

Development of new warehousing systems and the use of modelling

Roelof Hamberg

Embedded Systems Institute

f ICON project

Outline

- System design & modeling
 - What, why, cost/benefit, lifecycle
- 3 Cases
 - Simple models, fast results
- Concluding remarks

Model-based design

What to model?

What & why to model?

Purpose of Modeling

Model versus Reality

"all models are wrong, some are useful" George Box, statistician

Lifecycle of Models

Cases for modeling in Vanderlande

- Support in a new product development team
 - New variant of an automated retrieval system ...
 - Early phase: understanding & exploration
 - Rapid changes of focus: balancing act
 - Cases 1 & 2
- Support for sales engineering
 - <u>Middle phase</u>: exploration & optimization
 - Case 3
 - All modeling activities critically depend on set of people & their backgrounds

Embedded Systems

Case 1: in-sequence item retrieval Embedded Systems context

INSTITUTE

What is the effect on system performance?	crane 2 crane 3 crane 4
Reality	Model
crane performancedependent on routedependent on items	crane performanceuniform probability distribution around average
items • have identities • have to be handled in sequence • number per job varies	 only consider sets of items "black box" sets # of items sampled (from customer distribution) "in sequence" is hidden in service
transportcauses different time-delays for different connections	no transport modelonly interested in throughput
layoutwidely different variants	layout • variants result in $n \rightarrow 1$ mergers

Case 1: in-sequence item retrieval Summary of results

Result

- Model of different variants in 1 day
- First analyses of variants after 2 days
- **Observations:**
 - discussion about abstraction in buffer-size parameter
 - calibration of model was done w.r.t. other models
 - "we don't want to know" how you did it"

crane utilization

Case 1: in-sequence item retrieval Model: simulated queuing network

Embedded Systems

Case 1: in-sequence item retrieval **Concluding remarks**

• Simple simulation (just beyond the static calculus)

- Accuracy: mainly relative between different variants
- Effort: very limited

Sufficient to give direction to further development

- Answer the relevant design question at that moment
- Focus on that question only

Hurdles for transfer

- Specific model abstractions
- Prerequisite knowledge of tools

Case 2: crane performance context

Embedded Systems

What is the effect of picking sequence on crane performance?

Reality	Model
 crane performance, dependent on route (how many items) docking & undocking times acceleration, velocity loading & unloading times 	 crane performance random route, path length calculation first: constant velocity second: velocity & acceleration
layoutheight and widthdiscrete locations	layoutheight relative to widthcontinuous locations

Case 2: crane performance **Summary of results**

- Results:
 - First model after 2 hours
 - Second model after 1 day
- Observations:
 - Penalty on path length for low number of picks is very limited
 - Calibrated with
 Excel sheet with defined
 path calculation

Case 2: crane performance Model: script involving rand()

 Model in gawk (but anything will do)

```
BEGIN {
  ymax = 1
  \mathbf{x}\mathbf{0} = \mathbf{0}
  y0 = 0
  steps = 6
  samples = 10000
function cycle(st) {
  x1, y1 = x0, y0
  t = 0
  for ( i=0 ; i<st ; i++ ) {</pre>
    if (i < st - 1) x^2, y^2 = 2 + rand() - 1, ymax + rand()
       else x_{2,y_{2}} = x_{0,y_{0}}
    t += max(abs(y2-y1),abs(x2-x1))
    x1,y1 = x2,y2
  return t
}
END {
  srand()
  T = 0
  for ( n=0 ; n<samples ; n++ ) T += cycle(steps)</pre>
  printf("%f ",T/samples)
}
```

Embedded Systems

INSTITUTE

Case 2: crane performance Concluding remarks

• Simple simulation (just beyond the static calculus)

- Accuracy: good?
- Effort: very limited

Sufficient to address uncertainty

- Answer the relevant design question at that moment
- Only answer that question

Hurdles for transfer

- Too much focus on reusability
- Build it in Excel...

Case 3: compact pick system sizing Embedded Systems sketch of the system

workshop Stochastic Models for Warehousing Systems

Case 3: compact pick system sizing **Context**

Embedded Systems

What is the effect of configuration on system performance, buffer utilization, and component utilization?

Reality	Model
ASRS number, batching, performance statistics dynamic stock 	ASRS performance with prob. distrib., batching no stock allocation
itemsnumber per job varies, distribution varies	items# per job sampled from customer distribution
Transportdifferent time-delays for different connectionsbuffer function	 transport Δt ~ connection index parameterized buffer function
 workstation number, buffer spaces, performance statistics # active orders, # open orders type of buffer 	 workstation performance with distribution, buffer size # active orders, # open orders FIFO versus random access
controlpriority rules (job age, sequence, pipeline)smart order planning	controlpriority rules as in real controlvirtually no order planning

Case 3: compact pick system sizing **Approach**

Target group

- Sales engineers (quick answers to their questions)
- System engineers (tool support to provide answers)

"Simulation-in-a-box" approach

- standard components
- external input parameters
- sampled order size distribution
- self-monitored statistics (run-till-statistics-are-met)
- retrospect visualization

Case 3: compact pick system sizing **Model Structure**

Basic queuing network

For each component: (they all are identical)

- component multiplicities
- input & output buffer sizes
- averages and spreads of triangularly distributed process times
- batch sizes
- type of input buffer (FIFO or SEQ)
- # open orders, # active orders
- process time dependency on connection
- availabilities & repair times
- priority rule (piece of code, not parameterized for now)

Case 3: compact pick system sizing **Example graphs**

- Detailed log-files to study and validate system behavior over time
- Gantt charts representing tasks carried out by different system components

Case 3: compact pick system sizing Results & concluding remarks

- Approximately 3 weeks of work
 - Validation has to be completed
 - Easy-to-use front-end has to be connected

For sales engineers

- Averages, maxima of throughput, work-in-progress, flow-time
- For every component separately
- For nearly all occurring system variations

For system engineers

- Detailed analyses

Hurdles for transfer

Prerequisite knowledge of tools

Concluding remarks

workshop Stochastic Models for Warehousing Systems