arrival rate λ

LST of service time at a single value, G∗(λp)



Mean waiting when L ≥ 2

Mean queueing time conditioning on L ≥ 2:

x +
λqx2

2(1 − λqx)
+

λpx2

2(λpx + G∗(λp) − 1)
− 1

λp

Separability in p and q

Monotone increasing in q



Nash Equilibrium qe

For any equilibrium pe > 0 there exists a unique qe such that
(pe, qe) is an equilibrium

if ∀q, E(WQ(pe, q)|L > 1) ≤ K
C ⇒ qe = 1, ‘dominant’

if ∀q, E(WQ(pe, q)|L > 1) ≥ K
C

⇒ qe = 0, ‘dominant’

Otherwise, qe solves:

E(WQ(pe, q)|L > 1) = K/C



Nash Equilibrium qe

∀p E(WQ(p, q)|L > 1) ↑ q

⇓

ATC

⇓

qe unique and ESS



The fully observable case Kerner, ’08, ’09

A decision model

service value, K

waiting costs, C

Decision: to join or not to join

pn: Joining probability given L = n, λn = λpn

Problem : the distribution of

W |L=n =
n
∑

i=1

Xi + Rn



Fully observable M/G/1 queue

A typical profile: p = (p1, p2, . . .)

Equilibrium strategy: pe = (pe
1, p

e
2, . . .), one’s best response

when all use it (under steady-state)

pe
1 as in the partially observable case

pe
n are derived recursively:

pe
n ∈ arg max

0≤p≤1

{

p
(

K − CE(Wn(pe
1, . . . , p

e
n−1, p

e
n))
)}

Of course, n ≥ K/(Cx) ⇒ pn = 0.



The Mn/G/1 queue

Join with pn ⇒ when n, is the arrival rate λn = λpn

The queueing model for analysis:

Arrival rate when n, n ≥ 0, customers, λn

X ∼ G, Service distribution

x: mean service time

x2: 2nd moment of service time

G∗(s) =
∞
∫

x=0

e−sxdG(x) - LST of service time

Goal: Rn: residual service time (given n)



Recursion in M/G/1 queues

πi: limit probability of queue length i, i ≥ 0

a recursion on the limit probabilities is well-known

π0 = 1 − λx

⇓
πi, i ≥ 0, are computable



Recursion in Mn/G/1 queues

we developed a recursion on the limit probabilities

but π0 is a function of λi, i ≥ 0

⇓
No finite way to compute πi, i ≥ 0

But things are better when inspecting the residuals!



Recursion on Rn in Mn/G/1

the case n = 1 was dealt with above

an arrival who sees n ≥ 2 upon arrival
with prob. 1 − G∗(λn): is first during the current
service ⇒ R1 with λn

with prob. G∗(λn): faces the residual of the residual
Rn−1 with λ1, . . . , λn−1.

⇓
Rn, n ≥ 1, can be solved recursively



Recursion on Rn

R∗
n(s)=LST of the conditional residual Rn

R∗
1(s) =

λ1

λ1 − s

G∗(s) − G∗(λ1)

1 − G∗(λ1)

R∗
n(s) =

λn

s − λn
(G∗(λn)

1 − R∗
n−1(s)

1 − R∗
n−1(λn)

− G∗(s)), n ≥ 2



Recursion on E(Rn)

E(R1) =
x

1 − G∗(λ1)
− 1

λ1

E(Rn) =
G∗(λn)

1 − R∗
n−1(λn)

E(Rn−1) −
1

λn
+ x, n ≥ 2



Some properties

πn =
λ0π0

λn

n−1
∏

i=0

1 − R∗
i (λi+1)

G∗(λi+1)
, n ≥ 0

An arrival who finds n ≥ 1 upon arrival, is the first to
arrive during the current service with probability
1 − G∗(λn).

⇓
In M/G/1, the event of being the first to arrive during the
current service period and the number in the system
then, are independent.



Back to decision making

λn → λpn

E(Rn) → E(Rn(p1, . . . , pn))

Equilibrium:

pe
n ∈ arg min

0≤p≤1
p(K − C(E(Rn(pe

1, . . . , p
e
n)) + (n − 1)x))



Equilibrium joining probabilities

For n ≥ 1,

(n − 1)x + E(Rn(pe
1, . . . , p

e
n−1, 1)) ≤ K

C
⇒ pe

n = 1

(n − 1)x + E(Rn(pe
1, . . . , p

e
n−1, 0)) ≥ K

C
⇒ pe

n = 0

(n − 1)x + E(Rn(pe
1, . . . , p

e
n−1, p)) =

K

C
⇒ pe

n = p

Stop when pe
n = 0



Example 1 (cont.)

G(x) = ǫ1x≥1 + (1 − ǫ)1x≥0

C = 1,K = 0.7

λ ≤ 2.51 ⇒ pe
1 = pe

2 = 1

2.51 < λ < 2.59 ⇒ 0 < pe
1 < 1, pe

2 = 1

λ > 2.59 ⇒ 0 < pe
1 < pe

2 < 1



Uniqueness issues

IFR ⇒ ATC, unique threshold equilibrium, pe
n, n ≥ 1.

DFR ⇒ FTC, non-unique equilibrium, pe
n, n ≥ 1

Note: pe
n < pe

n+1 is possible



The IFR case

IFR ⇒ ATC, unique threshold equilibrium

Initialize with pe
0 = 1,

pe
n =















1 (n − 1)x + E(Rn(pe

1
, . . . , pe

n−1
, 1)) ≤ K

C

0 (n − 1)x + E(Rn(pe

1
, . . . , pe

n−1
, 0)) ≥ K

C

p (n − 1)x + E(Rn(pe

1
, . . . , pe

n−1
, p)) = K

C

as long as pe
n−1 > 0.



The DFR case

DFR ⇒ FTC

(n − 1)x + E(Rn(pe

1
, . . . , pe

n−1
, 1)) ≤ K

C
⇒ pe

n
= 0, ‘dominant’

(n − 1)x + E(Rn(pe

1
, . . . , pe

n−1
, 0)) ≥ K

C
⇒ pe

n
= 1, ‘dominant’

(n − 1)x + E(Rn(pe

1
, . . . , pe

n−1
, p)) =

K

C
⇒ pe

n
= 0, pe

n
= p, pe

n
= 1



Example 2 (cont.) DFR

G(x) = 1 − e−x − e−2x

x

λ = 1,K = 2.81, C = 1

⇓

pe
1 = pe

2 = 1, unique

pe
3 = 0, 1, 0.654

.



THANK YOU
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