A queueing approach to a multi class M/G/1 make-to-stock with backlog

Yoav Kerner

U. Toronto & Technion

Joint with Opher Baron

YEQT III, Eindhoven, 19.11.09

Objectives

- 1. The equivalence of inventory model and queueing problem
- 2. Improving existing policies

- A single machine produces a single item
- Demand process according to a $PP(\lambda)$
- i.i.d production times (G)

- A single machine produces a single item
- Demand process according to a $PP(\lambda)$
- i.i.d production times (G)
- Linear holding (h) and backlog (b) costs

- A single machine produces a single item
- Demand process according to a $PP(\lambda)$
- i.i.d production times (G)
- Linear holding (h) and backlog (b) costs
- Decision: To produce or not. Taken at
 - production completion

- A single machine produces a single item
- Demand process according to a $PP(\lambda)$
- i.i.d production times (G)
- Linear holding (h) and backlog (b) costs
- Decision: To produce or not. Taken at
 - production completion
 - arrival at idelness

Stationary policy: Produce \Leftrightarrow the stock level is smaller than a *base stock level S*

Stationary policy: Produce \Leftrightarrow the stock level is smaller than a *base stock level S*

Average long-run cost:

$$\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} (hI_{S}(t) + bB_{S}(t))dt$$

Stationary policy: Produce \Leftrightarrow the stock level is smaller than a *base stock level S*

Average long-run cost:

$$\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} (hI_S(t) + bB_S(t))dt = hE_S(I) + bE_S(B)$$

Stationary policy: Produce \Leftrightarrow the stock level is smaller than a *base stock level S*

Average long-run cost:

$$\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} (hI_S(t) + bB_S(t))dt = hE_S(I) + bE_S(B)$$

Optimal policy is stationary (MDP)

Stationary policy: Produce \Leftrightarrow the stock level is smaller than a *base stock level S*

Average long-run cost:

$$\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} (hI_S(t) + bB_S(t))dt = hE_S(I) + bE_S(B)$$

Optimal policy is stationary (MDP) What is the optimal *S*?

An M/G/1 queue (λ , G)

An M/G/1 queue (λ , G)

Optimization problem:

$$\min_{S \ge 0} h \mathbb{E}(QI_{\{Q < S\}}) + b \mathbb{E}(QI_{\{Q > S\}})$$

An M/G/1 queue (λ , G)

Optimization problem:

$$\min_{S>0} h \mathbb{E}(QI_{\{Q < S\}}) + b \mathbb{E}(QI_{\{Q > S\}})$$

The optimal solution *S*^{*} (Veatch and Wein 96):

$$\mathcal{P}(Q \le S^*) = \frac{b}{b+h}$$

An M/G/1 queue (λ , G)

Optimization problem:

$$\min_{S>0} h \mathbb{E}(QI_{\{Q < S\}}) + b \mathbb{E}(QI_{\{Q > S\}})$$

The optimal solution *S*^{*} (Veatch and Wein 96):

$$\mathcal{P}(Q \le S^*) = \frac{b}{b+h}$$

In this queue customers are served before their arrival!!

Multi class problem

- N classes of customers
- arrival rates λ_i
- backlog costs b_i ($b_i > b_{i+1}$)

FCFS

Strict Pririty (SP)

FCFS

Strict Pririty (SP)

■ Stock → Give to any arrival when there is a

- Strict Pririty (SP)
 - Stock \rightarrow Give to any arrival when there is a
 - Shortage \rightarrow Give to the most expensive "*C* μ rule"

- Strict Pririty (SP)
 - Stock \rightarrow Give to any arrival when there is a
 - Shortage \rightarrow Give to the most expensive "*C* μ rule"
- Inventory Rationing (IR)

- Strict Pririty (SP)
 - Stock \rightarrow Give to any arrival when there is a
 - Shortage \rightarrow Give to the most expensive "*C* μ rule"
- Inventory Rationing (IR)
 - Constants $S = R_{n+1} \ge R_n \ldots \ge R_1 \ge 0$

- Strict Pririty (SP)
 - Stock \rightarrow Give to any arrival when there is a
 - Shortage \rightarrow Give to the most expensive "*C* μ rule"
- Inventory Rationing (IR)
 - Constants $S = R_{n+1} \ge R_n \ldots \ge R_1 \ge 0$
 - allocate to a class *i* customer \Leftrightarrow stock level > R_i .

- Strict Pririty (SP)
 - Stock \rightarrow Give to any arrival when there is a
 - Shortage \rightarrow Give to the most expensive "*C* μ rule"
- Inventory Rationing (IR)
 - Constants $S = R_{n+1} \ge R_n \ldots \ge R_1 \ge 0$
 - allocate to a class *i* customer \Leftrightarrow stock level > R_i .

$$SP \subseteq IR \qquad (R_i = 0)$$

Some specific papers

- Ha (′97) Rationing *M*/*M*/1
- De Vericourt, Karasmen and Fallarey ('02) IR, FCFS, SP M/M/1
- J. P. Gayon, F. de Véricourt and F. Karaesmen ('07) IR $M/E_k/1$.
- Benjaafer, Elhafsi and Kim (05') FCFS *M*/*G*/1
- Benjaafer, Elhafsi and Kim (07') FCFS, IR *M*/*M*/1
- Abouee-Mehrizi, Balcioglu and Baron ('09) IR *M*/*G*/1

Markovian systems → Dynamic programming

Does not work for M/G/1

Inventory Rationing

Let cheaper customers wait to avoid backlog costs of more expensive customers.

Inventory Rationing

Let cheaper customers wait to avoid backlog costs of more expensive customers.

Is IR an optimal control policy?

Inventory Rationing

Let cheaper customers wait to avoid backlog costs of more expensive customers.

Is IR an optimal control policy?

Optimal in M/M/1 (De Vericourt et al. '02)

The problem: IR ignores the number of low priority customers.

The problem: IR ignores the number of low priority customers.

```
Can we improve by a function of Q_i, \ldots, Q_n?
```

The problem: IR ignores the number of low priority customers.

Can we improve by a function of Q_i, \ldots, Q_n ?

The idea: Take the "risk" of no high priority arrivals until production completion and save the backlog cost of class *i* customer until then.

The problem: IR ignores the number of low priority customers.

Can we improve by a function of Q_i, \ldots, Q_n ?

The idea: Take the "risk" of no high priority arrivals until production completion and save the backlog cost of class *i* customer until then.

The distribution of the time until production completion depends on Q_i, \ldots, Q_n

The problem: IR ignores the number of low priority customers.

Can we improve by a function of Q_i, \ldots, Q_n ?

The idea: Take the "risk" of no high priority arrivals until production completion and save the backlog cost of class *i* customer until then.

The distribution of the time until production completion depends on $Q_i + \ldots + Q_n$.

Extended Inventory Rationing

Pairs R_i , q_i .

Extended Inventory Rationing

Pairs R_i , q_i .

At arrival epochs, allocate to class *i* customer

$1. Inventory > R_i \quad \text{or}$ 2. Inventory = R_i and $\sum_{j=i}^n Q_j \ge q_i$ }

Extended Inventory Rationing

Pairs R_i , q_i .

At arrival epochs, allocate to class *i* customer \uparrow 1. Inventory> R_i or 2. Inventory= R_i and $\sum_{j=i}^n Q_j \ge q_i$ }

 $SP \subseteq IR \subseteq EIR \qquad (q_i = \infty)$

Analysis

Priority M/G/1 queue with state-dependent arrival rates.

 $Q_1 = B_1 + S - I$

Embed at production completion epochs.

Balance equations....

Minimize

$$hE(Q_1I_{\{Q_1 < S\}}) + b_1E(Q_1I_{\{Q_1 > S\}}) + \sum_{i=2}^n b_iE(Q_i)$$

The idea behind EIR: Short remaining production time when $\sum Q_i$ is large.

The idea behind EIR: Short remaining production time when $\sum Q_i$ is large.

This is the case if *G* is with Increasing Failure Rate.

The idea behind EIR: Short remaining production time when $\sum Q_i$ is large.

This is the case if *G* is with Increasing Failure Rate.

IR should be extended according to the *G*.

The idea behind EIR: Short remaining production time when $\sum Q_i$ is large.

This is the case if *G* is with Increasing Failure Rate.

IR should be extended according to the *G*.

For example: If *G* is DFR, the extension is:

The idea behind EIR: Short remaining production time when $\sum Q_i$ is large.

This is the case if *G* is with Increasing Failure Rate.

IR should be extended according to the *G*.

For example: If *G* is DFR, the extension is:

If an arriving class *i* customer finds $R_i + 1$, allocate iff $\sum_{j=i+1}^{n} Q_j$ is small.

