Strategic Customers Behavior in Memoryless Queues

Moshe Haviv

The Hebrew University of Jerusalem
Eindhoven, 19.11.09

M/M/1 queue

- Poisson arrivals. Effective rate of λ.
- Exponential requirements. Mean $\frac{1}{\mu}$.
- $\rho=\lambda / \mu<1$, server utilization.
- First-come first-served (FCFS).

Unobservable M/M/1 queue

- steady-state, mean waiting time (service inclusive)

$$
W=\frac{1}{\mu} \frac{1}{1-\rho}=\frac{1}{\mu-\lambda}
$$

- for a stand-by (or zero-priority) customer

$$
\frac{1}{\mu} \frac{1}{(1-\rho)^{2}}=\frac{1}{\mu} \frac{1}{(1-\lambda / \mu)^{2}}
$$

To join or not to join

- Λ - potential arrival rate
- C - cost per unit of waiting time
- K - reward for service completion

Assume $K>C / \mu$ (for non triviality).

Nash equilibrium:

- Pure strategies: to join or not to join
- Randomization is allowed
- Join with probability p : A symmetric profile
- An equilibrium p_{e} : steady-state under $p_{e} \Rightarrow p_{e}$ is a best response.

Equilibrium

- $\mu>\Lambda$ and $C /(\mu-\Lambda) \leq K \Rightarrow p_{e}=1$, dominant strategy
- $C /(\mu-\Lambda) \geq K \Rightarrow p_{e}, 0<p_{e}<1$
mixed strategy: p_{e} solves $C /(\mu-p \Lambda)-K=0$
Explanation: when all use p_{e}, one is indifferent between joining or not, $\Rightarrow p_{e}$ is one's (not uniquely) best response against p_{e}.

$$
p_{e}=\frac{\mu-\frac{C}{K}}{\Lambda}
$$

Stable equilibrium

p_{e} is evolutionarily stable strategy (ESS):

If $p \neq p_{e}$ is best against all playing p_{e}, then p_{e} is better than p against all playing p.

Equilibrium

case	λ_{e}	p_{e}	$W\left(\lambda_{e}\right)$
$\Lambda \leq \mu-\frac{C}{K}$	Λ	1	$\frac{1}{\mu-\Lambda}$
$\Lambda \geq \mu-\frac{C}{K}$	$\mu-\frac{C}{K}$	$\frac{\mu-\frac{C}{K}}{\Lambda}$	$\frac{K}{C}$

$f(p)$: Under p, the difference in utility between joining and not.

$$
\begin{gathered}
f(p)=K-C /(\mu-p \Lambda)-0 \\
f(p) \downarrow p
\end{gathered}
$$

The more join, the less appealing is joining.

Best response

Best response against p :

- $p \in\left[0, p_{e}\right] \Rightarrow 1$, i.e., join
- $p \in\left[p_{e}, 1\right] \Rightarrow 0$, i.e., do not join
- $p=p_{e}<1 \Rightarrow$ any p

Avoid the Crowd

Best response $\downarrow p$
\Downarrow
Avoid the crowd (ATC)

Social optimization

$$
\begin{aligned}
& p_{s}=\arg \max _{p} p \Lambda\left(K-\frac{C}{\mu-p \Lambda}\right) \\
& p_{s}=\left\{\begin{array}{cc}
1 & \Lambda<\mu-\sqrt{\frac{C \mu}{K}} \\
\frac{\mu-\sqrt{\frac{C \mu}{K}}}{\Lambda} & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

When $p_{s}<1$ social gain equals

$$
(\sqrt{K \mu}-\sqrt{C})^{2}
$$

not a function of Λ

Social optimization

When $p_{s}<1$,

$$
\frac{C}{\mu\left(1-\frac{p_{s} \Lambda}{\mu}\right)^{2}}=K
$$

Under the socially optimal arrival rate, a stand-by customer is indifferent between joining and not. He imposes no externalities and under this rate, his and the society interests coincide.

Optimal toll

$p_{e} \geq p_{s}$. Left to themselves, customers overcrowd the system: They ignore the negative externalities they inflict on others.

Optimal toll

$p_{e} \geq p_{s}$. Left to themselves, customers overcrowd the system: They ignore the negative externalities they inflict on others.

Charging an entry fee of $K-\sqrt{C K / \mu}$ or an added cost of $\sqrt{C K \mu}-C$ per unit time in the system \Rightarrow the new p_{e} coincides with the old p_{s}.

Optimal toll

$p_{e} \geq p_{s}$. Left to themselves, customers overcrowd the system: They ignore the negative externalities they inflict on others.

Charging an entry fee of $K-\sqrt{C K / \mu}$ or an added cost of $\sqrt{C K \mu}-C$ per unit time in the system \Rightarrow the new p_{e} coincides with the old p_{s}.

In both schemes, the added charge coincides with the externality that one who joins inflicts on others under the social optimal joining rate.
All consumer surplus goes to the central planner.

A cab or a bus?

- Waiting for the bus: 5 minutes
- The cab leaves when the 7th arrives
- Unobservable. No regrets
- Poisson arrival, rate λ

A cab or a bus? The more use the cab, the more appealing
it is

Follow the Crowd (FTC)

A cab or a bus?

Symmetric strategy: Take the cab with probability p
If $\lambda<3 / 5 \Rightarrow p=0$ is dominant.
Otherwise three equilibria:

- $p=0$ (stable)
- $p=1$ (stable)
- $p=p_{e}$ (unstable)
where

$$
\frac{3}{p_{e} \lambda}-5=0
$$

social optimization

1. if $\lambda<3 / 5 \Rightarrow p=0$
2. if $\lambda>3 / 5 \Rightarrow p=1$
3. if $\lambda=3 / 5 \Rightarrow p=0$ and $p=1$

- two priority levels. Within a class, FCFS
- high priority costs θ
- no balking or reneging (K is irrelevant)
- unobservable

Why to have priority at all?

Purchasing priority ${ }_{\text {(tasisi namd Anviv }}$ b3)

- two priority levels. Within a class, FCFS
- high priority costs θ
- no balking or reneging (K is irrelevant)
- unobservable

Why to have priority at all?

1. to overtake ordinary customers (\Rightarrow ATC)

Purchasing priority ${ }_{\text {(tasisi namd Anviv }}$ b3)

- two priority levels. Within a class, FCFS
- high priority costs θ
- no balking or reneging (K is irrelevant)
- unobservable

Why to have priority at all?

1. to overtake ordinary customers (\Rightarrow ATC)
2. to avoid being overtaken by premium customers (\Rightarrow Follow the Crowd (FTC))

Priority purchasing

Strategy p : purchase priority with probability p
$f(p)=$ difference in utility between purchasing and not purchasing

$$
f(p)=\frac{C \lambda}{(\mu-\lambda)(\mu-\lambda p)}-\theta
$$

$f(p) \uparrow p$.
Conclusion: The more purchase priority, the higher its value (FTC).

Purchasing priority

- $f(0) \geq 0 \Rightarrow p=1$ is dominant

Purchasing priority

- $f(0) \geq 0 \Rightarrow p=1$ is dominant
- $f(1) \leq 0 \Rightarrow p=0$ is dominant

Purchasing priority

- $f(0) \geq 0 \Rightarrow p=1$ is dominant
- $f(1) \leq 0 \Rightarrow p=0$ is dominant
- $f(0) \leq 0 \leq f(1)$ three equilibria:
- $p=0$ (stable)
- $p=1$ (stable)
- $p=p_{e}$ where $f\left(p_{e}\right)=0$ (unstable)

Purchasing priority

- $f(0) \geq 0 \Rightarrow p=1$ is dominant
- $f(1) \leq 0 \Rightarrow p=0$ is dominant
- $f(0) \leq 0 \leq f(1)$ three equilibria:
- $p=0$ (stable)
- $p=1$ (stable)
- $p=p_{e}$ where $f\left(p_{e}\right)=0$ (unstable)

Follow the Crowd

The best response function $\uparrow p$

\Downarrow
 Follow the crowd (FTC)

1. a single service will be performed at time T
2. number interested $\sim \operatorname{Pois}(\lambda)$
3. all value it by K
4. the first to arrive gets it (ties broken randomly)
5. cost C per unit of waiting

First-price sealed-bid auction

When to arrive?

Common knowledge: each bidder thinks that the number of other bidders $\sim \operatorname{Pois}(\lambda)$

Suits huge population of potential bidders, each becomes a bidder with a tiny probability

When to arrive? (model 1)

- losers wait too
- no restrictions on arrival time

When to arrive? (model 1)

- losers wait too
- no restrictions on arrival time

The equilibrium density function of arrival:

$$
f(t)=\left\{\begin{array}{cl}
\frac{1}{\lambda\left(\frac{K}{C}-(t-a)\right)} & a \leq t \leq T \\
0 & \text { otherwise }
\end{array}\right.
$$

$a=T-K\left(1-e^{-\lambda}\right) / C$
$f(t)$ increases with t
Truncated beta $(1,0)$ distribution

When to arrive? (model 2)

- losers do not wait
- no restrictions on arrival time

The equilibrium density function of arrival:

$$
f(t)=\left\{\begin{array}{cl}
\frac{1}{\lambda\left(\frac{K}{C}-(T-t)\right)} & a \leq t \leq T \\
0 & \text { otherwise }
\end{array}\right.
$$

The equilibrium density function of arrival time is the mirror image of the previous density along the same support.
$f(t)$ decreases with t.

When to arrive? (model 3)

- losers wait too
- restriction: no arrivals prior to $b>a$

When to arrive? (model 3)

- losers wait too
- restriction: no arrivals prior to $b>a$

1. arrive at b with probability p

$$
K \frac{1-e^{-\lambda p}}{\lambda p}-C(T-b)=K e^{-\lambda}
$$

2. no arrivals in $(b, c), c=T-\frac{K}{C}\left(e^{-\lambda p}-e^{-\lambda}\right)$
3. arrive in $[c, T]$ with density

$$
f(t)=\left\{\begin{array}{cc}
\frac{1}{\lambda\left(\frac{K}{C} e^{-\lambda p}-(t-c)\right)} & c \leq t \leq T \\
0 & \text { otherwise }
\end{array}\right.
$$

When to arrive? (model 4)

- losers do not wait
- restriction: no arrivals prior to $b>a$

1. arrive at b with probability q

$$
\frac{1-e^{-\lambda q}}{\lambda q}(K-C(T-b))=K e^{-\lambda}
$$

2. no arrivals in $(b, d), d=T-\frac{K}{C}\left(e^{-\lambda q}-e^{-\lambda}\right)$
3. arrive in $[d, T]$ with density

$$
f(t)=\left\{\begin{array}{cl}
\frac{1}{\lambda\left(\frac{K}{C}-(T-t)\right)} & d \leq t \leq T \\
0 & \text { otherwise }
\end{array}\right.
$$

When to arrive?

For all versions:

- individual utility in equilibrium $K e^{-\lambda}$
- social utility in equilibrium $\lambda K e^{-\lambda}$
- social utility in optimization $K\left(1-e^{-\lambda}\right)$
- price of anarchy (PoA) $\frac{e^{\lambda}-1}{\lambda}$

Biding for priority (version 1) Glarar and Hasin, 86

- The more one pays, the earlier one enters
- With preemption
- Ties are broken on FCFS basis
- No balking or reneging: K is irrelevant

Bidding for priority (version 1)

Equilibrium biding: mix payment continuously between $[0, a]$.
$a=$ difference value between best and worst positions

$$
a=\frac{C}{\mu(1-\rho)^{2}}-\frac{C}{\mu}
$$

Equilibrium: Pay in accordance with cumulative distribution function $F(x), 0 \leq x \leq a$

Bidding for priority (version 1)

Finding $F(x), 0 \leq x \leq a$:

$$
\begin{gathered}
x+C W_{x}=0+\frac{C}{\mu(1-\rho)^{2}}, \quad 0 \leq x \leq a \\
W_{x}=\frac{1}{\mu\left(1-\frac{\lambda(1-F(x))}{\mu}\right)^{2}}, \quad 0 \leq x \leq a \\
\Rightarrow \quad F(x)=\frac{1-\rho}{\rho}\left(\sqrt{\frac{1}{1-\frac{x \mu}{C}(1-\rho)^{2}}}-1\right)
\end{gathered}
$$

Biding for priority (version 2) Hasin 9s

- As above but with balking
- K is back

Equilibrium joining rate as the socially optimal.
Proof: One who pays nothing imposes no externalities.
Those who join pay with some density along $[0, K-C / \mu]$.

1. no balking
2. any payment $x \geq 0$
3. if payments of n in line were $x_{i}, 1 \leq i \leq n$, customer i enters with probability

$$
\frac{x_{i}}{\sum_{j=1}^{n} x_{j}}
$$

How much to pay?

Biding for relative priority

Unique pure equilibrium: Pay

$$
\frac{\rho C}{\mu(1-\rho)(2-\rho)}
$$

Random entrance!
Not ATC or FTC
Around the equilibrium, FTC

Retroide Queues Hassin and Haviv, '96

1. $\mathrm{M} / \mathrm{M} / 1$
2. λ, μ, C
3. no balking or reneging (K not relevant)
4. if server is busy, retry and retry later
5. tries cost H each

Decision problem: When to try again?

Retrial queues

The forgetful customers: Times between retrials are exponential with an identical parameter

Retrial queues

The forgetful customers: Times between retrials are exponential with an identical parameter
What is the equilibrium retrial rate?

$$
\frac{C \rho+\sqrt{C^{2} \rho^{2}+8 \mu C H(1-\rho)(2-\rho)}}{4 H(1-\rho)}
$$

Around the equilibrium, ATC
Socially optimal retrial rate kulkarni, '83

$$
\sqrt{\frac{C \mu}{H}}
$$

Reneging

Having the option of reneging (abandonment) later changes nothing

Explanation: Under $\mathrm{M} / \mathrm{M} / 1$, memoryless waiting time. If others may renege, one's future improves while waiting.

Deteriorating conditions Hasis and Havi, 9 s

Bang-bang: at time T after waiting, K drops to zero.

- to join or not to join?
- when to renege? (customers have a watch)

Unique equilibrium: Join with probability p and then renege at time T ($p=1$ is possible).

Continuous deterioration Havivand R Rior, or $^{\text {an }}$

$C(t)$ waiting cost per unit at time t of waiting. $C(0)=0$.
Equilibrium reneging strategy (some technical conditions):
For some $T_{1}<T_{2}$,

1. do not renege until T_{1}
2. renege with some density in $\left[T_{1}, T_{2}\right)$
3. renege with complementary probability at T_{2}

Observable M/M/1 queues ${ }_{\text {var }}$ ' 6

- $M / M / 1$
- same cost/reward model (C and K)
- queue length inspected upon arrival

To join or not to join?
Equilibrium: $\left\{\right.$ Join $\left.\Leftrightarrow L \leq n_{e}\right\}$

$$
n_{e}=\left\lfloor\frac{K \mu}{C}\right\rfloor-1
$$

Multi-equilibria: For $L \leq n_{e}$ as above. For $L \geq n_{e}+1$, anything.
$\left\{\right.$ Join $\Leftrightarrow L \leq n_{e}$. Unique subgame-perfect equilibrium (SPE).

Social optimization

$$
g(n)=\frac{n(1-\rho)-\rho\left(1-\rho^{n}\right)}{(1-\rho)^{2}}
$$

n_{s} is with

$$
g\left(n_{s}-1\right) \leq \frac{K}{\mu} \leq g\left(n_{s}\right)
$$

Social optimization: Join if and only if $L<n_{s}$

Optimal entry fee

A right optimal one-for-all entry fee T with

$$
n_{s}=\left\lfloor\frac{(K-T) \mu}{C}\right\rfloor
$$

makes the new n_{e} coincide with the old n_{s}.

Optimal entry fee

A right optimal one-for-all entry fee T with

$$
n_{s}=\left\lfloor\frac{(K-T) \mu}{C}\right\rfloor
$$

makes the new n_{e} coincide with the old n_{s}.
Some surplus stays at the hands of customers: They are more informed than the central planner is.

not-FCFS and social optimization ${ }_{\text {Hasin, }, 85}$

- An arrival is placed anywhere but at the last position
- Pre-emption is possible. A must if $L=1$

Individuals' dilemma: when to renege?
Answer: renege when n_{s} customers are ahead: The one at the back inflicts no externalities. His and the society's interests coincide.

Queue-length dependent entry fee

A queue-length dependent fee leaves them with zero surplus:

$$
T_{n}=\left\{\begin{array}{cc}
K-\frac{C(n+1)}{\mu} & 0 \leq n \leq n_{s}-1 \\
\infty & \text { otherwise }
\end{array}\right.
$$

'urchasing priority: Observable case $\begin{aligned} \text { н. апн н, }\end{aligned}$

High priority costs θ.
An arrival observes the two queue lengths.
Only the number of regular customers matters.
\Rightarrow Assume the number of premium customers is zero.

Purchasing priority: Observable case

A pure threshold equilibrium n : do not pay iff the number of regular customers is below n.
$W(n)=$ mean queueing time of the worst regular customers when all use strategy n.

Result: n is an equilibrium iff

$$
\theta-C B \leq C W(n) \leq \theta
$$

where $B=1 /(\mu-\lambda)$ (mean busy period)

Purchasing priority: Observable case

1. at least one pure equilibrium exists
2. consecutive multiple equilibria are possible. At most $\lfloor 1 /(1-\rho)\rfloor$ pure equilibria
3. both bounds are attainable
4. between two pure equilibria, (usually) one mixed.

Inferring quality from long queues, deboc.at ans

- $M / M / 1, C=0$, FCFS, observable
- homogeneous service value: low <0 or high >0 $\mathbf{P}($ high $)=p$
- private independent signals: good or bed $\mathrm{P}($ good \mid high $)=P($ bad \mid low $)=q$.

To queue or not to queue?

Inferring quality from long queues

- Customers with good signals \Rightarrow ATC
- Customers with bad signals \Rightarrow FTC

Equilibrium:

- good signal: join with prob. $\alpha>0$ when $n=0$ ($\alpha=1$ possible). Join when $n \geq 1$.
- bad signal: up to $n_{e} \geq 1$ (exclusive) do not join. At n_{e} join with prob. $\beta, 0 \leq \beta \leq 1$. Join when $n>n_{e}$.

Multiple equilibria

Strategic Customers Behavior in the M/G/1 Queue

Moshe Haviv

The Hebrew University of Jerusalem
Joint with Yoav Kerner
Eindhoven, 20.11.09

M/G/1 queue

- Single server
- Poisson arrival process (λ)
- G - Service distribution
\bar{x} - mean service time
$\overline{x^{2}}-2^{\text {nd }}$ moment of service time
$G^{*}(s)=\int_{x=0}^{\infty} e^{-s x} d G(x)$ - LST of service time

M/G/1: unobservable case

Conceptually as in M/M/1

- . service value, K
- queueing costs, C per unit of time
- The pure strategies: to join or not to join
- Mixed strategy: Randomize between joining and not

Unobservable system

All join with probability $p \Rightarrow W_{q}=\frac{\lambda p \overline{x^{2}}}{2(1-\lambda p \bar{x})} \quad$ (K-P)
Symmetric Nash equilibrium:

$$
\begin{gathered}
p_{e} \in \arg \max _{0 \leq p \leq 1} p\left(K-\frac{C \lambda p_{e} \overline{x^{2}}}{2\left(1-\lambda p_{e} \bar{x}\right)}\right)+(1-p) \cdot 0 \\
p_{e}=\min \left\{\frac{2 K}{\lambda\left(2 K \bar{x}+C \overline{x^{2}}\right)}, 1\right\}
\end{gathered}
$$

Unobservable system

Properties of Nash equilibrium

- Unique
- ESS

Evolutionarily Stable Strategy

- ATC Avoid the Crowd

M/G/1 and residual service times

The unconditional mean residual service time

$$
=\frac{\lambda \overline{x^{2}}}{2}
$$

But:

- the residual service time and the queue length are not independent
- when balking is with queue dependent probabilities, the distribution of the residual service time (given the queue length) is a function of (early) balking probabilities

Daptigtiv observable systerns Haviv and Kerner, '07

- Same cost/reward model (assume no waiting costs during service)
- Information upon arrival: $L=0, L=1$ or, $L=$ many

All join when informed of $L=0$.

Balking strategies

Pure strategies: When $\{L=1\}$ or $\{L=$ many $\}$, join or not

Mixed strategies: When $\{L=1\}$ (or $\{L=$ many $\}$), join with probability p (or q), for some p and q

Equilibrium strategies

(p, q), when selected by all, is also an individual's best response

Qualitative findings:

- $q>p$ is possible
- $\{L=1\} \Rightarrow$ Both 'avoid the crowd' (ATC) and 'follow the crowd' (FTC) (or none) are possible (it depends on G)
- $\{L>1\} \Rightarrow$ ATC

Expected residual service, $L=1$

Under steady-state, conditioning upon $L=1$, Mandelbaum and

Yechiali, '79:

$$
\mathrm{E}(R \mid L=1)=\left\{\begin{array}{cc}
\frac{\bar{x}}{1-G^{*}(\lambda p)}-\frac{1}{\lambda p} & p>0 \\
\frac{\overline{x^{2}}}{2 \bar{x}} & p=0
\end{array}\right.
$$

Example 1: Zero-one service $\begin{gathered}\text { Atman mand tasin } \text { vo2 }^{2}\end{gathered}$

$$
\begin{gathered}
\mathrm{E}(R \mid L=1)=\frac{1}{1-e^{-\lambda p}}-\frac{1}{\lambda p} \\
\Downarrow \\
\mathrm{E}(R \mid L=1) \uparrow p \\
\Downarrow \\
A T C
\end{gathered}
$$

Example 2: $\mathbf{G}=\operatorname{Exp}(\mu), \mu \sim \mathbf{U}(\mathbf{1 , 2})$

$$
\begin{gathered}
\mathrm{E}(R \mid L=1)=\frac{\log 2}{\lambda p(\log (\lambda p+2)-\log (\lambda p+1))}-\frac{1}{\lambda p} \\
\Downarrow
\end{gathered}
$$

$$
\mathrm{E}(R \mid L=1) \downarrow p
$$

\Downarrow
FTC

Example 3: non-monotone residual

$$
\begin{gathered}
x=0.5 \text { w.p. } 0.8 \text { and } x=3 \text { w.p. } 0.2 . \\
\mathrm{E}(R \mid L=1)=\frac{1}{1-.2 e^{-3 \lambda p}-.8 e^{-.5 \lambda p}}-\frac{1}{\lambda p}
\end{gathered}
$$

Not monotone with p

Nash Equilibrium p_{e}

- if $\forall p, C \mathrm{E}(R(p) \mid L=1) \leq K \Rightarrow p_{e}=1$, 'dominant'
- if $\forall p, C \mathrm{E}(R(p) \mid L=1) \geq K \Rightarrow p_{e}=0$, 'dominant'
- - if $C \mathrm{E}(R(1) \mid L=1) \leq K \Rightarrow p_{e}=1$
- if $C \mathrm{E}(R(0) \mid L=1) \geq K \Rightarrow p_{e}=0$
- if $C \mathrm{E}(R(p) \mid L=1)=K \Rightarrow p_{e}=p$

Increasing service residuals, $\mathrm{L}=1$

Increasing failure rate (IFR) service distribution
\Downarrow

$$
\mathrm{E}(R(p) \mid L=1) \uparrow p
$$

\Downarrow
ATC
\Downarrow
p_{e} unique and ESS

Decreasing service residuals, $L=1$

Decreasing failure rate (DFR) service distribution \Downarrow

$$
\begin{gathered}
\mathrm{E}(R(p) \mid L=1) \downarrow p \\
\Downarrow \\
\text { FTC }
\end{gathered}
$$

If no dominance \Rightarrow three equilibria
\Downarrow

$$
p_{e}=0 \text { and } p_{e}=1 \text { are ESS }
$$

$0<p_{e}<1$ is not ESS

Example 3: non-monotone residual

$$
\begin{gathered}
x=0.5 \text { w.p. } 0.8 \text { and } x=3 \text { w.p. } 0.2 . \\
\mathrm{E}(R \mid L=1)=\frac{1}{1-.2 e^{-3 \lambda p}-.8 e^{-.5 \lambda p}}-\frac{1}{\lambda p}
\end{gathered}
$$

Not monotone with p
If no dominance \Rightarrow multiple equilibria
Some of the equilibria are ESS but some are not

Expected queueing times at arrival times

In terms of:

- Decision variables p, q
- First and second moments of service $\bar{x}, \overline{x^{2}}$
- The potential arrival rate λ
- LST of service time at a single value, $G^{*}(\lambda p)$

Mean waiting when $L \geq 2$

Mean queueing time conditioning on $L \geq 2$:

$$
\bar{x}+\frac{\lambda q \overline{x^{2}}}{2(1-\lambda q \bar{x})}+\frac{\lambda p \overline{x^{2}}}{2\left(\lambda p \bar{x}+G^{*}(\lambda p)-1\right)}-\frac{1}{\lambda p}
$$

- Separability in p and q
- Monotone increasing in q

Nash Equilibrium q_{e}

For any equilibrium $p_{e}>0$ there exists a unique q_{e} such that (p_{e}, q_{e}) is an equilibrium

- if $\forall q, \mathrm{E}\left(W_{Q}\left(p_{e}, q\right) \mid L>1\right) \leq \frac{K}{C} \Rightarrow q_{e}=1$, 'dominant'
- if $\forall q, \mathrm{E}\left(W_{Q}\left(p_{e}, q\right) \mid L>1\right) \geq \frac{K}{C} \Rightarrow q_{e}=0$, 'dominant'
- Otherwise, q_{e} solves:

$$
\mathrm{E}\left(W_{Q}\left(p_{e}, q\right) \mid L>1\right)=K / C
$$

Nash Equilibrium q_{e}

$$
\begin{gathered}
\forall p \mathrm{E}\left(W_{Q}(p, q) \mid L>1\right) \\
\Downarrow
\end{gathered}
$$

ATC
\Downarrow
q_{e} unique and ESS

The fully observable case $\begin{gathered}\text { кener } \text {, os, og }\end{gathered}$

A decision model

- service value, K
- waiting costs, C

Decision: to join or not to join
p_{n} : Joining probability given $L=n, \lambda_{n}=\lambda p_{n}$
Problem: the distribution of

$$
\left.W\right|_{L=n}=\sum_{i=1}^{n} X_{i}+R_{n}
$$

Fully observable M/G/1 queue

A typical profile: $\underline{p}=\left(p_{1}, p_{2}, \ldots\right)$
Equilibrium strategy: $\underline{p}^{e}=\left(p_{1}^{e}, p_{2}^{e}, \ldots\right)$, one's best response when all use it (under steady-state)
p_{1}^{e} as in the partially observable case
p_{n}^{e} are derived recursively:

$$
p_{n}^{e} \in \arg \max _{0 \leq p \leq 1}\left\{p\left(K-C \mathrm{E}\left(W_{n}\left(p_{1}^{e}, \ldots, p_{n-1}^{e}, p_{n}^{e}\right)\right)\right)\right\}
$$

Of course, $n \geq K /(C \bar{x}) \Rightarrow p_{n}=0$.

The $M_{n} / G / 1$ queue

Join with $p_{n} \Rightarrow$ when n, is the arrival rate $\lambda_{n}=\lambda p_{n}$ The queueing model for analysis:

- Arrival rate when $n, n \geq 0$, customers, λ_{n}
- $X \sim G$, Service distribution
\bar{x} : mean service time
$\overline{x^{2}}: 2^{\text {nd }}$ moment of service time

$$
G^{*}(s)=\int_{x=0}^{\infty} e^{-s x} d G(x) \text { - LST of service time }
$$

- Goal: R_{n} : residual service time (given n)

Recursion in $M / G / 1$ queues

π_{i} : limit probability of queue length $i, i \geq 0$

- a recursion on the limit probabilities is well-known
- $\pi_{0}=1-\lambda \bar{x}$
$\pi_{i}, i \geq 0$, are computable

Recursion in $M_{n} / G / 1$ queues

- we developed a recursion on the limit probabilities
- but π_{0} is a function of $\lambda_{i}, i \geq 0$

No finite way to compute $\pi_{i}, i \geq 0$

But things are better when inspecting the residuals!

Recursion on R_{n} in $M_{n} / G / 1$

- the case $n=1$ was dealt with above
- an arrival who sees $n \geq 2$ upon arrival
- with prob. $1-G^{*}\left(\lambda_{n}\right)$: is first during the current service $\Rightarrow R_{1}$ with λ_{n}
- with prob. $G^{*}\left(\lambda_{n}\right)$: faces the residual of the residual R_{n-1} with $\lambda_{1}, \ldots, \lambda_{n-1}$.

$$
R_{n}, n \geq 1 \text {, can be solved recursively }
$$

Recursion on R_{n}

$R_{n}^{*}(s)=$ LST of the conditional residual R_{n}

$$
\begin{gathered}
R_{1}^{*}(s)=\frac{\lambda_{1}}{\lambda_{1}-s} \frac{G^{*}(s)-G^{*}\left(\lambda_{1}\right)}{1-G^{*}\left(\lambda_{1}\right)} \\
R_{n}^{*}(s)=\frac{\lambda_{n}}{s-\lambda_{n}}\left(G^{*}\left(\lambda_{n}\right) \frac{1-R_{n-1}^{*}(s)}{1-R_{n-1}^{*}\left(\lambda_{n}\right)}-G^{*}(s)\right), n \geq 2
\end{gathered}
$$

Recursion on $\mathrm{E}\left(R_{n}\right)$

$$
\begin{gathered}
\mathrm{E}\left(R_{1}\right)=\frac{\bar{x}}{1-G^{*}\left(\lambda_{1}\right)}-\frac{1}{\lambda_{1}} \\
\mathrm{E}\left(R_{n}\right)=\frac{G^{*}\left(\lambda_{n}\right)}{1-R_{n-1}^{*}\left(\lambda_{n}\right)} \mathrm{E}\left(R_{n-1}\right)-\frac{1}{\lambda_{n}}+\bar{x}, \quad n \geq 2
\end{gathered}
$$

Some properties

0

$$
\pi_{n}=\frac{\lambda_{0} \pi_{0}}{\lambda_{n}} \prod_{i=0}^{n-1} \frac{1-R_{i}^{*}\left(\lambda_{i+1}\right)}{G^{*}\left(\lambda_{i+1}\right)}, n \geq 0
$$

- An arrival who finds $n \geq 1$ upon arrival, is the first to arrive during the current service with probability $1-G^{*}\left(\lambda_{n}\right)$.

In $\mathrm{M} / \mathrm{G} / 1$, the event of being the first to arrive during the current service period and the number in the system then, are independent.

Back to decision making

$$
\lambda_{n} \rightarrow \lambda p_{n}
$$

$$
\mathrm{E}\left(R_{n}\right) \rightarrow \mathrm{E}\left(R_{n}\left(p_{1}, \ldots, p_{n}\right)\right)
$$

Equilibrium:

$$
p_{n}^{e} \in \arg \min _{0 \leq p \leq 1} p\left(K-C\left(\mathrm{E}\left(R_{n}\left(p_{1}^{e}, \ldots, p_{n}^{e}\right)\right)+(n-1) \bar{x}\right)\right)
$$

Equilibrium joining probabilities

For $n \geq 1$,

$$
\begin{aligned}
& (n-1) \bar{x}+\mathrm{E}\left(R_{n}\left(p_{1}^{e}, \ldots, p_{n-1}^{e}, 1\right)\right) \leq \frac{K}{C} \Rightarrow p_{n}^{e}=1 \\
& (n-1) \bar{x}+\mathrm{E}\left(R_{n}\left(p_{1}^{e}, \ldots, p_{n-1}^{e}, 0\right)\right) \geq \frac{K}{C} \Rightarrow p_{n}^{e}=0 \\
& (n-1) \bar{x}+\mathrm{E}\left(R_{n}\left(p_{1}^{e}, \ldots, p_{n-1}^{e}, p\right)\right)=\frac{K}{C} \Rightarrow p_{n}^{e}=p
\end{aligned}
$$

Stop when $p_{n}^{e}=0$

Example 1 (cont.)

$$
\begin{gathered}
G(x)=\epsilon 1_{x \geq 1}+(1-\epsilon) 1_{x \geq 0} \\
C=1, K=0.7
\end{gathered}
$$

- $\lambda \leq 2.51 \Rightarrow p_{1}^{e}=p_{2}^{e}=1$
- $2.51<\lambda<2.59 \Rightarrow 0<p_{1}^{e}<1, p_{2}^{e}=1$
- $\lambda>2.59 \Rightarrow 0<p_{1}^{e}<p_{2}^{e}<1$

Uniqueness issues

$\mathrm{IFR} \Rightarrow \mathrm{ATC}$, unique threshold equilibrium, $p_{n}^{e}, n \geq 1$.

DFR \Rightarrow FTC, non-unique equilibrium, $p_{n}^{e}, n \geq 1$

Note: $p_{n}^{e}<p_{n+1}^{e}$ is possible

The IFR case

IFR \Rightarrow ATC, unique threshold equilibrium
Initialize with $p_{0}^{e}=1$,

$$
p_{n}^{e}= \begin{cases}1 & (n-1) \bar{x}+\mathrm{E}\left(R_{n}\left(p_{1}^{e}, \ldots, p_{n-1}^{e}, 1\right)\right) \leq \frac{K}{C} \\ 0 & (n-1) \bar{x}+\mathrm{E}\left(R_{n}\left(p_{1}^{e}, \ldots, p_{n-1}^{e}, 0\right)\right) \geq \frac{K}{C} \\ p & (n-1) \bar{x}+\mathrm{E}\left(R_{n}\left(p_{1}^{e}, \ldots, p_{n-1}^{e}, p\right)\right)=\frac{K}{C}\end{cases}
$$

as long as $p_{n-1}^{e}>0$.

The DFR case

DFR \Rightarrow FTC

$$
\begin{aligned}
& (n-1) \bar{x}+\mathrm{E}\left(R_{n}\left(p_{1}^{e}, \ldots, p_{n-1}^{e}, 1\right)\right) \leq \frac{K}{C} \Rightarrow p_{n}^{e}=0, \text { 'dominant' } \\
& (n-1) \bar{x}+\mathrm{E}\left(R_{n}\left(p_{1}^{e}, \ldots, p_{n-1}^{e}, 0\right)\right) \geq \frac{K}{C} \Rightarrow p_{n}^{e}=1, \text { 'dominant' } \\
& (n-1) \bar{x}+\mathrm{E}\left(R_{n}\left(p_{1}^{e}, \ldots, p_{n-1}^{e}, p\right)\right)=\frac{K}{C} \Rightarrow p_{n}^{e}=0, p_{n}^{e}=p, p_{n}^{e}=1
\end{aligned}
$$

Example 2 (cont.) DFR

$$
\begin{aligned}
& G(x)=1-\frac{e^{-x}-e^{-2 x}}{x} \\
& \lambda=1, K=2.81, C=1
\end{aligned}
$$

$$
\Downarrow
$$

$$
p_{1}^{e}=p_{2}^{e}=1, \quad \text { unique }
$$

$$
p_{3}^{e}=0,1,0.654
$$

THANK YOU

