Technische Universität Graz Institut für Mathematische Strukturtheorie

 Phase Transitions for Random Walk

 Phase Transitions for Random Walk Asymptotics on Free Products of Groups
 YEP VII, Eindhoven - March, 11th 2010

Elisabetta Candellero (joint work with Lorenz A. Gilch)

Example of Free Product of two Finite Groups

Example of Free Product of two Finite Groups

Figure: Example: $\mathbb{Z}_{6} * \mathbb{Z}_{3}$

Example of Free Product of two Finite Groups

Figure: Example: $\mathbb{Z}_{6} * \mathbb{Z}_{3}$

Example of Free Product of two Finite Groups

Figure: Example: $\mathbb{Z}_{6} * \mathbb{Z}_{3}$

Example of Free Product of two Finite Groups

Figure: Example: $\mathbb{Z}_{6} * \mathbb{Z}_{3}$

Example of Free Product of two Finite Groups

Figure: Example: $x_{1} x_{2} x_{3} x_{4} x_{5}$ is an element of $\mathbb{Z}_{6} * \mathbb{Z}_{3}$

Formal Overwiev

$\Gamma:=$ group with identity $e . \quad A:=$ set of generators of $\Gamma ;|A|<\infty$. $\mu:=$ probability measure on Γ : defines a RW with transition probabilities

$$
\forall x, y \in \Gamma \quad p(x, y)=\mu\left(x^{-1} y\right) ; \quad\left(p(x, y)>0 \text { iff } x^{-1} y \in A\right)
$$

$\mu^{(n)}\left(x^{-1} y\right):=p^{(n)}(x, y)=$ probability to go from x to y in n steps.
Analitically: n-th convolution of $p(x, y)$.

Formal Overwiev

$\Gamma:=$ group with identity $e . \quad A:=$ set of generators of $\Gamma ;|A|<\infty$. $\mu:=$ probability measure on Γ : defines a RW with transition probabilities

$$
\forall x, y \in \Gamma \quad p(x, y)=\mu\left(x^{-1} y\right) ; \quad\left(p(x, y)>0 \text { iff } x^{-1} y \in A\right)
$$

$\mu^{(n)}\left(x^{-1} y\right):=p^{(n)}(x, y)=$ probability to go from x to y in n steps.
Analitically: n-th convolution of $p(x, y)$.
Asymptotic Behaviour of the Return Probabilities $\mu^{(n)}(e)$

Formal Overwiev

$\Gamma:=$ group with identity e. $\quad A:=$ set of generators of $\Gamma ;|A|<\infty$. $\mu:=$ probability measure on Γ : defines a RW with transition probabilities

$$
\forall x, y \in \Gamma \quad p(x, y)=\mu\left(x^{-1} y\right) ; \quad\left(p(x, y)>0 \text { iff } x^{-1} y \in A\right)
$$

$\mu^{(n)}\left(x^{-1} y\right):=p^{(n)}(x, y)=$ probability to go from x to y in n steps.
Analitically: n-th convolution of $p(x, y)$.
Asymptotic Behaviour of the Return Probabilities $\mu^{(n)}(e)$
In a great variety of cases:

$$
\mathbf{r}^{n} \mu^{(n)}(e) \sim C \cdot n^{-\lambda}
$$

where $1 / \mathbf{r} \leq 1$ is the "spectral radius" and $\lambda>0$ a parameter depending on the structure of Γ and on the RW.

Background and Motivation

Gerl's conjecture

Gerl [Ger81]: the n-step return probabilities of two symmetric measures on a group have the same $n^{-\lambda}$. I.e. λ is a group invariant.

Background and Motivation

Gerl's conjecture

Gerl [Ger81]: the n-step return probabilities of two symmetric measures on a group have the same $n^{-\lambda}$. I.e. λ is a group invariant.

Cartwright's astonishing result
Cartwright [Car89]: found a counterexample. There exist at least two probability measures (with same support) on $\mathbb{Z}^{d} * \mathbb{Z}^{d}$ with $d \geq 5$ with different asymptotic behaviours: $n^{-3 / 2}$ and $n^{-d / 2}$.

Background and Motivation

Gerl's conjecture

Gerl [Ger81]: the n-step return probabilities of two symmetric measures on a group have the same $n^{-\lambda}$. I.e. λ is a group invariant.

Cartwright's astonishing result

Cartwright [Car89]: found a counterexample. There exist at least two probability measures (with same support) on $\mathbb{Z}^{d} * \mathbb{Z}^{d}$ with $d \geq 5$ with different asymptotic behaviours: $n^{-3 / 2}$ and $n^{-d / 2}$.

Questions

- What are the motivations of Cartwright's examples? What are the possible asymptotic behaviours on $\mathbb{Z}^{d_{1}} * \mathbb{Z}^{d_{2}}\left(d_{1} \neq d_{2}\right)$?
- What happens on $\Gamma_{1} * \Gamma_{2}$ (Γ_{1} and Γ_{2} finitely generated groups)?

Definitions

Starting Objects

- $\Gamma_{1}, \ldots, \Gamma_{m}$: finitely generated groups with identities $\left\{e_{i}\right\}_{i=1}^{m}$;
- μ_{1}, \ldots, μ_{m} : probability measures s.t. $\left\langle\operatorname{supp}\left(\mu_{i}\right)\right\rangle=\Gamma_{i}$.

Definitions

Starting Objects

- $\Gamma_{1}, \ldots, \Gamma_{m}$: finitely generated groups with identities $\left\{e_{i}\right\}_{i=1}^{m}$;
- μ_{1}, \ldots, μ_{m} : probability measures s.t. $\left\langle\operatorname{supp}\left(\mu_{i}\right)\right\rangle=\Gamma_{i}$.

Structure and Properties

- Free Product $\Gamma:=\Gamma_{1} * \ldots * \Gamma_{m}$: the set of all finite words of the form $x_{1} x_{2} \ldots x_{n}$, where x_{1}, \ldots, x_{n} are elements of $\bigcup_{i} \Gamma_{i} \backslash\left\{e_{i}\right\}$ and x_{j}, x_{j+1} do not belong to the same group.

Definitions

Starting Objects

- $\Gamma_{1}, \ldots, \Gamma_{m}$: finitely generated groups with identities $\left\{e_{i}\right\}_{i=1}^{m}$;
- μ_{1}, \ldots, μ_{m} : probability measures s.t. $\left\langle\operatorname{supp}\left(\mu_{i}\right)\right\rangle=\Gamma_{i}$.

Structure and Properties

- Free Product $\Gamma:=\Gamma_{1} * \ldots * \Gamma_{m}$: the set of all finite words of the form $x_{1} x_{2} \ldots x_{n}$, where x_{1}, \ldots, x_{n} are elements of $\bigcup_{i} \Gamma_{i} \backslash\left\{e_{i}\right\}$ and x_{j}, x_{j+1} do not belong to the same group.
- Define on「 the probability measure

$$
\mu:=\alpha_{1} \mu_{1}+\alpha_{2} \mu_{2}+\ldots+\alpha_{m} \mu_{m},
$$

s.t. $\sum_{i=1}^{m} \alpha_{i}=1$ and $\alpha_{i}>0$ for every index $i \in\{1, \ldots m\}$.

We consider a RW on Γ governed by μ.

Green Functions

Green Functions

- $G_{i}(z):=\sum_{n=0}^{\infty} \mu_{i}^{(n)}\left(e_{i}\right) z^{n}$ on the free factors Γ_{i} for $i=1, \ldots, m$;
- analogously on Γ we have $G(z):=\sum_{n=0}^{\infty} \mu^{(n)}(e) z^{n}$.

The radii of convergence will be denoted by \mathbf{r}_{i} and \mathbf{r} respectively. What we look for, is the asymptotic behaviour of the $\mu^{(n)}(e)$.

Green Functions

Green Functions

- $G_{i}(z):=\sum_{n=0}^{\infty} \mu_{i}^{(n)}\left(e_{i}\right) z^{n}$ on the free factors Γ_{i} for $i=1, \ldots, m$;
- analogously on 「 we have $G(z):=\sum_{n=0}^{\infty} \mu^{(n)}(e) z^{n}$.

The radii of convergence will be denoted by \mathbf{r}_{i} and \mathbf{r} respectively. What we look for, is the asymptotic behaviour of the $\mu^{(n)}(e)$.

Idea

We find the singular expansion of $G(z)$ near $z=\mathbf{r}$ and then apply the Darboux's Method.

Remark: It is possible to use another method known as "Singularity Analysis" (see [FS09]), but there is no advantage here.

Darboux's Method

$S(z):=$ leading singular term of $G(z)$ near $z=\mathbf{r}$:

$$
G(z)=S(z)+R(z) .
$$

Known: asymptotic Taylor expansion of $S(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ near $z=0$ (when $S(z)$ has algebraic or logarithmic terms: $a_{n} \sim n^{-k}$, for a suitable $k>0$).

Darboux's Method

$S(z):=$ leading singular term of $G(z)$ near $z=\mathbf{r}$:

$$
G(z)=S(z)+R(z) .
$$

Known: asymptotic Taylor expansion of $S(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ near $z=0$ (when $S(z)$ has algebraic or logarithmic terms: $a_{n} \sim n^{-k}$, for a suitable $k>0$).
Let us consider the following condition:

$$
\begin{equation*}
G(z)-S(z) \in \mathscr{C}^{k} \text { for all }|z|<\mathbf{r} . \tag{*}
\end{equation*}
$$

Darboux's Method

$S(z):=$ leading singular term of $G(z)$ near $z=\mathbf{r}$:

$$
G(z)=S(z)+R(z) .
$$

Known: asymptotic Taylor expansion of $S(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ near $z=0$ (when $S(z)$ has algebraic or logarithmic terms: $a_{n} \sim n^{-k}$, for a suitable $k>0$). Let us consider the following condition:

$$
\begin{equation*}
G(z)-S(z) \in \mathscr{C}^{k} \text { for all }|z|<\mathbf{r} . \tag{*}
\end{equation*}
$$

If $(*)$ is satisfied, applying the Riemann-Lebesgue Lemma it follows that the coefficients of $G(z)-S(z)$ are $\mathbf{o}\left(n^{-k}\right)=\mathbf{o}\left(a_{n}\right)$, implying $\mu^{(n)}(e) \sim a_{n}$.

Darboux's Method

$S(z):=$ leading singular term of $G(z)$ near $z=\mathbf{r}$:

$$
G(z)=S(z)+R(z) .
$$

Known: asymptotic Taylor expansion of $S(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ near $z=0$ (when $S(z)$ has algebraic or logarithmic terms: $a_{n} \sim n^{-k}$, for a suitable $k>0$). Let us consider the following condition:

$$
\begin{equation*}
G(z)-S(z) \in \mathscr{C}^{k} \text { for all }|z|<\mathbf{r} . \tag{*}
\end{equation*}
$$

If $(*)$ is satisfied, applying the Riemann-Lebesgue Lemma it follows that the coefficients of $G(z)-S(z)$ are $\mathbf{o}\left(n^{-k}\right)=\mathbf{o}\left(a_{n}\right)$, implying $\mu^{(n)}(e) \sim a_{n}$. If $(*)$ is not satisfied, we have to expand $G(z)$ further $(S(z)$ will contain "enough" terms), until it holds.

Full Classification of RWs on $\mathbb{Z}^{d_{1}} * \mathbb{Z}^{d_{2}}, \quad \mu=\alpha_{1} \mu_{1}+\alpha_{2} \mu_{2}$

Let us compute the singular term of the Green function for each factor $\mathbb{Z}^{d}, d \geq 1$:

$$
S_{d}(z) \sim \begin{cases}\left(\mathbf{r}_{d}-z\right)^{(d-2) / 2}, & \text { if } d \text { is odd, } \\ \left(\mathbf{r}_{d}-z\right)^{(d-2) / 2} \log \left(\mathbf{r}_{d}-z\right), & \text { if } d \text { is even, }\end{cases}
$$

Full Classification of RWs on $\mathbb{Z}^{d_{1}} * \mathbb{Z}^{d_{2}}, \quad \mu=\alpha_{1} \mu_{1}+\alpha_{2} \mu_{2}$

Let us compute the singular term of the Green function for each factor $\mathbb{Z}^{d}, d \geq 1$:

$$
S_{d}(z) \sim \begin{cases}\left(\mathbf{r}_{d}-z\right)^{(d-2) / 2}, & \text { if } d \text { is odd, } \\ \left(\mathbf{r}_{d}-z\right)^{(d-2) / 2} \log \left(\mathbf{r}_{d}-z\right), & \text { if } d \text { is even },\end{cases}
$$

There are three possible cases:
1st possibility: first singular term of $G(z)$ (defined on $\mathbb{Z}^{d_{1}} * \mathbb{Z}^{d_{2}}$) is proportional to

$$
\begin{equation*}
\sqrt{\mathbf{r}-z} \tag{1st}
\end{equation*}
$$

Full Classification of RWs on $\mathbb{Z}^{d_{1}} * \mathbb{Z}^{d_{2}}, \quad \mu=\alpha_{1} \mu_{1}+\alpha_{2} \mu_{2}$

Let us compute the singular term of the Green function for each factor $\mathbb{Z}^{d}, d \geq 1$:

$$
S_{d}(z) \sim \begin{cases}\left(\mathbf{r}_{d}-z\right)^{(d-2) / 2}, & \text { if } d \text { is odd, } \\ \left(\mathbf{r}_{d}-z\right)^{(d-2) / 2} \log \left(\mathbf{r}_{d}-z\right), & \text { if } d \text { is even, }\end{cases}
$$

There are three possible cases:
1st possibility: first singular term of $G(z)$ (defined on $\mathbb{Z}^{d_{1}} * \mathbb{Z}^{d_{2}}$) is proportional to

$$
\begin{equation*}
\sqrt{\mathbf{r}-z} \tag{1st}
\end{equation*}
$$

In this case:

$$
\mu^{(2 n)}(e) \sim C \cdot \mathbf{r}^{-2 n} \cdot n^{-3 / 2} \quad \text { independently of the weight } \alpha_{1} \text {. }
$$

Full Classification of RW s on $\mathbb{Z}^{d_{1}} * \mathbb{Z}^{d_{2}}, \quad \mu=\alpha_{1} \mu_{1}+\alpha_{2} \mu_{2}$

2nd possibility: first singular term of $G(z)$ is proportional to

$$
\begin{equation*}
(\mathbf{r}-z)^{\left(d_{1}-2\right) / 2} \log ^{\kappa}(\mathbf{r}-z) \quad\left[\text { leading singularity on } \mathbb{Z}^{d_{1}}\right] . \tag{2nd}
\end{equation*}
$$

$$
\text { (} \kappa=0 \text { for } d_{1} \quad \text { odd, or } \kappa=1 \text { for } d_{1} \quad \text { even.) }
$$

Full Classification of RWs on $\mathbb{Z}^{d_{1}} * \mathbb{Z}^{d_{2}}, \quad \mu=\alpha_{1} \mu_{1}+\alpha_{2} \mu_{2}$

2nd possibility: first singular term of $G(z)$ is proportional to

$$
\begin{equation*}
(\mathbf{r}-z)^{\left(d_{1}-2\right) / 2} \log ^{\kappa}(\mathbf{r}-z) \quad\left[\text { leading singularity on } \mathbb{Z}^{d_{1}}\right] . \tag{2nd}
\end{equation*}
$$

In this case:

$$
\mu^{(2 n)}(e) \sim C_{1} \cdot \mathbf{r}^{-2 n} \cdot n^{-d_{1} / 2}, \text { when } d_{1} \geq 5 \text { and } \alpha_{1}>\alpha_{c} .
$$

($\kappa=0$ for $d_{1} \quad$ odd, or $\kappa=1$ for $d_{1} \quad$ even.)

Full Classification of RW s on $\mathbb{Z}^{d_{1}} * \mathbb{Z}^{d_{2}}, \quad \mu=\alpha_{1} \mu_{1}+\alpha_{2} \mu_{2}$

2nd possibility: first singular term of $G(z)$ is proportional to

$$
\begin{equation*}
(\mathbf{r}-z)^{\left(d_{1}-2\right) / 2} \log ^{\kappa}(\mathbf{r}-z) \quad\left[\text { leading singularity on } \mathbb{Z}^{d_{1}}\right] . \tag{2nd}
\end{equation*}
$$

In this case:

$$
\mu^{(2 n)}(e) \sim C_{1} \cdot \mathbf{r}^{-2 n} \cdot n^{-d_{1} / 2}, \text { when } d_{1} \geq 5 \text { and } \alpha_{1}>\alpha_{c}
$$

3rd possibility: first singular term of $G(z)$ is proportional to

$$
\begin{equation*}
(\mathbf{r}-z)^{\left(d_{2}-2\right) / 2} \log ^{\kappa}(\mathbf{r}-z) \quad\left[\text { leading singularity on } \mathbb{Z}^{d_{2}}\right] . \tag{3rd}
\end{equation*}
$$

($\kappa=0$ for d_{1}, d_{2} odd, or $\kappa=1$ for d_{1}, d_{2} even.)

Full Classification of RWs on $\mathbb{Z}^{d_{1}} * \mathbb{Z}^{d_{2}}, \quad \mu=\alpha_{1} \mu_{1}+\alpha_{2} \mu_{2}$

2nd possibility: first singular term of $G(z)$ is proportional to

$$
\begin{equation*}
(\mathbf{r}-z)^{\left(d_{1}-2\right) / 2} \log ^{\kappa}(\mathbf{r}-z) \quad\left[\text { leading singularity on } \mathbb{Z}^{d_{1}}\right] . \tag{2nd}
\end{equation*}
$$

In this case:

$$
\mu^{(2 n)}(e) \sim C_{1} \cdot \mathbf{r}^{-2 n} \cdot n^{-d_{1} / 2}, \text { when } d_{1} \geq 5 \text { and } \alpha_{1}>\alpha_{c}
$$

3rd possibility: first singular term of $G(z)$ is proportional to

$$
\begin{equation*}
(\mathbf{r}-z)^{\left(d_{2}-2\right) / 2} \log ^{\kappa}(\mathbf{r}-z) \quad\left[\text { leading singularity on } \mathbb{Z}^{d_{2}}\right] . \tag{3rd}
\end{equation*}
$$

In this case:

$$
\mu^{(2 n)}(e) \sim C_{2} \cdot \mathbf{r}^{-2 n} \cdot n^{-d_{2} / 2}, \text { when } d_{2} \geq 5 \text { and } \alpha_{1}<\alpha_{c} .
$$

($\kappa=0$ for d_{1}, d_{2} odd, or $\kappa=1$ for d_{1}, d_{2} even.)

Complete Picture from the Point of View of α_{1}

Case (1st): suitable μ_{1} and μ_{2}

Complete Picture from the Point of View of α_{1}

Case (1st): suitable μ_{1} and μ_{2}

Cases (2nd) and (3rd): e.g. μ_{1} and μ_{2} Simple RWs

Here there is a value α_{c} which determines a phase transition.

Complete Picture from the Point of View of α_{1}

For some μ_{1} and μ_{2} it is possible to obtain all three behaviours, just depending on the value of the parameter α_{1}.

Keep μ_{1}, μ_{2} fixed, α_{1} varies: all possible behaviours

Complete Picture from the Point of View of α_{1}

For some μ_{1} and μ_{2} it is possible to obtain all three behaviours, just depending on the value of the parameter α_{1}.

Keep μ_{1}, μ_{2} fixed, α_{1} varies: all possible behaviours

Possible Combinations

It is possible to have one or two sub-intervals collapsing, depending on the properties of a Functional Equation concerning $G(z)$.

The Functional Equation

The trick to understand what happens, is to consider a functional equation (concerning $G(z)$), seen as a function of the paramenter α_{1}. It behaves approximately like a truncated parabola, in particular it can have 0,1 or 2 zeros, according to its characteristics.

The Functional Equation

The trick to understand what happens, is to consider a functional equation (concerning $G(z)$), seen as a function of the paramenter α_{1}. It behaves approximately like a truncated parabola, in particular it can have 0,1 or 2 zeros, according to its characteristics.

- For its positive values, the asymptotic behaviour obeys one of the $n^{-d_{i} / 2}$-laws $(i=1,2)$: which one? It depends on α_{1}.

The Functional Equation

The trick to understand what happens, is to consider a functional equation (concerning $G(z)$), seen as a function of the paramenter α_{1}. It behaves approximately like a truncated parabola, in particular it can have 0,1 or 2 zeros, according to its characteristics.

- For its positive values, the asymptotic behaviour obeys one of the $n^{-d_{i} / 2}$-laws $(i=1,2)$: which one? It depends on α_{1}.
- Otherwise, the asymptotic behaviour obeys the $n^{-3 / 2}$-law.

The Functional Equation

Figure: (1st) Case.

The Functional Equation

Figure: (2nd) Case, e.g if μ_{1} and μ_{2} are Simple RW.

The Functional Equation

Figure: General Case (2 phase transitions).

Asymptotics

What is the meaning of our result?

According to the properties of the functional equation and to the value of α_{1}, the RW on 「 inherits its (non-exponential) behaviour either from the RW defined on $\mathbb{Z}^{d_{1}}$ or from the $R W$ defined on $\mathbb{Z}^{d_{2}}$.

If those properties are not satisfied, we have the $n^{-3 / 2}$-behaviour.

More general Groups

$$
\text { On } \Gamma:=\Gamma_{1} * \Gamma_{2}
$$

Assume the $G_{i}(z)$ have algebraic or logarithmic singular expansion. Then up to 3 different asymptotic behaviours are possible for $\mu^{(n)}(e)$:

$$
C \cdot \mathbf{r}^{-n} n^{-3 / 2}, \quad C_{1} \cdot \mathbf{r}^{-n} n^{-\lambda_{1}} \log ^{\kappa_{1}} n, \quad C_{2} \cdot \mathbf{r}^{-n} n^{-\lambda_{2}} \log ^{\kappa_{2}} n .
$$

$\left(\lambda_{1}, \lambda_{2}>0, \kappa_{1}, \kappa_{2} \geq 0\right.$ are parameters related to the singular expansions of $G_{1}(z)$ and $G_{2}(z)$ respectively).

More general Groups

$$
\text { On } \Gamma:=\Gamma_{1} * \Gamma_{2}
$$

Assume the $G_{i}(z)$ have algebraic or logarithmic singular expansion. Then up to 3 different asymptotic behaviours are possible for $\mu^{(n)}(e)$:

$$
C \cdot \mathbf{r}^{-n} n^{-3 / 2}, \quad C_{1} \cdot \mathbf{r}^{-n} n^{-\lambda_{1}} \log ^{\kappa_{1}} n, \quad C_{2} \cdot \mathbf{r}^{-n} n^{-\lambda_{2}} \log ^{\kappa_{2}} n .
$$

$\left(\lambda_{1}, \lambda_{2}>0, \kappa_{1}, \kappa_{2} \geq 0\right.$ are parameters related to the singular expansions of $G_{1}(z)$ and $G_{2}(z)$ respectively).

Figure: General Case

Résumé

Theorem: General Result (C. and Gilch, '09)

Define $\Gamma:=\Gamma_{1} * \ldots * \Gamma_{m}$, by induction we find:
The asymptotic behaviour of a (transient) RW on a Free Product of m (finitely generated) Groups obeys one of the following laws:

$$
\mu^{(n)}(e) \sim\left\{\begin{array}{l}
C_{r^{-n}} \mathbf{r}^{-\lambda_{i}} \log ^{\kappa_{i}} n \\
C_{0} r^{-n} n^{-3 / 2}
\end{array} \quad \text { for one } i \in\{1, \ldots, m\}\right.
$$

According to the properties of the functional equation and to the values of the α_{i}, the RW on「 inherits its (non-exponential) behaviour from the RW defined on one of the Γ_{i}.

If those properties are not satisfied, we have the $n^{-3 / 2}$-behaviour.

Remarks

Idea of the used Method

- Define new functions $\xi_{i}(z)$ (where $\left.i=1, \ldots, m\right)$ s.t.

$$
\alpha_{i} z G(z)=\xi_{i}(z) G_{i}\left(\xi_{i}(z)\right) .
$$

- Find the singular expansion for $\xi_{i}(z)$ near $z=\mathbf{r}$: either it has the same form of the expansion of one of the $G_{j}\left(z^{\prime}\right)$ near $z^{\prime}=\mathbf{r}_{j}$, or it has a square root singular term.
- Find the singular expansion of $G(z)$ near $z=\mathbf{r}$: the same as $\xi_{i}(z)$.
- Apply method of Darboux.

Future Development and Open Questions

The idea is to develop this topic further, extending it to the study of -transient- Branching Random Walks (BRWs) on Free Products.

Future Development and Open Questions

The idea is to develop this topic further, extending it to the study of -transient- Branching Random Walks (BRWs) on Free Products. Helpful literature: Hueter and Lalley (see [HLO0]) study the asymptotic behaviour of BRWs on homogeneous trees.

Future Development and Open Questions

The idea is to develop this topic further, extending it to the study of -transient- Branching Random Walks (BRWs) on Free Products. Helpful literature: Hueter and Lalley (see [HLOO]) study the asymptotic behaviour of BRWs on homogeneous trees.
Remark: free products of groups are tree-like structures \Rightarrow using this property, we get a first generalization of the results in [HLOO] to free products of finite groups.

Future Development and Open Questions

Open Problems

Let us consider just the case $\Gamma:=\Gamma_{1} * \Gamma_{2}$:

Future Development and Open Questions

Open Problems

Let us consider just the case $\Gamma:=\Gamma_{1} * \Gamma_{2}$:
1st Open Problem: if at least one of the free factors is infinite, the previous reasoning fails: we have troubles in finding a suitable metric on Γ, in order to "measure" its limit set (boundary).

Future Development and Open Questions

Open Problems

Let us consider just the case $\Gamma:=\Gamma_{1} * \Gamma_{2}$:
1st Open Problem: if at least one of the free factors is infinite, the previous reasoning fails: we have troubles in finding a suitable metric on Γ, in order to "measure" its limit set (boundary).
2nd Open Problem: to compute "how big" the limit set of the BRW is, in relation to the boundary of Γ.

Future Development and Open Questions

Open Problems

Let us consider just the case $\Gamma:=\Gamma_{1} * \Gamma_{2}$:
1st Open Problem: if at least one of the free factors is infinite, the previous reasoning fails: we have troubles in finding a suitable metric on Γ, in order to "measure" its limit set (boundary).
2nd Open Problem: to compute "how big" the limit set of the BRW is, in relation to the boundary of Γ.
3rd Open Problem: are there any Phase Transitions (with respect to α_{1}) for the dimension of this limit set?

Thank you for your Attention!

Bibliography I

Donald I. Cartwright, Some examples of random walks on free products of discrete groups, Ann. Mat. Pura Appl. (4) 151 (1988), 1-15. MR MR964500 (90f:60018)
\qquad , On the asymptotic behaviour of convolution powers of probabilities on discrete groups, Monatsh. Math. 107 (1989), no. 4, 287-290. MR MR1012460 (91a:60024)

围 Donald I. Cartwright and P. M. Soardi, Random walks on free products, quotients and amalgams, Nagoya Math. J. 102 (1986), 163-180. MR MR846137 (88i:60120a)

R Philippe Flajolet and Robert Sedgewick, Analytic combinatorics, Cambridge University Press, Cambridge, 2009. MR MR2483235

Bibliography II

Peter Gerl, A local central limit theorem on some groups, The First Pannonian Symposium on Mathematical Statistics (Bad Tatzmannsdorf, 1979), Lecture Notes in Statist., vol. 8, Springer, New York, 1981, pp. 73-82. MR MR621143 (82h:60022)
R Irene Hueter and Steven P. Lalley, Anisotropic branching random walks on homogeneous trees, Probab. Theory Related Fields 116 (2000), no. 1, 57-88. MR MR1736590 (2001f:60094)

Wolfgang Woess, Nearest neighbour random walks on free products of discrete groups, Boll. Un. Mat. Ital. B (6) 5 (1986), no. 3, 961-982. MR MR871708 (88i:60120b)
\qquad Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics, vol. 138, Cambridge University Press, Cambridge, 2000. MR MR1743100 (2001k:60006)

