Layout methods for order picking areas

Dr. Kees Jan Roodbergen

Rotterdam School of Management Erasmus University The Netherlands

An example of order picking

How to become more efficient?

The two main factors that influence efficiency:

operating policies

- routing method
- storage assignment method
- and more.

2. layout

- number of aisles
- number of blocks
- aisle length
- depot location

Goal

Considering that

• a myriad of layout parameters and operating policies determine the eventual efficiency of the operation.

The goal is to

- find ways to obtain an overall optimization of the order picking process, including operating policies and layout parameters.
- Three approaches follow ...

The base optimization problem

$$\min T_m(n, k, y)$$

$$S = n \cdot y$$

$$n \ge 2$$

$$k \ge 1$$

- There are typically less than a thousand feasible layouts.
- Main difficulty: quickly estimate travel time T

RSM

Options for goal function evaluations

Closed-form expressions

- Not available for all possible layout configuration and operating policy combinations,
- Mathematically quite complex,
- Easier to integrate in other applications.

Simulation

- Completely configurable,
- Significant effort to develop / maintain / integrate.
- Or a combination of the two

Closed-form expressions

Approach

- Capture behavior of routing methods in formulas to find average travel time per route.
- Routing: S-shape
- Storage assignment: Random
- Results are also quite acceptable for some other routing methods (combined, largest gap).

$$\begin{split} \textbf{The goal function} \\ & nk \left[1 - \left(\frac{nk-1}{nk} \right)^m \right] \cdot \left(\frac{y}{k} + w_c \right) + \frac{2ym}{m+nk} - y + w_a \sum_{i=1}^n \left((n-i) \cdot \left[\left(\frac{i}{n} \right)^m - \left(\frac{i-1}{n} \right)^m \right] \right) \right) \\ & + \left(\frac{y}{k} + w_c \right) \sum_{i=1}^n \sum_{j=1}^k \left[\left(\frac{i}{n} \right)^m - \left(\frac{i-1}{n} \right)^m \right] \cdot \left[\left(\frac{j}{k} \right)^m - \left(\frac{j-1}{k} \right)^m \right] \left[(j-1) \left(\frac{ij-1}{ij} \right)^m + (j-1) \left(\frac{ij-i+1}{ij} \right)^m \right] \\ & + w_a \sum_{i=2}^n \sum_{j=1}^k A_{ij} \left[\sum_{g=1}^{i-1} \left\{ (i-g) \sum_{u=1}^m B \left(u, m, \frac{i-1}{ij} \right) \left[\left(\frac{i-g}{i-1} \right)^u - \left(\frac{i-g-1}{i-1} \right)^u \right] \right\} \right] \\ & + w_a \sum_{i=3}^n \sum_{j=1}^k A_{ij} \left[(j-1) \sum_{u=1}^{m-1} \left\{ B \left(u, m, \frac{i-1}{ij} \right) \cdot \sum_{\ell=1}^{i-1} \left[\ell \cdot (i-1-\ell) \cdot Q(\ell) \right] \right\} \right] \\ & + \sum_{i=2}^n \sum_{j=1}^k A_{ij} \left[(j-1) \cdot \frac{1}{3} \cdot \left((i-2) \cdot w_a - E_{ij}^{(6)} \right) \cdot \left(1 - \left(\frac{ij-i+1}{ij} \right)^m \right) \right] \\ & + w_a \cdot \sum_{i=1}^n \sum_{j=2}^k P_j A_{ij} \left[\sum_{j=1}^{i-1} \sum_{u=1}^{m-1} \left(B \left(u, m, \frac{i-1}{ij} \right) \cdot (n-g) \cdot \left[\left(\frac{g}{i-1} \right)^u - \left(\frac{g-1}{i-1} \right)^u \right] \right) \right] \\ & + w_a \cdot \sum_{i=1}^n \sum_{j=2}^k (1-p_j) A_{ij} \left[\sum_{g=1}^{i-1} \sum_{u=1}^{m-1} \left(B \left(u, m, \frac{i-1}{ij} \right) \cdot (n-g) \cdot \left[\left(\frac{i-g}{i-1} \right)^u - \left(\frac{i-g-1}{i-1} \right)^u \right] \right) \right] \\ & + w_a \sum_{i=1}^n \sum_{j=2}^k A_{ij} \left(n - \frac{i}{2} \right) \left(\frac{ij-i+1}{ij} \right)^m + w_a \sum_{i=1}^n \sum_{p=1}^n \left(A_{i1} \cdot (g-1) \cdot \left[\left(\frac{g}{n} \right)^m - \left(\frac{g-1}{n} \right)^m \right] \right) \right] \end{split}$$

Combining simulation and closed-form expressions

Approach (1)

The basis is one simple closed-form expression for travel time in a given layout:

$$T = \frac{y}{t_a} \cdot A(n,k,m) + \frac{w_a}{t_c} \cdot C(n,k,m) + \frac{w_c}{t_c} \cdot E(n,k,m)$$

• which calls three "functions" A, C and E.

Approach (2)

- Function A(n,k,m)
 - The expected travel distance within aisles
- Function C(n,k,m)
 - The expected travel distance within cross aisles
- Function E(*n*,*k*,*m*)
 - The number of times an aisle is entered
- For a layout with
 - *n* aisles,
 - k blocks,
 - m picks per route

- Normalized aisle length
- Normalized cross aisle length

Approach (3)

- The functions A, C, E would typically be difficult to obtain as closed-form expressions.
- We generated A, C, E through simulation and stored the result for all values of *n*, *k*, *m* in a spreadsheet.
- Calculation of A, C, E is an one-time effort! It never needs to be repeated.

Approach (4)

- An estimate *T* for travel time for any layout can be calculated by means of a combination of
 - Database lookup, and
 - A fairly simple formula.
 - Implemented in Microsoft Excel.
- A layout optimization cycle takes less than a second.

Resulting spreadsheet

🛎 Microsoft Excel - layout optimization table v4 (max 100 picks).xls										_ 8 ×	
📳 Eile Edit View Insert Format Iools Data Window Help Adobe PDF											
10	≝ 🛃 💪 (≝) 🖾 🔯 🖏 ೫ 🖬 🛍 • 🖋 ୬ • ୯• • 🧶 Σ • ⅔↓ 涨↓ ½	💄 📣 150% 🛛 💌 🕑 💂 🗄	Arial	▼ 10 ▼ B Z	. n E E = = 🗃	\$ % • .0 .00	💷 🖅 🛄 • 🍐 • 🛕 •	÷			
	L1 ▼ fx										
	A	B	С	D	E	F	G	Н	J	K 🛓	
1	Warehouse layout optimization spreadsheet						order profile				
2	For more information, refer to the paper:	total aisle lengt	า (m)		400		lines per order	frequency			
3	Roodbergen, K.J. and Vis, I.F.A. (2009)	center distance between aisles (m)			2.5		1	0.2			
4	A spreadsheet-based approach to warehouse layout	width of cross aisles (m)			1		2	0.2			
5		average speed within aisles (m/s)			0.6		3	0.2			
6		average speed outside aisles (m/s)			0.6		4	0.2			
7		additional time to change aisles (s)			0		5	0.2			
8		Routing method			Combined+		6				
9							7				
10							8				
11		best options	# aisles	# cross aisles	routelength		9				
12		1	12	5	546.10		10				
13		2	10	7	546.15		11				
14		3	13	5	546.74		12				
15		4	8	9	546.77		13				
16		5	11	7	546.90		14				
17		6	9	7	547.14		15				
18		7	11	5	547.17		16				
19		8	9	9	547.61		17				
20		9	14	5	547.80		18				
21		10	8	7	549.22		19				
22		11	10	5	549.30		20				
23		12	15	5	549.70		21				
24		13	7	9	549.86		22				
25		14	12	7	550.04		23				
26		15	8	10	550.81		24				
27							25				
28							26				
29							27				
30							28				
31							29				
32							30				
33							31			•	
14 4	(+) H \ front / ranking / Sa / Sc / Se / La / Lc / Le / Ca / Pa / Pc / Pe / Aa / Ac / Ae /										
Ready NUM											

Results

- Travel time estimation for
 - Many routing heuristics
 - Random storage
 - Layouts with any number of aisles and blocks

Test: our hybrid method versus true simulation

- Travel time estimates differ by
 - less than 1% on average
 - 3% at most.
- Top 5 layouts
 - complete match in 60% of the cases;
 - match of 4 or more in 97% of the cases.

RSM

Simulation

Case study

- New facility to be build for Cito Benelux
 - Large diversity of products
 - Pick routes will visit <u>three</u> different areas (pallets, shelves, flow racks).
 - On average fairly small orders (about 5 picks/route), but individual lists may have more than 100 picks.
 - Demand is significantly skewed
- Four scenario's
 - rule of thumb: "twice as deep as wide".
 - rule of thumb: "square-in-time".
 - simultaneous optimization.
 - optimized per area.

Baseline option 1

- Square-in-time layout
 - 1 pallet aisle
 - 6 aisles with shelves
 - 4 aisles with flow racks
 - Operating policies as available from the current WMS.
- Route length: 172.2 meters

Baseline option 2

- Twice-as-wide-as-deep
 - 1 pallet aisle
 - 9 aisles with shelves
 - 6 aisles with flow racks

- Operating policies as available from the current WMS.
- Route length: 159.7 m.

RSM zafin

The challenge (1)

- What are the issues when trying to find the best alternative using simulation?
- Typical number of alternatives
 - We have 25 possible combinations of operating policies that can be used (5 routing methods, 5 storage methods).
 - And about 500 possible layout configurations.
 - Resulting in about 12,500 alternatives.
- How many replications do we need to get statistically valid conclusions?

The challenge (2)

- We cannot just compare means. Differences may not be significant.
- High variability in route length already for theoretical instances (with fixed pick list size).
- Variability increases when using actual pick list size distributions.
- Individual observations are not normally distributed in about 10% of the instances.
- If more alternatives must be compared, the required number of replications per alternative increases rapidly for a given significance level.

RSN

Approach

Screening and selection procedure

- Screening phase: Calculate for each alternative the average travel distances by simulating a small number of replications.
- Retain only those alternatives that are <u>most likely</u> to turn out to be the best alternative.
- Selection phase: Calculate for each of the remaining options the average travel distance by performing a <u>sufficient</u> number of replications.
- Select the alternative with the lowest average total travel distance.
- Final choice is within a tolerance of δ from the best configuration with a confidence level of $1-\alpha$.

RSM

Simultaneous optimization

- For every area:
 - aisle-by-aisle routing
 - across-aisle storage

Layout

- Length = 42.20 m.
- Width = 39.90 m.
- 4 cross aisles
- Average travel distance:118.80 m.
- A saving of 31%

Optimized per area

Results

Simulation

- 11,500 scenario's
- screening phase: 1.3 million replications
- selection phase: 116 million replications
- Total calculation time: about 3 days on 5 PCs.
- Many aspects of the solution for CITO can be considered atypical when compared to literature and/or practice, which proves the point of considering layout and operating policies together.

Conclusions

Conclusions

The interactions are important.

– Layout + routing + storage + zoning + batching = efficiency

Closed-form expressions

- powerful, fast, but limited in applicability

Simulation

- Maybe not be as straightforward as it seems.
- High number of alternatives.
- Route lengths are not always normally distributed: test and compensate.
- Enormous amount of replications required for achieving statistical significance.

