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A multiclass queue

I I customer classes

I N servers

I Poisson(λi) arrivals

I Exp(µi) service time

I linear holding costs ci

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.  .  .  . 

λ1  λ2  λ3  λ I 

1 2 3 I 

N 

1/µ1 
1/µ2 

1/µ I 

V (x) := inf
π∈Π

Ex
∫ ∞

0
e−γs

I∑
i=1

ciQi(s)ds

Π = Non-preemptive non-anticipative policies
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A multiclass queue in heavy-traffic

The heavy-traffic regime:

Nn =
I∑
i=1

nλi
µi

+ β

√√√√ I∑
i=1

nλi
µi

(Halfin-Whitt regime)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.  .  .  . 

λ1  λ2  λ3  λ I 

1 2 3 I 

N 

1/µ1 
1/µ2 

1/µ I 

V n(x) := inf
πn∈Πn

Ex
∫ ∞

0
e−γs

I∑
i=1

ciQ
n
i (s)ds

(1− ρn) ∼ 1√
n

hence
∑
i

Qni ∼
√
n hence V n(x) ∼

√
n
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A multi-class queue in heavy-traffic cont.

Find a sequence {πn} so that

1√
n

Ex
∫ ∞

0
e−γsc ·Qn,πn

(s)ds ≤ V n(x)√
n

+ o(1)

Asymptotic optimality established in Atar et. al (04’):

via optimal control of diffusion limit (as n→∞)

I Optimality gap = o(
√
n)

I How to improve gap? (sufficient conditions?)

I Tradeoff simplicity of prescription vs. optimality gap
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Approximation errors in heavy-traffic

I Capacity optimization for multi-server queues: Janssen, van

Leeuwaarden and Zwart (08’), Zhang et. al. (09’)

I Mandelbaum et. al. (98’), Chen (96’)– O(log n) performance

bounds via strong approximations

Can strong approximations be preserved under the optimal control

process?
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Motivation: A simple case (common service rates)

I Preemptive priorities is optimal
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.  .  .  . 1 2 3 I 

λ1  λ2  λ3  λI  

µ µ 
µ 

µ 

I Non-preemptive static priority is optimal in heavy-traffic

I Optimality gap = O(1) = Non-preemptive - Preemptive

Ex
∫ ∞

0
e−γsc ·Qn,πn

(s)ds ≤ V n(x) +K

I Proof (almost) ad-hoc for this simple case.
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Main Result

Theorem

Fix n. We can find a non-preemptive control π∗,n so that

Ex
∫ ∞

0
e−γsc ·Qn,π∗,n

(s)ds ≤ V n(x)
(

1 + C
logm (n)√

n

)
,

C and m are independent of n and explicitly identifiable.

I With linear costs: V n(x) ∼
√
n so that gap ∼ logm(n)

I Bound in terms of system parameters
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Some preliminaries

Atar et. al: A sequence of controls {πn} so that

Optimality gap in nth system = o(
√
n).

Proof of asymptotic optimality based on:

(1) Preemptive - Diffusion limit = o(
√
n)

(2) Non-Preemptive - Preemptive = o(
√
n)
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Some preliminaries

I Xn
i (t) := # of class-i customers in the system

I Zni (t) = Xn
i (t)−Qni (t) # of class-i customers in service

Xn
i (t) = N a

i (nλit)−N s
i

(
µi

∫ t

0
Zni (s)ds

)
= N a

i (nλit)−N s
i

(
µi

∫ t

0
Xn
i (s)−Qni (s)ds

)
Control= Controlling Qni (t)
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Identifying the source of the gap

Departures: Sni (t) = N s
i

(
µi

∫ t

0
Zni (s)ds

)

I Strong App: Sni (t) ≈ µi
∫ t

0
Zni (s)ds+Wi

(
µi

∫ t

0
Zni (s)ds

)
I Under

√
n scaling only fluid appears in Brownian motion

I Zni (s)− nλi
µi

= O(
√
n) so that

Zni
n
→ λi

µi
as n→∞

I Diffusion limit: Sni (t) ≈ µi
∫ t

0
Zni (s)ds+Wi

(
µi
nλi
µi

t

)

Sni (t)− µi
∫ t

0
Zni (s)ds−Wi(nλi) = O(n1/4)
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A sequence of Diffusion control problems

inf
π∈Π̂n

Ex
∫ ∞

0
e−γsc · Q̃n,π(s)ds

s.t. (1) X̃n,π
i (t) = X̃n

i (0) + nλit− µi
∫ t

0
(X̃n,π

i (s)− Q̃n,πi (s))ds

+ Wi

(
nλit+ µi

∫ t

0
X̃n,π
i (s)− Q̃n,πi (s)ds

)
(2) e · Q̃n,π(t) = [e · X̃n,π(t)−Nn]+, Q̃n,πi (t) ≥ 0.

I Key: preserve state and control dependence in Brownian term

I Solve up to a hitting time
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A sequence of HJB equations

For each n we have a different HJB equation.

0 = inf
u≥0, e·u=1

{
(e · x)+

∑
i

(ci + V n
i (x)− 1

2
V n
ii (x))ui

}

+
∑
i

(lni − µixi)V n
i (x) +

1
2

∑
i

(nλi + µi(nρi + xi))V n
ii − γV n(x)

These are fully non-linear second order PDEs and non-smooth
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Existence, uniqueness and verification

Theorem

Fix n. The HJB equation (1) considered on Ωn = B(0,M
√
n log n)

with the boundary condition φ = 0 on ∂Ωn is uniquely solvable in

C2(Ωn)
⋃
C0(Ω̄n).

Theorem

There exists a unique classical solution φ ∈ C2
pol(Ω̄

n) to the HJB

equation. Moreover, the value up to hitting of ∂Ωn is equal to φ.

Finally, there exists a Markov policy which is optimal.
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The Markovian control

A proportion function uni (·), such that π∗ satisfies

Qn,π∗i∑
kQ

n,π∗

k

= uni (X̃n,π∗(t)),

For the linear-cost case: uni (x) = 1 for i = i∗(x)

i∗(x) := min argmin
i

{
(e · x)+(ci + φni (x)− 1

2
φnii(x))

}

where φn(·) is the solution to the nth HJB equation.

Implementable directly to original system via preemption.
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Non-preemptive tracking of Preemptive

Non-preemptive tracking: given Lipschitz(???) functions uni , serve i∗

i∗ ∈ argmax
i

{
Qni (t)∑
kQ

n
k(t)
− uni (Xn(t))h

}
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Non-preemptive tracking of Preemptive

Theorem (a “state-space collapse” result)

Fix T > 0 and use the tracking policy. Then, there exists C > 0 s.t.

E

[
sup

0≤t≤T logn

∣∣∣Qni (t)− uni (Xn(t))
∑
k

Qnk(t)
∣∣∣] ≤ C log n.

Corollary: Let π be the tracking policy. Then,∣∣∣∣Ex ∫ ∞
0

e−γsc ·Qn,π(s)ds− φn(x)
∣∣∣∣ ≤ C log n.

This is not enough
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Towards combining the pieces

“Standard” argument for asymptotic optimality:

(1) V̂ (x)= value function for limit control problem

(2) Show that V̂ (·) “almost” solves DP equation for all n large enough.

(3) Uses only continuity of V̂ and its derivatives.

We need to bound the gap for fixed n
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Gradient Estimates

Proposition

Let φn be the solution of the nth HJB equation. Then, there exists M

such that with Ω̃n = B
(
0, M2
√
n log n

)
s.t.

(i) sup
x∈Ω̃n

|Dφn(x)| ≤ C log n

(ii) sup
x∈Ω̃n

|D2φn(x)| ≤ C log n√
n

(iii) sup
x,y∈Ω̃n

|D2φn(x)−D2φn(y)|
|x− y|α

≤ C log n
n

where C > 0 and 0 < α ≤ 1 are independent of n
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Completing the proof

(1) Write Taylor expansion for φn(Xn(t))

(2) Plug estimates back into the Taylor expansion, to show that φn(·)

is appropriately close to V n(·).

(3) Use preemptve vs. non-preemptive bounds.
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Summary

I Logarithmic optimality gaps

I A specific case–the V model with linear costs

I Strictly convex cost: we can generate a solution with cost

V n

(
1 + C

logm n√
n

)
I Analysis highlights

(1) Sources of gaps

(2) How and when can be tightened.
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Questions?
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