Vehicle Interference Effects in Warehousing Systems with Autonomous Vehicles

Ananth Krishnamurthy ananth@engr.wisc.edu

Debjit Roy droy@wisc.edu

Sunderesh Heragu sshera01@gwise.louisville.edu Charles Malmborg malmbc@rpi.edu

コン スロン スロン スロン

Department of Industrial and Systems Engineering University of Wisconsin-Madison, Madison, WI, 53706

Stochastic Models for Warehousing Systems EURANDOM, The Netherlands October 29, 2009

Outline

2 Focus of Current Research

3 Queuing Model

4 Numerical Results

Krishnamurthy et al. (UW-Madison)

3

Outline

- 2 Focus of Current Research
- 3 Queuing Model
- 4 Numerical Results

Krishnamurthy et al. (UW-Madison)

э.

AVS/R System Overview

- AVS/RS: Uses autonomous vehicles instead of aisle-captive cranes
- System configuration
 - Rectilinear movement
 - Horizontal movement (x and y axes) by autonomous vehicles
 - Vertical movement (z axis) by lifts
 - Vehicles move between tiers using lifts
- Modular and adaptive design

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Components of an AVS/R System

æ

Design Parameters in AVS/RS

System Sizing Decisions

- Number of vehicles and lifts
- Depth/Width ratio
- Location of cross-aisle and load/unload points
- Number of zones

Operational Decisions

- Vehicle assignment rule
- Dwell point policy
- Command cycle
- Storage policy
- Transaction scheduling policy (FCFS, Random)

Key Performance Measures

• Transaction cycle time, Queue lengths, Throughput, Vehicle utilization

Outline

2 Focus of Current Research

3 Queuing Model

4 Numerical Results

Krishnamurthy et al. (UW-Madison)

5 Summary

3

Review of Analytical Models for AVS/RS

Author	Method	
Malmborg $(2002, 2003)$	State equation based models	
Kuo et al. (2004)	Probabilistic approach	
Zhang et al. (2008)	Variance based approximations	
Heragu and Srinivasan (2008)	Semi-open queuing networks	
Roy et al. (2009)	Semi-open queuing networks	

Objective of these models

- Model vehicle-lift interface and its effect on cycle times
- Quantify performance benefits of AVS/R systems

Limitation: These models does not account for possible vehicle interference and its effect on system performance

・ロン ・四と ・ヨン・・ロン

Focus of Current Research

Types of Vehicle Interference

æ

Current Research: Analyze the Effect of Vehicle Interference

- Is the effect of vehicle interference significant?
- Efficient single tier systems form effective building blocks for multi-tier systems

・ロト ・ 同ト ・ ヨト ・ ヨト

Research Approach

- Develop protocols for vehicle interference
- Develop a semi-open queuing network model of a single tier
- Solve the model using a decomposition based approach
- Validate the analytical model against simulations
- Analyze the effect of vehicle interference on performance

・ロト ・四ト ・ヨト ・ヨト

Protocols for Vehicle Interference

Each half of the cross-aisle has at most one vehicle at any time t:

Vehicles within an aisle yield to other incoming vehicles:

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Outline

2) Focus of Current Research

3 Queuing Model

4 Numerical Results

Krishnamurthy et al. (UW-Madison)

5 Summary

3

Queuing Model

Assumptions

- System Design Assumptions
 - $\bullet~ {\rm One~load}/{\rm unload~point}$
 - Single command cycle
 - Random vehicle assignment
 - LU dwell point policy
 - Random storage policy
 - FCFS transaction scheduling

• Model Assumptions

A D K A B K

Image: 1

• Poisson arrivals

Description of Vehicle Classes

Vehicle Class Prior to	Transaction	Vehicle Class After
Start of Service	Type	Start of Service
Store (s)	Retrieval	Retrieve (r)
Store (s)	Storage	Store (s)
Retrieve (r)	Retrieval	Retrieve (r)
Retrieve (r)	Storage	Store (s)

æ

・ロト ・四ト ・ヨト ・ヨト

Vehicle Class Switching

Vehicle Interference Effects

3

Nodes of the Queuing Model

Nodes of the Queuing Model

Krishnamurthy et al. (UW-Madison)

Vehicle Interference Effects

17 / 36

æ

Nodes of the Queuing Model

Krishnamurthy et al. (UW-Madison)

Vehicle Interference Effects

17 / 36

ъ.

Queuing Model for a Single Tier

Queuing Model for a Single Tier

Krishnamurthy et al. (UW-Madison)

ł

Queuing Model for a Single Tier

Queuing Model for a Single Tier: Decomposition

Vehicle Interference Effects

Decomposition Based Approach for Solving the Model

- For case $(y \leq 0)$: Solve the closed queuing network with two classes of vehicles: Store (s), and Retrieve (r) using an Approximate MVA (AMVA) algorithm
- 2 For case $(y \ge 0)$: Solve the open queue as an M/G/1 queue
- ³ Link results from the above two cases and obtain the steady state distribution of the vehicles and transactions in the original semi-open queuing network
- Obtain the performance measures (cycle time, vehicle distribution in the network and vehicle utilization)

イロン 不同 とくさい 不良 とうせい

CQN for case $(y \le 0)$

æ

Solution for case $(y \leq 0)$

Node Characteristics:

- Aisle nodes (Q_1, \ldots, Q_N) : LCFS-PR with exponential service times $(\mu_{A_1} = \mu_{A_2} = \ldots = \mu_{A_N})$, where N is the number of aisles
- Cross-aisle nodes $(Q_{N+1} \text{ and } Q_{N+2})$: FCFS with uniform service times $(\mu_{CA_L} = \mu_{CA_R} \text{ and CV of } 0.58)$
- LU nodes (Q_{N+3}) : IS with exponential service times
- Wait for transaction node (Q_{N+4}) : FCFS node with exponential service time

Therefore, the network is non-product form (Baskett et al. (1975)) and an Approximate MVA algorithm (Lazowska et al. (1984)) is used to obtain conditional measures.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● 今へ⊙

Solution for case $(y \ge 0)$

• When y > 0, arriving transactions wait for a vehicle

- Approach
 - Solve as an open queue with a single server station
- Challenges
 - Determine μ_T^{-1} (average service time) and coefficient of variation (CV) of the service time

3

・ロト ・回ト ・ヨト ・ヨト

Determining μ_T for case $(y \ge 0)$

Solution for case $(y \ge 0)$

- CV of service time:
 - From simulation studies, the CV of the service time is 0.6-0.8
 - We estimate the CV by analyzing the vehicle distribution in a reduced closed queuing network
- Solution of open queue:
 - $\bullet\,$ Open queue is analyzed as an M/G/1 queue
 - Determine $\pi(i|y\geq 0)$ by analyzing an M/G/1 queue with service rate μ_T

Unconditional Probabilities

• For Case 1
$$(y \le 0)$$
:

 $\pi(y=i) = \sum_{q:|Q_{N+4}|=-i} \pi_q(|Q_1|, |Q_2|, \dots, |Q_{N+4}||y \le 0) \pi(y \le 0)$ $\forall i = 0, \dots, -V \text{ where } |Q_m| \text{ denote the number of vehicles at node } m$

• For Case 2
$$(y \ge 0)$$
:

$$\pi(y=i) = \pi(i|y \ge 0)\pi(y \ge 0) \forall i = 0, .., \infty$$

Two unknowns $\pi(y \ge 0)$ and $\pi(y \le 0)$

• $\pi(y=0)$ is common to both cases

2
$$\sum_{k=-V}^{\infty} \pi(y=k) = 1$$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

Performance Measures

- Using $\pi(y=i)$, we can obtain the following performance measures:
 - Vehicle utilization
 - Average number of transactions waiting for service
 - Expected storage cycle time and retrieval cycle time

3

Outline

- 1 Autonomous Vehicle Technology
- 2 Focus of Current Research
- 3 Queuing Model
- 4 Numerical Results

Krishnamurthy et al. (UW-Madison)

3

Model Validation against Simulation

- Design Parameters
 - Vehicles = 3.5
 - $\frac{D}{W} = 0.5, 1.5$
 - $\lambda_s + \lambda_r = 45 100 \ pall./hr$ in increments of 5 pall./hr
 - Number of storage locations=7300
- Analyzed 40 cases where vehicle utilizations range between 60% to 90%
- Simulation: Modeled using AUTOMOD path mover system (15 replications for each scenario, 96000 transactions per run)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Model Validation:Results

 $\% Error = \frac{A-S}{S}$, where S=Simulation Value and A=Analytical Value

æ

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Effect of Vehicle Interference on Cycle Times: $\frac{D}{W} = 1.5$

Tier Configuration: 7300 Locations, 45 Aisles, 81 Columns, 5 Vehicles

æ

・ロト ・ 同ト ・ ヨト ・ ヨト

Effect of Vehicle Interference on Cycle Times: $\frac{D}{W} = 0.5$

Tier Configuration: 7300 Locations, 27 Aisles, 135 Columns, 5 Vehicles

A D K A B K

Image: 1

Outline

- 1 Autonomous Vehicle Technology
- 2 Focus of Current Research
- 3 Queuing Model
- 4 Numerical Results

Krishnamurthy et al. (UW-Madison)

3

Summary and Next Steps

Conclusions:

- Developed analytical model of single tier with vehicle interference
- Vehicle interference increase cycle times

Next Steps:

- Refine analytical model and validate against detailed simulations
- Use analytical model to obtain design insights
- Model to account for lift interactions in multi-tier systems

・ロッ ・回ッ ・ロッ

Thank You!

Ananth Krishnamurthy ananth@engr.wisc.edu

Debjit Roy droy@wisc.edu

Sunderesh Heragu sshera01@gwise.louisville.edu Charles Malmborg malmbc@rpi.edu

Questions or Comments?

æ

Summary

CQN to determine CV for the Open Queue

A 3 b

æ