Flow-level stability and performance of channel-aware priority-based schedulers

Samuli Aalto and Pasi Lassila COMNET Department TKK Helsinki University of Technology

Email: {Samuli.Aalto, Pasi.Lassila}@tkk.fi

Background (1)

- Flow-level scenario
 - Users around a BS
 - Users download files
 - Each file requires many time slots of service
 - Number of active users varies randomly

- HDR systems
 - BS transmits to one user in a time slot with full power
 - BS knows the channel quality
 - Decides on suitable coding to match channel state
 - Challenge: channel state varies randomly due to fading phenomena

Background (2)

- Consider system when time slot length $\rightarrow 0$
- Assume that rate variations average out at flow time scale
 - System corresponds to M/G/1 queue
 - SRPT is optimal policy for minimizing mean flow delay
- Channel-aware scheduling
 - Base station knows instantaneous channel state of all active users
 - Can favor those users having instantaneously good channels
 - Analysis with a static number of users (w/wo packet-level dynamics)
 - Queue length-based policies shown to have many desirable properties (Stolyar 2005, Mandelbaum & Stolyar 2004,...)
 - Not much work on dynamic setting
 - Stability: seminal work by Borst 2005 and Jonckheere & Borst 2006
 - Minimizing mean delay very difficult and hardly anything is known

Overview

- We study so called priority-based channel-aware schedulers
 - Priority can be any strictly increasing function of instantaneous rate
 - Includes as special cases many proposed channel-aware schedulers

- Stability

- Achieving maximum stability region is a robustness property
- We give the general condition when necessary condition is also sufficient
- When necessary condition is not sufficient, we give the sufficient condition for some special cases

- Performance

• Simulation studies to gain insight on actual performance (including comparisons against α -fair policies)

HELSINKI UNIVERSITY OF TECHNOLOGY

Model and assumptions

- Traffic assumptions
 - Consider *K* classes of flows (or users)
 - Classes correspond to flows with different channel properties
 - Flows arrive according to a Poisson process with rate λ_k
 - Flow sizes, X_i , are i.i.d. with mean $\bar{x} = E[X_i]$
- Channel assumptions
 - Class-k rates vary independently according to a stationary process $R_k(t)$
 - Base station knows instantaneous flow rates and channel statistics
 - Discrete set of possible rates $\{r_1, ..., r_J\}$ (in HDR systems J = 11)
 - Each class has its own set R_k with $F_k(r) = P\{R_k \le r\}$

•
$$\bar{r}_k = E[R_k]$$
, $r_k^* = \max \mathcal{R}_k$, $r_k^{**} = \max(\mathcal{R}_k \setminus \{r_k^*\})$

- Traffic load:
$$\rho_k^* = \frac{\lambda_k \bar{x}}{r_k^*}$$
 and $\rho^* = \rho_1^* + \ldots + \rho_K^*$

Rate-based priority scheduler

- Let $h_k(r)$ denote any strictly increasing function of instantaneous rate r
- Priority of flow *i* in class *k*

$$P_i(t) = h_k(R_i(t))$$

- Priority-based scheduler selects user i^* at time t for which

$$P_{i^*}(t) = \max_{i \in \mathcal{N}(t)} P_i(t)$$

- The set of possible priorities of class-k flows is discrete

$$\mathcal{P}_k = \{h_k(r) : r \in \mathcal{R}_k\}$$

- Priority class = all flows with same priority
 - Within a priority class there may be flows from different classes
 - We allow ties to occur between user classes

Special cases of rate-based priority scheduler

- Linear weight-based strategies so that $h_k(r) = w_k r$
 - Absolute rate priority: $w_k = 1$
 - Relative rate priority: $w_k = 1/\bar{r}_k$
 - Proportional rate priority: $w_k = 1/r_k^*$
- Non-linear weight
 - CDF-based priority: $h_k(r) = F_k(r)^{1/w_k}$
- Tie breaking
 - Randomized tie breaking \Rightarrow MR, RB, PB, CS (with $w_k = 1$)
 - Possible to use, e.g., information about remaining size Y_i

Stability under necessary condition (1)

- Necessary condition for channel aware-schedulers (B&J 2006)

$$\rho^* = \rho_1^* + \ldots + \rho_K^* \le 1$$

- Utility-based policies
 - Utility U depends on flow throughput $T_i(t)$ and the policy selects flow with $i^* = \arg \max_{i \in \mathcal{N}(t)} R_i(t) U'(T_i(t))$
 - For fixed nof flows, asymptotically maximizes $\sum_{i} U(T_i(t))$
 - Utility-based policies are stable under (B&J 2006)

$$\rho^* < 1$$

• When is the above sufficient also for priority-based policies?

Stability under necessary condition (2)

- Some notation
 - Highest priority in class *k*, $p_k^* = h_k(r_k^*) = \max \mathcal{P}_k$
 - 2nd highest priority in class k, $p_k^{**} = h_k(r_k^{**}) = \max(\mathcal{P}_k \setminus \{p_k^*\})$
- **Theorem 1**: If $p_k^* > p_l^{**}$ for all $k \neq l$, then the rate-based priority policy is stable when

$$\rho^* < 1 \tag{1}$$

- Proof based on showing that $\rho^* \ge 1$ when the system is unstable
- Theorem 1 implies that at stability limit the scheduler always serves a flow with its class specific maximum rate.

Comments on Theorem 1

- Ties may occur between priorities of different classes
- Tie-breaking rule can be any work-conserving policy
- Corollaries:
 - Corollary 1: Proportional rate policy is stable under (1).
 - Corollary 2: CDF-based priority policy is stable under (1).
 - Corollary 3: If $r_k^* = r_j$ for all classes, absolute rate priority policy is stable under (1).
 - Corollary 4: If r^{*}_k/r
 _k > r^{**}_l/r
 _l for all k ≠ l, then any relative rate priority policy is stable under (1).

Illustration of Theorem 1 with K = 2

- $R_1 = R_2 = \{1, 2, 4, 8\}, p_1 = \{0.1, 0.2, 0.3, 0.4\}, p_2 = \{0.9, 0.05, 0.03, 0.02\}$
- Absolute rate
 - $P_1 = \{8, 4, 2, 1\}, P_2 = \{8, 4, 2, 1\}$
 - highest indexes : _____ = stable
- Proportional rate
 - $P_1 = \{1, 0.5, 0.25, 0.125\}, P_2 = \{1, 0.5, 0.25, 0.125\}$
 - highest indexes : _____ = stable
- Relative rate
 - $P_1 = \{0.20, 0.41, 0.82, 1.63\}, P_2 = \{0.78, 1.56, 3.13, 6.25\}$
 - highest indexes : _____ = unstable

Sufficient conditions with randomized tie breaking (1)

- Assume that ties within a priority class are broken at random
- **Theorem 2**: If $p_k^* \ge p_l^{**}$ for all $k \ne l$, then the rate-based priority policy where ties are broken at random is stable when

$$\rho^* < 1$$

Sufficient conditions with randomized tie breaking (2)

- Consider the special case with K = 2 and randomized tie breaking
- **Theorem 3**: If $p_1^* < p_2^{**}$, then the rate-based priority policy is stable under the condition

 $\rho_1^* + P\{h_2(\tilde{M}_2) > p_1^*\} < 1$

- If $p_1^* < p_2^{**}$, class 1 becomes unstable
- At stability limit, class 1 is served at r_1^* when scheduled
- Class 2 flows can "beat" class 1 flows whenever for some flow *i* in class 2 we have that P_i(t) > p₁* ⇒ loss in efficiency
- P{h₂(M
 ₂) > p₁^{*}} represents proportion of time that class-2 flows are served in a hypothetical reference system where N₁(t) →
- Determined by an M/G/1-PS queue with state-dependent service rates

Impact of continuous rate distributions

- Consider the case where the rate distribution becomes continuous
- Proportional rate and CDF-based schedulers are still stable under (1)
 - Follows from Corollaries 1 and 2
- Absolute rate priority policy is stable under (1) if rate distributions $F_k(r)$ of all classes have same support.
- Relative rate priority policies are not stable under (1).

Numerical examples

- Study performance of
 - Priority based: MR, RB, PB and CS
 - Utility based: PF (Proportional Fair, $\alpha = 1$) and PD (Potential Delay, $\alpha = 2$)
 - Also, investigate impact of using SRPT-like tie-breaking rules
- Parameters
 - 2 classes, flows arrive according to Poisson process with λ_1 = λ_2 = 0.5
 - HDR rates, i.e., *J* = 11
 - Class 1 flows can achieve 7 lowest rates
 - Class 2 flows can achieve all 11 rates
 - Rate distributions obey truncated geometric distr. with $q_1 = 1$, $q_2 = 0.5$

$$P\{R_1 = r_j\} = \frac{q_1^j}{\sum_{n=1}^{j_1} q_1^n}, \quad P\{R_2 = r_j\} = \frac{q_2^j}{\sum_{n=1}^{J} q_2^n}$$

• With these parameters $p_1^* < p_2^{**}$ for both MR and RB

Overall performance (mean delay)

Eindhoven, Nov 19-21, 2009

Fairness

Other performance comparisons

Conclusions

- Stability
 - Conditions under which necessary condition is sufficient for general ratebased priority policies
 - Stricter sufficient conditions for some special cases
- Performance
 - MR and RB offer quite good performance, but may become unstable
 - PB and CS policies are very unfair (although stable)
 - PF performs very well over a large region of loads (good overall)
 - PD can outperform PF at very high loads
 - SRPT-like tie-breaking heuristics do not work at the time-slot level
 - To minimize mean delay, flow-level information can be used to tune the packet level schedulers (cf., tests with impact of α)