

Queueing Network Analysis of Compact Picking Systems

Liqiang Liu and Ivo Adan

Technische Universiteit **Eindhoven** University of Technology

October 29, 2009

Outline

- Introduction.
- Modeling.
- Performance evaluation.
- Numerical experiments.
- Conclusion.

- Distribution centers (DCs) receive and warehouse items, pick and send items according to orders.
- Analytical approach is important (efficient, what-if scenarios etc.).
- Extensive research in sub-systems, especially AS/RS. Very few analytical approaches take into account the interplay of other systems in the DC.
- Queueing network models.

Compact Picking System

- Product/Order totes.
- "Products-to-man" by AS/RS (cranes).
- Picking station product tote pipeline.

The Queueing Network Model

- Crane as greedy bulk servers (b).
- Ignoring storing activities (effective processing times).
- Customers.
- Pipeline capacities c.
- Routing.

Complicating features

- Multi-class closed network.
- No product-form solution.

Mean Value Analysis

6/21

Population vector $\underline{c} = (c_1, c_2, \dots, c_n)$; *m* cranes; Service rates: γ , μ and λ .

• Waiting times (Arrival Theorem)

$$W_{i,TR}(\underline{c}) = 1/\gamma$$

$$W_{i,PK}(\underline{c}) = (L_{i,PK}(\underline{c} - \underline{e}_i) + 1)/\mu$$

$$W_{i,CR}(\underline{c}) = (L_{CR}(\underline{c} - \underline{e}_i) + 1)/(b\lambda) \text{ or }$$

$$= (L_{CR}(\underline{c} - \underline{e}_i) + b)/(b\lambda)$$

• Throughput (Little's law)

$$T H_i(\underline{c}) = \frac{c_i}{W_{i,TR}(\underline{c}) + W_{i,PK}(\underline{c}) + W_{i,CR}(\underline{c})}$$

• Queue lengths (Little's law)

$$L_{i,PK}(\underline{c}) = TH_i(\underline{c})W_{i,PK}(\underline{c})$$

$$L_{i,CR}(\underline{c}) = \frac{1}{m}TH_i(\underline{c})W_{i,CR}(\underline{c})$$

$$L_{CR}(\underline{c}) = \sum_i L_{i,CR}(\underline{c})$$

Results Mean Value Analysis

Mean pick time X sec Mean transportation time XX sec Mean retrieval time XX sec ^a 5 cranes *n* picking stations

Throughput (totes per sec)

b	n	С	Simul	Approx	Approx	Error (%)	Error (%)
4	1	5	0,0613	0,0913	0,0662	48,94	7,99
		10	0,1008	0,1227	0,1084	21,74	7,55
		15	0,1195	0,1250	0,1231	4,63	3,04
	3	5	0,1621	0,2612	0,1817	61,10	12,07
		10	0,2710	0,3600	0,2898	32,84	6,93
		15	0,3356	0,3744	0,3466	11.56	3,27

^adata censored due to company's policy

Aggregation Method: General Idea

8/21

The idea is to sequentially aggregate two nodes into a composite node with "properly" defined queue-dependent service rates; the service rate for queue size k is determined as the weighted average of the throughputs of the two nodes, given that there are k customers in the two nodes.

For
$$k = 1 \cdots (c_1 + c_2)$$

(a.1) Compute the weight function

$$w_k^{(1)}(i) = \operatorname{Prob}\{ i \text{ in PK1} \\ | k \text{ in PK1 and PK2} \},$$

$$i = \max(0, k - c_2) \cdots \min(k, c_1).$$

(a.2) Compute the service rates of CP1 by

$$\mu_k^{\mathsf{CP1}} = \sum_{i=\max(0,k-c_2)}^{\min(c_1,k)} w_k^{(1)}(i)(\mu_i^{\mathsf{PK1}} + \mu_{k-i}^{\mathsf{PK2}}).$$

Based on:

- Assume the PF property holds well approximately;
- In a PF network, the cond. prob. do not depend on specifics of the rest,

e.g. Prob $\{i, j | i + j = k\} \sim \frac{1}{\mu^i} \frac{1}{\mu^j} \frac{1}{(c_1 - i)!} \frac{1}{(c_2 - j)!}$,

we can approximate the weights using only the parameters of the two nodes in aggregation.

For $k = 1 \cdots (c_1 + c_2 + c_3)$

(b) Aggregate CP1 and PK3 as CP2. Compute $w_k^{(2)}(i)$ and μ_k^{CP2} similarly to the previous step, i.e., substitute PK1, PK2, c_1 and c_2 by CP1, PK3, $c_1 + c_2$ and c_3 , respectively.

Single-Class Network

•
$$\mu_k^{\text{CP3}} = \sum_{i=0}^k w_k^{(3)}(i) \mu_i^{\text{CP2}}.$$

• Prob{i, j | i + j = k} ~ $\frac{1}{j!\gamma^j} \prod_{l=1}^{i} \frac{1}{\mu_l^{\text{CP2}}}$.

(d.1) Compute

For $k = 1 \cdots (c_1 + c_2 + c_3)$ $w_k^{(4)}(i, j) = \text{Prob}\{i \text{ in CP3 , } j \text{ in service in CR1} \\ | k \text{ in CP3 and CR1} \},$ $i = 0 \cdots (k-1), j = 1 \cdots (k-i) \wedge b,$ i = k, j = 0.

(d.2) Compute the service rates of CP4 by

$$\mu_k^{\text{CP4}} = (1-p) \sum_{i,j} w_k^{(4)}(i,j) \mu_i^{\text{CP3}},$$

where p is the routing probability to CR1. (e) Compute $w_{|c|}^{(5)}(i, j)$, which gives marginal distribution for CR2.

Finite MC with states (i, j) where

- *i* number at CR1, i = 0, 1, ..., k
- *j* number in batch, j = 0, 1, 2, ..., b

and transition rates:

- $(i, j) \rightarrow (i j, \min(i j, b))$: μ^{CR1}
- $(i, j) \to (i + 1, j): p \mu_{k-i}^{CP3}$

(Details on the boundary are omitted.)

14/21

In the end of the aggregation phase, we may reverse the "aggregation path" and compute the performance of each node in the original network.

Numerical Experiments: Design

Design of Experiments

- Fixed configuration: Transportation time 1.
- Variables:

Variable	Short Description	Domain
n	Number of pick stations.	{1, 3, 5}
m	Number of cranes.	{1, 3, 5}
b	Batch size.	{1, 2, 4, 8}
μ^{PK}	Service rate of PK.	$\{1/2, 1, 2\}$
r ^{PB}	Ratio between population and	{1, 2, 4}
	batch size.	
r ^{MU}	Ratio between service rates of PK	$\{1/4, 1/2, 1, 2, 4\}$
	and CR.	
δ^{PK}	Mode of perturbation for PK.	$\{ \textcircled{0} \textcircled{0}, \textcircled{0}+, +\textcircled{0}, ++, +- \}$
δ^{CR}	Mode of perturbation for CR.	$\{ \textcircled{0} \textcircled{0}, \textcircled{0} +, + \textcircled{0}, + +, + - \}$

- Response: Throughput (θ), utilization (ρ), and average number in node (L).
- In total 20790 distinct cases.

16/21

All numbers ($F \pm EN$) are percentage. An entry of $\Delta(\alpha\%) = q$ is interpreted as: $\alpha\%$ of the observed relative errors are smaller than q%.

Slice	Value	θ			ρ			L		
		e	∆ (2.5%)	∆ (97.5%)	E	∆ (2.5%)	∆ (97.5%)	ϵ	∆ (2.5%)	∆ (97.5%)
b	>1	3.72E-1	-1.10E+0	1.69E+0	4.60E-1	-1.31E+0	2.41E+0	1.05E+0	-3.41E+0	5.36E+0
b	1	6.69E-2	-2.09E-1	1.82E-1	9.03E-2	-2.55E-1	2.45E-1	1.31E-1	-4.51E-1	3.91E-1
	2	2.09E-1	-3.99E-1	9.34E-1	2.66E-1	-4.57E-1	1.21E+0	3.92E-1	-9.72E-1	1.66E+0
	4	3.56E-1	-1.15E+0	1.58E+0	4.67E-1	-1.33E+0	2.31E+0	8.88E-1	-2.43E+0	4.39E+0
	8	5.51E-1	-2.27E+0	2.58E+0	6.46E-1	-2.54E+0	3.46E+0	1.87E+0	-7.51E+0	9.76E+0
Node	TR	1.91E-1	-3.85E-1	9.81E-1	Ø	Ø	Ø	1.96E-1	-3.85E-1	9.91E-1
	PK	5.70E-1	-2.23E+0	2.53E+0	5.67E-1	-2.23E+0	2.54E+0	1.83E+0	-6.44E+0	9.04E+0
	CR	2.22E-1	-4.28E-1	1.03E+0	3.52E-1	-3.58E-1	2.22E+0	5.03E-1	-1.72E+0	1.49E+0

Exact Cases: b = 1

The approximation is exact. The actual coverage of the simulation 99% confidence interval are 99.53%, 98.34% and 98.60% for θ , ρ and L respectively. Points are colored by the inferred relative error of sojourn time $\Delta^W = (1 + \Delta^L)/(1 + \Delta^{\theta}) - 1$, using Little's law.

Inexact Cases: b > 1

TU/e Technische Universiteit Eindhoven University of Technology

- Overall the approximation works extremely well;
- For PK nodes, the accuracy becomes (slightly) less when the cranes act as bottle necks (could be fixed by MVA or open network model).

- Model compact picking systems as closed queueing network.
- Efficient and accurate method.
- Generalization.

