Scalable and Reliable Searching in Unstructured Peer-to-Peer Systems

Stratis Ioannidis¹ Peter Marbach²

¹Thomson Paris, France

²University of Toronto Toronto, ON. Canada

YEQT III Eindhoven, Nov. 21st, 2009

Motivation: Unstructured P2P File-Sharing Systems

Peers form a network with the purpose of sharing files

Motivation: Unstructured P2P File-Sharing Systems

The system is dynamic

∃ >

Motivation: Unstructured P2P File-Sharing Systems

The system is dynamic

- 4 同 6 4 日 6 4 日 6

Motivation: Unstructured P2P File-Sharing Systems

The system is dynamic

イロン イヨン イヨン イヨン

Motivation: Unstructured P2P File-Sharing Systems

The system is dynamic

イロン イヨン イヨン イヨン

Motivation: Unstructured P2P File-Sharing Systems

Unstructured: Overlay graph may be arbitrary

Motivation: Unstructured P2P File-Sharing Systems

Peers propagate queries over the p2p network

Motivation: Unstructured P2P File-Sharing Systems

Peers propagate queries over the p2p network

Motivation: Unstructured P2P File-Sharing Systems

Peers propagate queries over the p2p network

Motivation: Unstructured P2P File-Sharing Systems

Peers respond by providing requested file

Motivation: Unstructured P2P File-Sharing Systems

Peers respond by providing requested file

Motivation: Unstructured P2P File-Sharing Systems

If the query fails, the peer does not retrieve the file

Query propagation (search) mechanisms that are both

- scalable and
- reliable.

・ロン ・回と ・ヨン・

æ

Query propagation (search) mechanisms that are both

- scalable and
- reliable.

Challenges: Cope with

- Arbitrary topology
- Churn

イロト イヨト イヨト イヨト

æ

Related Work

Proposed Search Mechanisms

- Random Walk [Lv et al., 2002, Gkantsidis et al., 2004]
- Expanding Ring [Tewari and Kleinrock, 2006, Lv et al., 2002]
- k-Parallel walks [Lv et al., 2002]
- Random walk with look-ahead [Gkantsidis et al., 2005, Puttaswamy et al., 2008]
- Budget-based forwarding [Terpstra et al., 2007, Gkantsidis et al., 2005]
- Proactive replication [Cohen and Shenker, 2002, Tewari and Kleinrock, 2006]

...

・ロン ・回と ・ヨン・

Related Work

Models:

- No overlay graph (Uniform sampling)
 [Lv et al., 2002, Cohen and Shenker, 2002, Terpstra et al., 2007]
- Static random graph (no churn) [Gkantsidis et al., 2004, Puttaswamy et al., 2008]
- Markovian graph models, but no search mechanisms [Law and Siu, 2003, Ganesh et al., 2007, Feder et al., 2006, Mahlmann and Schindelhauer, 2005]

Our Contributions

1. Markovian model that incorporates churn

イロン イヨン イヨン イヨン

æ

Our Contributions

- 1. Markovian model that incorporates churn
- 2. We show that the random walk and the expanding ring mechanisms cannot be scalable and reliable!

Our Contributions

- 1. Markovian model that incorporates churn
- 2. We show that the random walk and the expanding ring mechanisms cannot be scalable and reliable!
- 3. We propose a mechanism that is both scalable and reliable.

Outline

Model Main Results Numerical Study Conclusions and Future Work

Model

Churn Process File Request and Publishing Process Overlay Graph Query Propagation Mechanism

Main Results

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

Numerical Study

Simulation Setup Simulation Results

Conclusions and Future Work

・ 同 ト ・ ヨ ト ・ ヨ ト

Churn Process File Request and Publishing Process Overlay Graph Query Propagation Mechanism

Modelling Assumptions

Overlay graph: d-regular

Fixed size n:

File "popularity" \neq File "availability"

・ロト ・回ト ・ヨト ・ヨト

æ

Churn Process File Request and Publishing Process Overlay Graph Query Propagation Mechanism

Modelling Assumptions

Overlay graph: *d*-regular

Peers try to maintain a constant number of connections. Fixed size n:

File "popularity" \neq File "availability"

・ロト ・回ト ・ヨト ・ヨト

2

Churn Process File Request and Publishing Process Overlay Graph Query Propagation Mechanism

イロン イヨン イヨン イヨン

Modelling Assumptions

Overlay graph: *d*-regular

Peers try to maintain a constant number of connections. Fixed size n:

- Long term growth (e.g. within months)
- Short term (e.g. day or week) size stability: Operating size n
- File "popularity" \neq File "availability"

Churn Process File Request and Publishing Process Overlay Graph Query Propagation Mechanism

イロト イポト イヨト イヨト

Modelling Assumptions

Overlay graph: *d*-regular

Peers try to maintain a constant number of connections.
Fixed size n:

- Long term growth (e.g. within months)
- Short term (e.g. day or week) size stability: Operating size n
- File "popularity" \neq File "availability"
 - A file might be requested often but rarely be in the system, and vice-versa

Churn Process File Request and Publishing Process Overlay Graph Query Propagation Mechanism

Churn Process

 $\frac{1}{\mu}E_1$

▲□→ ▲圖→ ▲厘→ ▲厘→

Э

Exponential lifetimes, mean $1/\mu$

Churn Process File Request and Publishing Process Overlay Graph Query Propagation Mechanism

Churn Process

 $\frac{1}{\mu}E_1$

イロン イヨン イヨン イヨン

Э

Each departing peer is immediately replaced

Churn Process File Request and Publishing Process Overlay Graph Query Propagation Mechanism

Churn Process

・ロト ・回 ト ・ヨト ・ヨト

Э

System size is fixed

Churn Process File Request and Publishing Process Overlay Graph Query Propagation Mechanism

・ロン ・回と ・ヨン ・ヨン

æ

File Request and File Publishing

Single file case.

Churn Process File Request and Publishing Process Overlay Graph Query Propagation Mechanism

・ロト ・回ト ・ヨト ・ヨト

æ

File Request and File Publishing

Incoming peer brings the file with probability q_n .

Churn Process File Request and Publishing Process Overlay Graph Query Propagation Mechanism

File Request and File Publishing

 q_n, p_n

・ロン ・回と ・ヨン ・ヨン

æ

Incoming peer requests the file with probability p_n .

Churn Process File Request and Publishing Process Overlay Graph Query Propagation Mechanism

(ロ) (同) (E) (E) (E)

File Request and File Publishing

Expected number of peers bringing (requesting) file is nq_n (np_n).

Churn Process File Request and Publishing Process **Overlay Graph** Query Propagation Mechanism

Overlay Graph

 $\{G(t)\}_{t\in\mathbb{N}}$

・ロト ・回ト ・ヨト ・ヨト

æ

G(t): overlay graph at *t*-th departure/arrival epoch.

Churn Process File Request and Publishing Process **Overlay Graph** Query Propagation Mechanism

< 口 > < 回 > < 回 > < 回 > < 回 > <

æ

Overlay Graph

For all $t \ge 0, G(t)$ is *d*-regular graph with *n* vertices.

Churn Process File Request and Publishing Process **Overlay Graph** Query Propagation Mechanism

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

Overlay Graph

 $\{G(t)\}_{t\in\mathbb{N}}$ is a Markov chain with state space $\mathbb{S}_{n,d} \subseteq \mathbb{G}_{n,d}$.

Churn Process File Request and Publishing Process Overlay Graph Query Propagation Mechanism

æ

Random Walk with TTL_n

Query header initialized to TTL_n
Churn Process File Request and Publishing Process Overlay Graph Query Propagation Mechanism

・ロン ・回 と ・ヨン ・ヨン

3

Random Walk with TTL_n

Header decremented with each hop

Churn Process File Request and Publishing Process Overlay Graph Query Propagation Mechanism

・ロト ・回ト ・ヨト ・ヨト

æ

Random Walk with TTL_n

Query propagated until either file located or header is zero

Churn Process File Request and Publishing Process Overlay Graph Query Propagation Mechanism

< 口 > < 回 > < 回 > < 回 > < 回 > <

3

Random Walk with TTL_n

Query propagated until either file located or header is zero

Churn Process File Request and Publishing Process Overlay Graph Query Propagation Mechanism

・ロト ・回ト ・ヨト ・ヨト

3

Random Walk with TTL_n

Query propagated until either file located or header is zero

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

・ロン ・回と ・ヨン・

æ

Scalability and Reliability

Denote by

- ρ_n : the average traffic load per peer
- γ_n : the query success rate.

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

・ロン ・回 と ・ ヨ と ・ ヨ と

Scalability and Reliability

Definition

We will say that a search mechanism is scalable if,

$$\rho_n=O(1)\,,$$

for all p_n, q_n .

I.e., the average load per peer ρ_n stays bounded as the system size n increases.

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

・ロン ・回と ・ヨン・

Scalability and Reliability

Definition

We will say that a search mechanism is reliable if

$$\text{if } q_n = \omega \left(\frac{1}{n} \right) \text{ then } \lim_{n \to \infty} \gamma_n = 1,$$

for all p_n .

l.e., if $\omega(1)$ peers bring the file, in expectation, almost all queries are guaranteed to succeed (asymptotically).

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

・ロト ・回ト ・ヨト ・ヨト

æ

Random Walk with TTL_n

Theorem

The random walk mechanism cannot be both scalable and reliable.

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

Random Walk with TTL_n

Theorem

The random walk mechanism cannot be both scalable and reliable.

Intuition:

- ▶ If $\text{TTL}_n = \omega(1)$, then queries for files not in system $(q_n = o(\frac{1}{n}))$ generate an unbounded load.
- ▶ If $\text{TTL}_n = O(1)$, then $\gamma_n \neq 1$, even for files brought very often in the system $(q_n = \omega(\frac{1}{n}))$.

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

・ロン ・回と ・ヨン・

Random Walk with TTL_n

Theorem

The random walk mechanism cannot be both scalable and reliable.

Intuition:

- ▶ If $\text{TTL}_n = \omega(1)$, then queries for files not in system $(q_n = o(\frac{1}{n}))$ generate an unbounded load.
- ▶ If $\text{TTL}_n = O(1)$, then $\gamma_n \neq 1$, even for files brought very often in the system $(q_n = \omega(\frac{1}{n}))$.

Same result holds for expanding ring.

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

イロト イヨト イヨト イヨト

æ

Solution

Idea: Stop queries for files not in system, without affecting queries for files that are in the system

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

イロト イヨト イヨト イヨト

Idea: Stop queries for files not in system, without affecting queries for files that are in the system

Q: How to tell that a file is not in the system?

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

<ロ> (日) (日) (日) (日) (日)

Idea: Stop queries for files not in system, without affecting queries for files that are in the system

- Q: How to tell that a file is not in the system?
- A: Use failed queries.

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

・ロン ・回と ・ヨン・

э

Absence of Evidence as Evidence of Absence

Suppose that a query fails to locate the file

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

・ロト ・回ト ・ヨト ・ヨト

æ

Absence of Evidence as Evidence of Absence

Suppose that a query fails to locate the file

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

・ロト ・回ト ・ヨト ・ヨト

3

Absence of Evidence as Evidence of Absence

Suppose that a query fails to locate the file

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

・ロト ・回ト ・ヨト ・ヨト

æ

Absence of Evidence as Evidence of Absence

Store this information

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

・ロン ・回と ・ヨン ・ヨン

æ

Absence of Evidence as Evidence of Absence

Use it to stop propagation of queries

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

・ロン ・回と ・ヨン ・ヨン

э

Absence of Evidence as Evidence of Absence

Use it to stop propagation of queries

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

・ロン ・回と ・ヨン・

Absence of Evidence as Evidence of Absence

Share it the same way as files

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

・ロト ・回ト ・ヨト ・ヨト

æ

Absence of Evidence as Evidence of Absence

Random Walk using "Evidence of Absence"

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

イロト イヨト イヨト イヨト

Absence of Evidence as Evidence of Absence

What is the average traffic load per peer? What about false negatives?

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

イロト イポト イヨト イヨト

Scalability

Theorem

Assume that a graph sampled from the stationary distribution of $\{G(t)\}_{t\in\mathbb{N}}$ is an expander w.h.p. Then, the average traffic load per peer generated by a random walk with $\mathrm{TTL}_n = \Theta(n)$ that uses evidence of absence is

 $\rho_n=O(1)\,,$

i.e., it is bounded in n, irrespectively of p_n and q_n .

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

イロト イポト イヨト イヨト

Scalability

Theorem

Assume that a graph sampled from the stationary distribution of $\{G(t)\}_{t\in\mathbb{N}}$ is an expander w.h.p. Then, the average traffic load per peer generated by a random walk with $\mathrm{TTL}_n = \Theta(n)$ that uses evidence of absence is

$$\rho_n=O(1)\,,$$

i.e., it is bounded in n, irrespectively of p_n and q_n .

If overlay is an expander w.h.p., the random walk with EoA is scalable!

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

イロト イヨト イヨト イヨト

Scalability

Theorem

Assume that a graph sampled from the stationary distribution of $\{G(t)\}_{t\in\mathbb{N}}$ is an expander w.h.p. Then, the average traffic load per peer generated by a random walk with $\mathrm{TTL}_n = \Theta(n)$ that uses evidence of absence is

$$\rho_n=O(1)\,,$$

i.e., it is bounded in n, irrespectively of p_n and q_n .

- If overlay is an expander w.h.p., the random walk with EoA is scalable!
- Proved using bounds on hitting times of r.w. by Aldous and Fill.

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

・ロン ・回 と ・ ヨ と ・ ヨ と

Expander Graphs

Known Markov chains $\{G(t)\}_{t\in\mathbb{N}}$ with stationary distribution uniform over

▶ Mℍ_{n,d}: *d*-regular multi-graphs with a complete Hamiltonian decomposition

▶ $\mathbb{MI}_{n,d}$: *d*-regular multi-graphs with a 1-factorization are expanders *w.h.p.*

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

・ロト ・回ト ・ヨト ・ヨト

Expander Graphs

Known Markov chains $\{G(t)\}_{t\in\mathbb{N}}$ with stationary distribution uniform over

▶ Mℍ_{n,d}: *d*-regular multi-graphs with a complete Hamiltonian decomposition

▶ $MI_{n,d}$: *d*-regular multi-graphs with a 1-factorization are expanders *w.h.p.*

Any distribution that is "almost uniform" over $\mathbb{G}_{n,d}$ will yield an expander

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

イロト イヨト イヨト イヨト

Reliability

Theorem

Assume that $\{G(t)\}_{t\in\mathbb{N}}$ are i.i.d., and that G(t) is an expander w.h.p. Then, for the random walk with $\mathrm{TTL}_n = \Theta(n)$ that uses evidence of absence,

if
$$q_n = \omega\left(\frac{1}{n}\right)$$
 then $\lim_{n \to \infty} \gamma_n = 1$,

for all p_n .

I.e., the random walk using EoA is reliable!

Scalability and Reliability Random Walk with TTL_n Random Walk using "Evidence of Absence"

イロト イヨト イヨト イヨト

Reliability

Theorem

Assume that $\{G(t)\}_{t\in\mathbb{N}}$ are i.i.d., and that G(t) is an expander w.h.p. Then, for the random walk with $\mathrm{TTL}_n = \Theta(n)$ that uses evidence of absence,

if
$$q_n = \omega\left(\frac{1}{n}\right)$$
 then $\lim_{n \to \infty} \gamma_n = 1$,

for all p_n .

- I.e., the random walk using EoA is reliable!
- Proved using fluid limit method by Benaïm and Le Boudec [2008].

Simulation Setup Simulation Results

Simulation Setup

- ▶ Law and Siu [2003] peer-to-peer system (Markov Chain over Mℍ_{n,d}).
- $\frac{1}{\mu} = 20$ min.
- Arrival rate $n \cdot \mu$, n = 10 thousand to half a million.
- Degree 16.

・ロト ・回ト ・ヨト ・ヨト

2

Simulation Setup Simulation Results

Random Walk Without Evidence of Absense

Traffic load and success rate of (traditional) random walk with TTL_n

イロト イヨト イヨト イヨト

Simulation Setup Simulation Results

Random Walk Using Evidence of Absence -I

Traffic loads for data items brought in the system with publishing probabilities $q_n = 1000/n$ and $q_n = 1000^2/n^2$.

Simulation Setup Simulation Results

Random Walk Using Evidence of Absence -II

Success rates for data items brought in the system with publishing probabilities $q_n = 1000/n$ and $q_n = 1000^2/n^2$.

イロト イポト イヨト イヨト

Simulation Setup Simulation Results

System Dynamics

System evolution for p = 0.8, q = 0.1, n = 10,000

・ロト ・回ト ・ヨト ・ヨト

æ

Conclusions and Future Work

Simple, distributed mechanisms yield scalability and reliability

・ロン ・回と ・ヨン ・ヨン

æ

Conclusions and Future Work

- Simple, distributed mechanisms yield scalability and reliability
- More sophisticated mechanisms
 - k-Parallel walks
 - Budget-based forwarding
 - Proactive replication
 - ▶ ...

イロン イヨン イヨン イヨン

2
Outline Model Main Results Numerical Study Conclusions and Future Work

Conclusions and Future Work

- Simple, distributed mechanisms yield scalability and reliability
- More sophisticated mechanisms
 - k-Parallel walks
 - Budget-based forwarding
 - Proactive replication
 - ▶ ...
- Different modelling assumptions:
 - What if overlay graph not an expander?

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline Model Main Results Numerical Study Conclusions and Future Work

Conclusions and Future Work

- Simple, distributed mechanisms yield scalability and reliability
- More sophisticated mechanisms
 - k-Parallel walks
 - Budget-based forwarding
 - Proactive replication
 - ▶ ...
- Different modelling assumptions:
 - What if overlay graph not an expander?
- System dynamics vs. steady state behaviour

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline Model Main Results Numerical Study Conclusions and Future Work

Thank You!

Stratis Ioannidis, Peter Marbach Searching in Unstructured P2P Systems

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Expanders and Random Walks More Modelling Details Hybrid System References

Case Study: Gnutella

Measurement studies:

- Ripeanu et al. [2002]
- Saroiu et al. [2002]
- Rasti et al. [2006]
- Li and Chen [2008]
- Stutzbach et al. [2008]
- Acosta and Chandra [2008]

Expanders and Random Walks More Modelling Details Hybrid System References

Case Study: Gnutella Overlay

イロト イヨト イヨト イヨト

- 2 tier-system (original version was flat)
- Ultra-peers know all the files shared by their leaves.
- Search happens on the ultra-peer level.

Expanders and Random Walks More Modelling Details Hybrid System References

Case Study: Gnutella Overlay

- Ultra-peers connects to at most 32 other ultrapeers (Limewire, Bearshare).
- Each ultrapeer peer maintains at most 30 leaves in Limewire 45 in Bearshare.
- Each leaf connects to at most 3 ultrapeers.

- - 4 回 ト - 4 回 ト

Expanders and Random Walks More Modelling Details Hybrid System References

Case Study: Gnutella Overlay

Figure source: Stutzbach et al. [2008]

イロト イヨト イヨト イヨト

Broken connections are replaced by cache, obtained by:

- Observing passing traffic
- Explicit cache exchanges with other users

Expanders and Random Walks More Modelling Details Hybrid System References

Case Study: Gnutella Overlay

Ultra Peer Leaf Peer

Figure source: Stutzbach et al. [2008]

イロト イヨト イヨト イヨト

Incoming peers use

- Caches from previous sessions
- Active probing
- Bootstrapping through a server or designated users.

Expanders and Random Walks More Modelling Details Hybrid System References

Search Mechanisms

- Current implementation:
 - Constrained flooding over ultra-peers

イロト イヨト イヨト イヨト

æ

Expanders and Random Walks More Modelling Details Hybrid System References

Search Mechanisms

- Current implementation:
 - Constrained flooding over ultra-peers
- Methods proposed:

イロト イヨト イヨト イヨト

Expanders and Random Walks More Modelling Details Hybrid System References

Search Mechanisms

- Current implementation:
 - Constrained flooding over ultra-peers
- Methods proposed:
 - Lv et al. [2002]:
 - Random walk
 - k-Random Walks
 - Expanding ring

イロト イヨト イヨト イヨト

Expanders and Random Walks More Modelling Details Hybrid System References

Search Mechanisms

- Current implementation:
 - Constrained flooding over ultra-peers
- Methods proposed:
 - Lv et al. [2002]:
 - Random walk
 - k-Random Walks
 - Expanding ring
 - Gkantsidis et al. [2005]:
 - Random walk with lookahead.

(4回) (4回) (4回)

Expanders and Random Walks More Modelling Details Hybrid System References

Search Mechanisms

- Current implementation:
 - Constrained flooding over ultra-peers
- Methods proposed:
 - Lv et al. [2002]:
 - Random walk
 - k-Random Walks
 - Expanding ring
 - Gkantsidis et al. [2005]:
 - Random walk with lookahead.
 - Chawathe et al. [2003], Gkantsidis et al. [2005]:
 - Biased/adaptive search strategies.

- 4 回 2 - 4 回 2 - 4 回 2

Expanders and Random Walks More Modelling Details Hybrid System References

Graph Properties: Growth, Oct 2004 - Jan 2006

Figure source: Rasti et al. [2006]

Expanders and Random Walks More Modelling Details Hybrid System References

Graph Properties: Degree Distribution

Total Nodes	Ultra-Peers
725,120	110,208
779,535	116,967
806,948	120,229
1,031,471	158,345
	Total Nodes 725,120 779,535 806,948 1,031,471

3

Figure and data source: Stutzbach et al. [2008].

Expanders and Random Walks More Modelling Details Hybrid System References

Popularity \neq Availability

Acosta and Chandra [2008]:

- There is no correlation betweent the popularity of a file and its availability in the system.
- ▶ 44.5% to 55.6% of queries cannot be matched to any file.

イロト イヨト イヨト イヨト

Definitions Hitting Times Random Regular Graphs are Expanders

・ロン ・回と ・ヨン・

Edge Expansion Ratio

Let G be an undirected graph with vertex set V and edge set E.

Definitions Hitting Times Random Regular Graphs are Expanders

イロン 不同と 不同と 不同と

Edge Expansion Ratio

For $A \subset V$, the boundary of A is

$$\partial A = \{(i,j) \in E \mid i \in A \text{ and } j \in A^c\},\$$

where $A^c = V \setminus A$

Definitions Hitting Times Random Regular Graphs are Expanders

イロン イヨン イヨン イヨン

Edge Expansion Ratio

The edge expansion ratio h of G (Hoory et al. [2006]) is:

$$h = \min_{A \subset V, |A| \le \frac{|V|}{2}} \frac{|\partial A|}{|A|}$$

Definitions Hitting Times Random Regular Graphs are Expanders

・ロン ・回と ・ヨン ・ヨン

Expander Graphs: Definition 1

Let $\{G_n\}_{n \ge n_0}$ be a sequence of graphs of increasing size, where G_n has size n.

Definitions Hitting Times Random Regular Graphs are Expanders

・ロン ・回と ・ヨン・

Expander Graphs: Definition 1

Assume that the graph sequence $\{G_n\}_{n \ge n_0}$ is of bounded degree.

Definitions Hitting Times Random Regular Graphs are Expanders

・ロン ・回と ・ヨン ・ヨン

Expander Graphs: Definition 1

Let $\{h_n\}_{n \ge n_0}$ be the corresponding sequence of expansion ratios.

Definitions Hitting Times Random Regular Graphs are Expanders

・ロン ・回と ・ヨン ・ヨン

Expander Graphs: Definition 1

 $\exists \varepsilon > 0 \text{ such that, } \forall n \ge n_0, \ h_n \ge \varepsilon$

Sequence $\{G_n\}_{n \ge n_0}$ is called an expander family if $\{h_n\}_{n \ge n_0}$ is bounded away from zero.

Definitions Hitting Times Random Regular Graphs are Expanders

イロト イヨト イヨト イヨト

Intuition: Many Outgoing Edges

 $h_n|A| \leq |\partial A| \leq d|A|$

for all sets $A \subset V_n$ with $|A| \leq |n|/2$.

Definitions Hitting Times Random Regular Graphs are Expanders

イロト イヨト イヨト イヨト

Intuition: Many Outgoing Edges

 $\epsilon |A| \le |\partial A| \le d|A|$

for all sets $A \subset V_n$ with $|A| \leq |n|/2$.

Definitions

Hitting Times Random Regular Graphs are Expanders

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

Э

Non-examples

Definitions Hitting Times Random Regular Graphs are Expanders

イロト イヨト イヨト イヨト

Expansion and Random Walks

Random walk message propagation: forward a message to a neighbor chosen uniformly at random.

Definitions Hitting Times Random Regular Graphs are Expanders

イロト イヨト イヨト イヨト

Expansion and Random Walks

- Discrete time: each forwarding takes 1 time unit.
- Continuous time: each forwarding is exponentially distributed with mean 1 time unit.

Definitions Hitting Times Random Regular Graphs are Expanders

・ロン ・回と ・ヨン・

Expansion and Random Walks

Let X(t), $t \ge 0$, be the position of the message at time $t \ge 0$.

Definitions Hitting Times Random Regular Graphs are Expanders

Expansion and Random Walks

X(t) is a Markov chain (Markov process in continuous time) with state space V and transition probabilities

$$P_{ij} = egin{cases} rac{1}{d_i}, & ext{if } i ext{ is connected to } j \ 0, & ext{o.w.} \end{cases}$$

where d_i the degree of vertex i.

イロト イヨト イヨト イヨト

Definitions Hitting Times Random Regular Graphs are Expanders

Expansion and Random Walks

$$\pi_j = \lim_{t \to \infty} \mathbf{P}_i(X(t) = j) = \frac{d_j}{\sum_k d_k} \text{ a.s.}$$

▶ Discrete time: *G* connected, non-bipartite.

Continuous time: G connected.

<ロ> (日) (日) (日) (日) (日)

Definitions Hitting Times Random Regular Graphs are Expanders

イロン イヨン イヨン イヨン

Expansion and Random Walks

If G is regular $(d_i = d \text{ for all } i \text{ in } V)$ then

$$\pi_j = \lim_{t \to \infty} \mathbf{P}_i(X(t) = j) = \frac{1}{|V|} \text{ a.s.}$$

Definitions Hitting Times Random Regular Graphs are Expanders

Expansion and Random Walks

The relaxation time τ of G (Aldous and Fill) is

$$\tau = \frac{1}{1 - \lambda_2}$$

where λ_2 the second largest eigenvalue of the transition probability matrix $[P_{ij}]$.

Stratis Ioannidis, Peter Marbach Searching in Unstructured P2P Systems

Definitions Hitting Times Random Regular Graphs are Expanders

イロト イヨト イヨト イヨト

Expansion and Relaxation Time

The edge expansion ratio and the relaxation time are related as follows [Chung, 1997, Hoory et al., 2006]:

$$d_{\min}rac{1}{2 au} \leq h \leq d_{\max}\sqrt{rac{2}{ au}},$$

where

$$d_{\max} = \max_{i \in V} d_i, \qquad d_{\min} = \min_{i \in V} d_i$$

the maximum and minimum degrees of the graph, respectively.

Definitions Hitting Times Random Regular Graphs are Expanders

・ロン ・回と ・ヨン ・ヨン

Expander Graphs: Definition 2

Let $\{G_n\}_{n \ge n_0}$ be a bounded-degree sequence, and $\{\tau_n\}_{n \ge n_0}$ the corresponding relaxation time sequence.

Definitions Hitting Times Random Regular Graphs are Expanders

・ロト ・回ト ・ヨト ・ヨト

Expander Graphs: Definition 2

 $\exists M < \infty \text{ such that}, \forall n \geq n_0, \tau_n \leq M$

Sequence $\{G_n\}_{n \ge n_0}$ is an expander family iff $\{\tau_n\}_{n \ge n_0}$ is bounded.
Definitions Hitting Times Random Regular Graphs are Expanders

・ロン ・回と ・ヨン・

Intuition 2: The Random Walk Mixes Fast

Consider the continuous-time random walk (jumps exponential with mean one).

Definitions Hitting Times Random Regular Graphs are Expanders

イロト イヨト イヨト イヨト

Intuition 2: The Random Walk Mixes Fast

Denote with $\mathbf{P}_i(X(t) = j)$ the probability the random walk is at vertex j at time t, given that it started at vertex i.

Definitions Hitting Times Random Regular Graphs are Expanders

イロト イヨト イヨト イヨト

Intuition 2: The Random Walk Mixes Fast

The relaxation time relates to how fast the random walk converges to the steady state distribution.

$$d(t) = \inf_{t} \{t : \max_{j} |\mathbf{P}_{i}(X_{t} = j) - \pi_{j}| < \epsilon\} = O(\tau_{n} \log n)$$

Definitions Hitting Times Random Regular Graphs are Expanders

イロト イヨト イヨト イヨト

Intuition 2: The Random Walk Mixes Fast

The relaxation time relates to how fast the random walk converges to the steady state distribution.

$$d(t) = \inf_{t} \{t : \max_{j} |\mathbf{P}_{i}(X_{t} = j) - \pi_{j}| < \epsilon\} = O(M \log n)$$

Definitions Hitting Times Random Regular Graphs are Expanders

・ロン ・回と ・ヨン・

æ

Hitting Time (Aldous and Fill)

Let $A_n \subseteq V_n$ be a subset of V_n .

Definitions Hitting Times Random Regular Graphs are Expanders

・ロン ・回と ・ヨン・

Hitting Time (Aldous and Fill)

Let

$$T_{A_n}^u = \inf_t \{t : Y(t) \in A_n\}$$

be the time until an element in A_n is selected with uniform sampling.

Definitions Hitting Times Random Regular Graphs are Expanders

・ロン ・回と ・ヨン・

Hitting Time (Aldous and Fill)

Let

$$T_{A_n}^u = \inf_t \{t : Y(t) \in A_n\}$$

be the time until an element in A_n is selected with uniform sampling. Then, $\mathbb{E}[T^u_{A_n}] = \frac{n}{|A_n|}$

Definitions Hitting Times Random Regular Graphs are Expanders

イロン イヨン イヨン イヨン

Hitting Time (Aldous and Fill)

Let

$$T_{A_n} = \inf_t \{t : X(t) \in A_n\}$$

be the time it takes the random walk to hit set A_n .

Definitions Hitting Times Random Regular Graphs are Expanders

イロト イヨト イヨト イヨト

Hitting Time (Aldous and Fill)

If the random walk starts uniformly outside A_n :

$$c^{-2}\frac{n}{|A_n|} - c^{-1} \leq \mathbb{E}_{u_{A_n}c}[T_{A_n}] \leq c^2 \frac{\tau_n n}{|A_n|}$$

where $c = d_{\max}/d_{\min}$.

Definitions Hitting Times Random Regular Graphs are Expanders

イロン イヨン イヨン イヨン

Hitting Time (Aldous and Fill)

If $\{G_n\}_{n \ge n_0}$ is an expander family then

$$\mathbb{E}_{u_{A_n^c}}[T_{A_n}] = \Theta\left(\frac{n}{|A_n|}\right) = \Theta\left(\mathbb{E}[T_{A_n}^u]\right)$$

Definitions Hitting Times Random Regular Graphs are Expanders

・ロン ・回と ・ヨン ・ヨン

2

Hitting Time (Aldous and Fill)

For continuous-time random walk, G_n regular:

$$\left(1-\frac{2|A|\bar{\tau}_n}{n}\right)e^{-\frac{2|A|t}{n}} \leq \mathsf{P}_{u_{A^c}}(T_A > t) \leq e^{-\frac{|A|t}{n\bar{\tau}_n}}$$

Definitions Hitting Times Random Regular Graphs are Expanders

・ロン ・回と ・ヨン ・ヨン

Definitions of a.a.s., w.h.p., and contiguity

Let ν_n be a probability measure over $\mathbb{G}_{n,d}$.

Definitions Hitting Times Random Regular Graphs are Expanders

・ロン ・回 と ・ 回 と ・ 回 と

Definitions of a.a.s., w.h.p., and contiguity

Let ν_n be a probability measure over $\mathbb{G}_{n,d}$.

We say that $A_n \subseteq \mathbb{G}_{n,d}$ occurs asymptotically almost surely if

 $\lim_{n\to\infty}\nu_n(A_n)=1.$

Definitions Hitting Times Random Regular Graphs are Expanders

・ロン ・回 と ・ 回 と ・ 回 と

Definitions of a.a.s., w.h.p., and contiguity

Let ν_n be a probability measure over $\mathbb{G}_{n,d}$. We say that $A_n \subseteq \mathbb{G}_{n,d}$ occurs asymptotically almost surely if

 $\lim_{n\to\infty}\nu_n(A_n)=1.$

We say that $A_n \subseteq \mathbb{G}_{n,d}$ occurs with high probability if

$$\nu_n(A_n)=1-o\left(\frac{1}{n}\right).$$

Definitions Hitting Times Random Regular Graphs are Expanders

・ロン ・回 と ・ ヨ と ・ ヨ と

Definitions of a.a.s., w.h.p., and contiguity

Let ν_n be a probability measure over $\mathbb{G}_{n,d}$. We say that $A_n \subseteq \mathbb{G}_{n,d}$ occurs asymptotically almost surely if

 $\lim_{n\to\infty}\nu_n(A_n)=1.$

We say that $A_n \subseteq \mathbb{G}_{n,d}$ occurs with high probability if

$$\nu_n(A_n)=1-o\left(\frac{1}{n}\right).$$

We say that u_n is *contiguous* to ν_n if, for all $A_n \subseteq \mathbb{G}_{n,d}$,

$$\lim_{n\to\infty} u_n(A_n) = 1 \quad \text{iff} \quad \lim_{n\to\infty} \nu_n(A_n) = 1.$$

Definitions Hitting Times Random Regular Graphs are Expanders

・ロン ・回と ・ヨン ・ヨン

Random Regular Graphs are Expanders

Friedman [2003]: A random graph sampled uniformly from $\mathbb{G}_{n,d}$, $d \geq 3$, is an expander *a.a.s.*

Definitions Hitting Times Random Regular Graphs are Expanders

イロト イポト イヨト イヨト

Random Regular Graphs are Expanders

Friedman [2003]: A random graph sampled uniformly from $\mathbb{G}_{n,d}$, $d \geq 3$, is an expander *a.a.s.*

Definition

We will say that the system is unstructured if the stationary distribution of $\{G(t)\}_{t\in\mathbb{N}}$ is contiguous to the uniform distribution over $\mathbb{G}_{n,d}$.

... *i.e.*, it is "almost" uniform over all *d*-regular graphs.

Definitions Hitting Times Random Regular Graphs are Expanders

・ロン ・回と ・ヨン ・ヨン

Random Regular Graphs are Expanders

Friedman [2003]: A random graph sampled uniformly from $\mathbb{G}_{n,d}$, $d \geq 3$, is an expander *a.a.s.*

Definition

We will say that the system is unstructured if the stationary distribution of $\{G(t)\}_{t\in\mathbb{N}}$ is contiguous to the uniform distribution over $\mathbb{G}_{n,d}$.

... *i.e.*, it is "almost" uniform over all *d*-regular graphs.

Intuition: If the distribution is not almost uniform, then the overlay graph exhibits a certain structure.

```
Unstructured \Rightarrow expander a.a.s.
```

Definitions Hitting Times Random Regular Graphs are Expanders

・ロト ・回ト ・ヨト ・ヨト

Examples of "Almost" - Uniform Distributions

Wormald [1999]: Uniform distribution over

- $\mathbb{G}_{n,d}$: *d*-regular graphs
- $\mathbb{CG}_{n,d}$: connected *d*-regular graphs
- ▶ 𝔄_{n,d}: *d*-regular graphs with a complete Hamiltonian decomposition
- $\mathbb{I}_{n,d}$: *d*-regular graphs with a 1-factorization

Definitions Hitting Times Random Regular Graphs are Expanders

・ロン ・回と ・ヨン ・ヨン

Examples of "Almost"-Uniform Distributions

Wormald [1999]: Uniform distribution over

- $\mathbb{G}_{n,d}$: *d*-regular graphs
- $\mathbb{CG}_{n,d}$: connected *d*-regular graphs
- ▶ 𝔄_{n,d}: *d*-regular graphs with a complete Hamiltonian decomposition
- $\mathbb{I}_{n,d}$: *d*-regular graphs with a 1-factorization

Known Markov chains $\{G(t)\}_{t\in\mathbb{N}}$ with such distributions.

Definitions Hitting Times Random Regular Graphs are Expanders

・ロン ・回と ・ヨン ・ヨン

Examples of "Almost"-Uniform Distributions

Wormald [1999]: Uniform distribution over

- $\mathbb{G}_{n,d}$: *d*-regular graphs
- $\mathbb{CG}_{n,d}$: connected *d*-regular graphs
- ▶ 𝔄_{n,d}: *d*-regular graphs with a complete Hamiltonian decomposition
- $\mathbb{I}_{n,d}$: *d*-regular graphs with a 1-factorization

Known Markov chains $\{G(t)\}_{t\in\mathbb{N}}$ with such distributions. For $d \ge 3$, all of the above are expanders *a.a.s.*.

Definitions Hitting Times Random Regular Graphs are Expanders

・ロン ・回と ・ヨン ・ヨン

Examples of "Almost"-Uniform Distributions

Wormald [1999]: Uniform distribution over

- $\mathbb{G}_{n,d}$: *d*-regular graphs
- $\mathbb{CG}_{n,d}$: connected *d*-regular graphs
- ▶ 𝔄_{n,d}: *d*-regular graphs with a complete Hamiltonian decomposition

• $\mathbb{I}_{n,d}$: *d*-regular graphs with a 1-factorization Known Markov chains $\{G(t)\}_{t\in\mathbb{N}}$ with such distributions. For $d \ge 3$, all of the above are expanders *a.a.s.*. For d > 5, the latter two are expanders *w.h.p.*

Definitions Hitting Times Random Regular Graphs are Expanders

Construction of a 2*d*-regular expander in $\mathbb{MH}_{n,d}$ [Law and Siu, 2003]

 $c_1 = [1, 3, 4, 2, 5]$ $c_2 = [5, 3, 1, 2, 4]$

The multi-graph consists of *d* superimposed Hamiltonian cycles

Definitions Hitting Times Random Regular Graphs are Expanders

Construction of a 2*d*-regular expander in $\mathbb{MH}_{n,d}$ [Law and Siu, 2003]

 $c_1 = [1, 3, 4, 2, 5]$ $c_2 = [5, 3, 1, 2, 4]$

Each node has degree 2d.

Definitions Hitting Times Random Regular Graphs are Expanders

Construction of a 2*d*-regular expander in $\mathbb{MH}_{n,d}$ [Law and Siu, 2003]

 $c_1 = [1, 3, 4, 2, 5]$ $c_2 = [5, 3, 1, 2, 4]$

Each peer knows only its neighbors (*d* successors and *d* predeces-Stratis Ioannidis, Peter Marbach Searching in Unstructured P2P Systems

Definitions Hitting Times Random Regular Graphs are Expanders

Construction of a 2*d*-regular expander in $\mathbb{MH}_{n,d}$ [Law and Siu, 2003]

 $c_1 = [1, 6, 3, 4, 2, 5]$ $c_2 = [5, 3, 1, 2, 4]$

For each cycle c_i , an incoming peer chooses a random peer and becomes its successor in c_i Stratis loannidis, Peter Marbach Searching in Unstructured P2P Systems

Definitions Hitting Times Random Regular Graphs are Expanders

Construction of a 2*d*-regular expander in $\mathbb{MH}_{n,d}$ [Law and Siu, 2003]

 $c_1 = [1, 6, 3, 4, 2, 5]$ $c_2 = [5, 3, 1, 2, 6, 4]$

For each cycle c_i , an incoming peer chooses a random peer and becomes its successor in c_i Stratis Ioannidis, Peter Marbach Searching in Unstructured P2P Systems

Definitions Hitting Times Random Regular Graphs are Expanders

Construction of a 2*d*-regular expander in $\mathbb{MH}_{n,d}$ [Law and Siu, 2003]

 $c_1 = [1, 6, 3, 4, 2, 5]$ $c_2 = [5, 3, 1, 2, 6, 4]$

For d > 5 The resulting graph is an expander w.h.p.

Expanding Ring Churn-Driven Markov Chain

Expanding Ring

Query header initialized to 1

Э

Expanding Ring Churn-Driven Markov Chain

Expanding Ring

Query forwarded to all neighbours until it expires

・ロト ・回ト ・ヨト ・ヨト

Expanding Ring Churn-Driven Markov Chain

Expanding Ring

Process repeated with higher header value until either file located or initial value exceeds TTL_n

・ロン ・回と ・ヨン ・ヨン

Expanding Ring Churn-Driven Markov Chain

Expanding Ring

Process repeated with higher header value until either file located or initial value exceeds TTL_n

・ロン ・回と ・ヨン ・ヨン

Expanding Ring Churn-Driven Markov Chain

Expanding Ring

Process repeated with higher header value until either file located or initial value exceeds TTL_n

・ロン ・回と ・ヨン・

Expanding Ring Churn-Driven Markov Chain

Expanding Ring

For both random walk and expanding ring, TTL_n is the maximum possible hop radius

・ロン ・回と ・ヨン ・ヨン

Expanding Ring Churn-Driven Markov Chain

Overlay Graph: Churn-Driven Markov Chain

 $\{G(t)\}_{t\in\mathbb{N}}$

・ロト ・回ト ・ヨト ・ヨト

G(t): overlay graph at *t*-th departure/arrival epoch.

Expanding Ring Churn-Driven Markov Chain

Overlay Graph: Churn-Driven Markov Chain

For all $t \ge 0, G(t)$ is *d*-regular graph with *n* vertices.

・ロト ・回ト ・ヨト ・ヨト
Expanding Ring Churn-Driven Markov Chain

Overlay Graph: Churn-Driven Markov Chain

Transition from G(t) to G(t + 1) depends on which peer is being replaced

(ロ) (同) (E) (E) (E)

Expanding Ring Churn-Driven Markov Chain

Overlay Graph: Churn-Driven Markov Chain

 $\{G(t)\}_{t\in\mathbb{N}}$ is a Markov chain with state space $\mathbb{S}_{n,d} \subseteq \mathbb{G}_{n,d}$.

Numerical Studies

Purpose:

- alleviate traffic load on server . . .
- ... without overwhelming peers (clients).

æ

Numerical Studies

Purpose:

- alleviate traffic load on server . . .
- ... without overwhelming peers (clients).

Question: Is it possible to bound both

- the average traffic load per peer ρ_n?
- the server traffic load ρ_n^0 ?

イロン イヨン イヨン イヨン

Numerical Studies

Hybrid System: Random Walk with $TTL_n = \Theta(n)$

Theorem

Assume that a graph sampled from the stationary distribution of $\{G(t)\}_{t\in\mathbb{N}}$ is an expander w.h.p.. Then

$$\rho_n = O(1) \quad \text{and} \quad \rho_n^0 = O(1),$$

i.e., both loads generated by a random walk with $\text{TTL}_n = \Theta(n)$ are bounded in *n*, irrespectively of p_n, q_n .

イロト イポト イヨト イヨト

Numerical Studies

Hybrid System: Random Walk with $TTL_n = \Theta(n)$

Theorem

Assume that a graph sampled from the stationary distribution of $\{G(t)\}_{t\in\mathbb{N}}$ is an expander w.h.p.. Then

$$\rho_n = O(1) \quad \text{and} \quad \rho_n^0 = O(1),$$

i.e., both loads generated by a random walk with $TTL_n = \Theta(n)$ are bounded in n, irrespectively of p_n, q_n .

The hybrid system alleviates load at the server without overwhelming the peers!

・ロン ・回と ・ヨン ・ヨン

Numerical Studies

Hybrid System: Random Walk with $TTL_n = \Theta(n)$

Theorem

Assume that a graph sampled from the stationary distribution of $\{G(t)\}_{t\in\mathbb{N}}$ is an expander w.h.p.. Then

$$\rho_n = O(1) \quad \text{and} \quad \rho_n^0 = O(1),$$

i.e., both loads generated by a random walk with $TTL_n = \Theta(n)$ are bounded in n, irrespectively of p_n, q_n .

- The hybrid system alleviates load at the server without overwhelming the peers!
- Proved using results by Aldous and Fill

・ロン ・回と ・ヨン・

Numerical Studies

Hybrid System: Expanding Ring with $TTL_n = \Theta(\log n)$

Worst-case response time is linear in n

Theorem

Assume that the stationary distribution of $\{G(t)\}_{t\in\mathbb{N}}$ is contiguous to the uniform distribution over $\mathbb{G}_{n,d}$. Then, there exists a $\mathrm{TTL}_n = \Theta\left(\log_{(d-1)}n\right)$ such that the expanding ring has

$$\rho_n = O\left(n^{\frac{\log(d-1)}{\log(d-3)}-1}\right) \text{ and } \rho_n^0 = O\left(n^{1-\frac{\log(d-3)}{\log(d-1)}}\right)$$

irrespectively of p_n , q_n .

イロト イポト イヨト イヨト

Numerical Studies

Hybrid System: Expanding Ring with $TTL_n = \Theta(\log n)$

Worst-case response time is linear in n

Theorem

Assume that the stationary distribution of $\{G(t)\}_{t\in\mathbb{N}}$ is contiguous to the uniform distribution over $\mathbb{G}_{n,d}$. Then, there exists a $\mathrm{TTL}_n = \Theta\left(\log_{(d-1)}n\right)$ such that the expanding ring has

$$\rho_n = O\left(n^{\frac{\log(d-1)}{\log(d-3)}-1}\right) \text{ and } \rho_n^0 = O\left(n^{1-\frac{\log(d-3)}{\log(d-1)}}\right)$$

irrespectively of p_n , q_n .

- Load growth is very slow $-O(n^{0.0199})$ for d = 32.
- Worst-case response time is $O(\log^2 n)$.

・ロン ・回と ・ヨン・

Numerical Studies

Hybrid System: Expanding Ring with $TTL_n = \Theta(\log n)$

Worst-case response time is linear in n

Theorem

Assume that the stationary distribution of $\{G(t)\}_{t\in\mathbb{N}}$ is contiguous to the uniform distribution over $\mathbb{G}_{n,d}$. Then, there exists a $\mathrm{TTL}_n = \Theta\left(\log_{(d-1)}n\right)$ such that the expanding ring has

$$\rho_n = O\left(n^{\frac{\log(d-1)}{\log(d-3)}-1}\right) \text{ and } \rho_n^0 = O\left(n^{1-\frac{\log(d-3)}{\log(d-1)}}\right)$$

irrespectively of p_n , q_n .

- Load growth is very slow $-O(n^{0.0199})$ for d = 32.
- Worst-case response time is $O(\log^2 n)$.
- Proved using results by Hoory et al. [2006].

Numerical Studies

Simulation Setup

Simulations of Law and Siu [2003] peer-to-peer system:

- $\frac{1}{\mu} = 20$ min.
- Arrival rate $n \cdot \mu$, n = 10 thousand to half a million.
- δ = 20msec.
- ► $\mathrm{TTL}_n = n\delta$.
- ▶ Degree 16.

・ロト ・回ト ・ヨト ・ヨト

Numerical Studies

Load per peer ρ for popular items ($p = \omega (1/n)$).

Numerical Studies

Load per peer ρ for unpopular items (p = O(1/n)).

Numerical Studies

Server load ρ_0 for popular items $(p = \omega (1/n))$

・ロン ・回と ・ヨン ・ヨン

æ

Numerical Studies

Server load ρ_0 for popular items $(p = \omega (1/n))$

We saw none!!!!

・ロン ・回と ・ヨン ・ヨン

æ

Numerical Studies

Server load ρ_0 for popular items $(p = \omega (1/n))$

We saw none!!!!

Theoretical bound: $ho_0 \sim 10^{-120}$

・ロト ・回ト ・ヨト ・ヨト

Numerical Studies

Server load ρ_0 for unpopular items (p = O(1/n)).

Numerical Studies

Delay for popular items $(p = \omega (1/n))$.

Numerical Studies

Delay for unpopular items (p = o(1/n)).

Gnutella Measurement Studies

- William Acosta and Surendar Chandra. Understanding the practical limits of the Gnutella p2p system: An analysis of query terms and object name distributions. In MMCN, 2008.
- Chunxi Li and Changjia Chen. On Gnutella topology dynamics by studying leaf and ultra connection jointly in phase space. Computer Networks, 52(3):695–719, 2008.
- Amir H. Rasti, Daniel Stutzbach, and Reza Rejaie. On the long-term evolution of the two-tier Gnutella overlay. In *INFOCOM*, 2006.
- Matei Ripeanu, Adriana lamnitchi, and lan Foster. Mapping the Gnutella network: Properties of large-scale peer-to-peer systems and implications for system design. *IEEE Internet Computing*, 6(1), 2002.
- Stefan Saroiu, Krishna P. Gummadi, and Steven D. Gribble. A measurement study of peer-to-peer file sharing systems. In MMCN, 2002.
- Daniel Stutzbach, Reza Rejaie, and Subhabrata Sen. Characterizing unstructured overlay topologies in modern p2p file-sharing systems. IEEE/ACM Transactions on Networking, 16(2), 2008.

・ロン ・回と ・ヨン ・ヨン

Search Mechanisms

- Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott Shenker. Making Gnutella-like p2p systems scalable. In SIGCOMM, 2003.
- Edith Cohen and Scott Shenker. Replication strategies in unstructured peer-to-peer networks. SIGCOMM Comput. Commun. Rev., 32(4):177–190, 2002. ISSN 0146-4833.
- Christos Gkantsidis, Milena Mihail, and Amin Saberi. Hybrid search schemes for unstructured peer-to-peer networks. In INFOCOM, 2005.
- Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and replication in unstructured peer-to-peer networks. In ICS, 2002.
- Krishna P.N. Puttaswamy, Alessandra Sala, and Ben Y. Zhao. Searching for rare objects using index replication. In INFOCOM, 2008.
- Wesley W. Terpstra, Jussi Kangasharju, Christof Leng, and Alejandro P. Buchman. BubbleStorm: Resilient, probabilistic and exhaustive peer-to-peer search. In SIGCOMM, 2007.

Saurabh Tewari and Leonard Kleinrock. Proportional replication in peer-to-peer networks. In INFOCOM, 2006.

イロト イヨト イヨト イヨト

References III

Expander Graphs

- David Aldous and Jim Fill. Reversible Markov Chains and Random Walks on Graphs. Monograph in preparation. http://www.stat.berkeley.edu/~aldous/RWG/book.html. Accessed on 29/12/2008.
- Fan Rong K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.
- Joel Friedman. A proof of Alon's second eigenvalue conjecture. In STOC '03, pages 720–724, New York, NY, USA, 2003. ACM Press.
- Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications. *Bulletin of the AMS*, 43 (4):439–561, October 2006.

Markovian Overlay Graph Models

- Tomas Feder, Adam Guetz, Milena Mihail, and Amin Saberi. A local switch markov chain on given degree graphs with application in connectivity of peer-to-peer networks. In *FOCS*, pages 69–76, 2006.
- Ayalvadi J. Ganesh, Anne-Marrie Kermarrec, Erwan Le Merrer, and Laurent Massoulié. Peer counting and sampling in overlay networks based on random walks. *Journal of Distributed Computing*, 20(4), 2007.
- Christos Gkantsidis, Milena Mihail, and Amin Saberi. Random walks in peer-to-peer networks. In INFOCOM, 2004.
- Ching Law and Kai-Yeung Siu. Distributed construction of random expander networks. In INFOCOM, 2003.
- Peter Mahlmann and Christian Schindelhauer. Peer-to-peer networks based on random transformations of connected regular undirected graphs. In SPAA '05: Proceedings of the seventeenth annual ACM symposium on Parallelism in algorithms and architectures, pages 155–164. ACM, 2005. Control of the sevent s

Replication

- Edith Cohen and Scott Shenker. Replication strategies in unstructured peer-to-peer networks. SIGCOMM Comput. Commun. Rev., 32(4):177–190, 2002. ISSN 0146-4833.
- Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and replication in unstructured peer-to-peer networks. In ICS, 2002.

Saurabh Tewari and Leonard Kleinrock. Proportional replication in peer-to-peer networks. In INFOCOM, 2006.

Miscellaneous

Michel Benaïm and Jean-Yves Le Boudec. A class of mean field interaction models for computer and communication systems. Technical Report LCA-REPORT-2008-010, EPFL, 2008.

Nicholas C. Wormald. Models of random regular graphs. Surveys in Combinatorics, 276:239-298, 1999.

・ロン ・回と ・ヨン・