An Optimal Index Policy for the Multi-Armed Bandit Problem with Re-Initializing Bandits

Peter Jacko*

YEQT III November 20, 2009

*Basque Center for Applied Mathematics (BCAM), Bilbao, Spain

Example: Congestion Control in Router



Multi-Armed Bandit Problem

Multi-Armed Bandit Problem

- A classic problem of efficient learning
- Originally in sequential design of experiments
 - Thompson (1933): which of two drugs is superior?
 Robbins (1952), Bradt et. al (1956), Bellman (1956)
- Job sequencing problem
 - ▷ Cox & Smith (1961): *cµ*-rule
- Celebrated general solution
 - Gittins and colleagues (1970s): Gittins index rule
 crucial condition: non-played are frozen

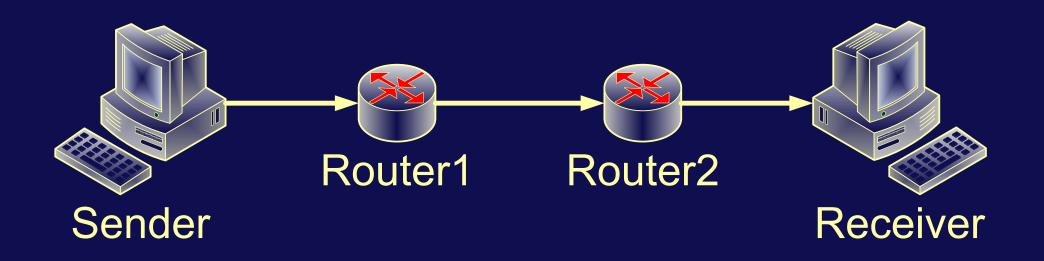
Outline

- Re-initializing bandits
 - Transmission Control Protocol (TCP)
- MDP formulation
- Relaxations and decomposition into subproblems
- Optimal solution to the subproblems
 - obtaining an index
- Optimal solution to relaxations
- Optimal index policy to original problem

Transmission Control Protocol (TCP)

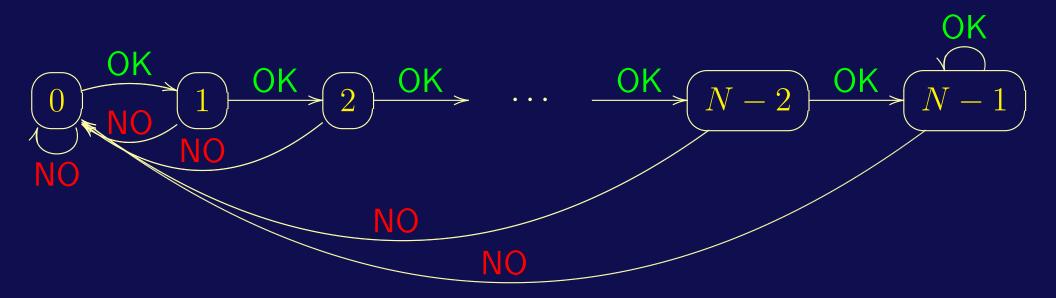
- Implemented at the two ends of a connection
- A way of end-to-end congestion control
- Provides reliable, ordered delivery of a stream of packets
- Fully-sensitive to packet losses
- Examples: web browsers, e-mail, file transfer (FTP)
- Must be distinguished from congestion control in routers
- An alternative (UDP) is used for VoIP, streaming, etc.

TCP End-to-End Connection



- Sender sends an initial packet and waits
- Receiver sends acknowledgment of each received packet
- Sender sends more packet(s) after receiving acknowledgement(s) or restarts after time-out

TCP Dynamics as Markov Chain



- States: $n \in \{0, 1, \dots, N-1\} = \text{sending rate level}$
 - \triangleright n = 0: sending rate of 1 packet/RTT
 - $\triangleright n = N 1$: maximum rate, $\leq W^{\max}$
- Transitions: OK (acknowledgment), NO (time-out)

Congestion Control of TCP Flows in Router

- Time epochs $t = 0, 1, 2, \ldots$
- Two possible control actions a(t):
 - b transmit the flow packets
 - block the flow by dropping packets
- If transmitted $W_{X(t)}$ packets in state X(t), then
 - ▷ goodput (reward) $R_{X(t)}$ is earned
 - \triangleright the sender sets X(t+1) given by TCP dynamics
- Objective: Maximize the long-run goodput (reward)
 while choosing exactly one flow every time epoch

Congestion Control in Router

• Maximizing time-average expected goodput

$$\max_{\pi \in \Pi} \lim_{T \to \infty} \frac{1}{T} \mathbb{E}_{\boldsymbol{n}}^{\pi} \left[\sum_{t=0}^{T-1} \sum_{m \in \mathcal{M}} R_{m, X_m(t)}^{a_m(t)} \right]$$

Subject to sample path condition

$$\sum_{m \in \mathcal{M}} a_m(t) = 1, \text{ for all } t$$

conditional on state history under π

Relaxations

• 1: Whittle's Relaxation: choose one on average

$$\lim_{T \to \infty} \frac{1}{T} \mathbb{E}_{\boldsymbol{n}}^{\pi} \left[\sum_{t=0}^{T-1} \sum_{m \in \mathcal{M}} a_m(t) \right] = 1$$

• 2: Multiply by $\overline{W^{\max}}$ and use $W^{a_m(t)}_{m,X_m(t)} \leq W^{\max}a_m(t)$,

$$\lim_{T \to \infty} \frac{1}{T} \mathbb{E}_{\boldsymbol{n}}^{\pi} \left[\sum_{t=0}^{T-1} \sum_{m \in \mathcal{M}} W_{m, X_m(t)}^{a_m(t)} \right] \leq W^{\max}$$

• 3: Dualize this constraint using Lagrangian multiplier

$$\max_{\pi \in \Pi} \lim_{T \to \infty} \frac{1}{T} \mathbb{E}_{\boldsymbol{n}}^{\pi} \left[\sum_{t=0}^{T-1} \sum_{m \in \mathcal{M}} \left(R_{m, X_m(t)}^{a_m(t)} - \nu W_{m, X_m(t)}^{a_m(t)} \right) \right] + \nu W^{\max}$$

Decomposition

 Decompose the Lagrangian relaxation due to flow independence into single-flow parametric subproblems

$$\max_{\pi_m \in \Pi_m} \lim_{T \to \infty} \frac{1}{T} \mathbb{E}_{n_m}^{\pi_m} \left[\sum_{t=0}^{T-1} \left(R_{m,X_m(t)}^{a_m(t)} - \nu W_{m,X_m(t)}^{a_m(t)} \right) \right]$$

- This is known as a restless bandit
- Under certain natural conditions, there exist break-even values $\nu_{m,n}$ of ν , called transmission indices (prices), s.t.
 - ▶ it is optimal to transmit if $\nu_{m,n} \ge \nu$ ▶ it is optimal to block if $\nu_{m,n} \le \nu$

Optimal Solutions to Relaxations

- For 3 (multi-flow Lagrangian relaxation): For each flow,
 it is optimal to transmit if ν_{m,n} ≥ ν
 it is optimal to block if ν_{m,n} ≤ ν
- Suppose that re-initializing state 0 has highest value, i.e., $\nu_{m,0} \ge \nu_{m,n}$ for all states n of any flow m
- Denote by u^* the second-highest $u_{m,0}$ over m
- For 1: an optimal policy is: at every t,
 - ▷ transmit each flow satisfying $u_{m,X(t)} > \nu^*$
 - ▷ if no such flow exists, then transmit one flow satisfying $\nu_{m,X(t)} = \nu^*$

Optimal Solution to Original Problem

- An optimal policy is: at every t,
 - ▶ transmit each flow satisfying v_{m,n} > v^{*}
 ▶ if no such flow exists, then transmit one flow satisfying v_{m,X(t)} = v^{*}
- This policy chooses exactly one flow every time epoch
- It is optimal here because it is feasible here and optimal for a relaxation
- (See animation)

Multi-Armed Bandit Problem

• We can apply the same reasoning to the classic problem

- Set the threshold to the second-highest Gittins index
 Play the bandits with Gittins index higher than the threshold, breaking ties choosing one arbitrarily
 Once no bandits are above, restart the procedure
- Optimal policy = sequence of optimal solutions to Lagrangian relaxations with decreasing values of Lagrangian multiplier

Routing: A More Realistic Setting

- Bandwidth W, i.e., deterministic "server capacity"
- Target time-average router throughput $\overline{W} < W$, i.e., "virtual capacity"
- Buffer size $B \ge W$
- Backlog process B(t) at epochs t
 - number of packets buffered for more than one period
- To be allocated to randomly appearing and disappearing flows

Summary

- Apart from multi-armed bandit problem and its special cases, proving optimality of an index policy is rare
- The approach leads to a new proof for the classic problem
- For more complex (restless) bandit problems
 - gives some intuition for when an index policy is optimal
 presents a well-grounded method for design of (suboptimal) greedy rules
 - useful for problems with on-average constraint (if capacity can be marketed between periods)

Thank you for your attention!

Congestion Control in Router

