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Balance equations in heterogeneous media

I Balance equations (PDEs) in heterogeneous media
I x-dependent microstructures

I t-dependent microstructures (evolving free boundaries)
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Outline of the Talk

Microstructure models of heterogeneous media
Bridging length scales

Two-scale RD systems
Distributed microstructures
“Structured physics”: Mass-transfer at air-liquid interfaces
Generic model: micro – macro

Analysis of the generic model
Weak formulation. Basic estimates
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Length scales in heterogeneous media

Adrian Muntean CASA, TU Eindhoven (The Netherlands)

Nonlinear micro-macro transmission conditions



Microstructure models of heterogeneous media Two-scale RD systems Analysis of the generic model Estimates for the fast-reaction asymptotics Numerical illustration

Bridging length scales

I Averaging techniques (periodic homogenization, ...)

I PDE models with distributed microstructure

1. two-scale models – A. Friedman, A. Tzavaras, P. Knabner
2. distributed-microstructure models – R. E. Showalter and co-workers

(Walkington, Cook, Clark, Visarraga, ...) + M. Böhm, S. Meier
3. dual- or double-porosity models – U. Hornung, W. Jäger, T. Arbogast, ...
4. two-scale models with freely evolving micro-interfaces – C. Eck., H.

Emmerich, P. Knabner, A. Muntean (2 scale phase-field models), S. Meier,
A. Muntean (2 scale fast-reaction asymptotics)

Adrian Muntean CASA, TU Eindhoven (The Netherlands)

Nonlinear micro-macro transmission conditions



Microstructure models of heterogeneous media Two-scale RD systems Analysis of the generic model Estimates for the fast-reaction asymptotics Numerical illustration

Double-porosity structure of materials

Barenblatt, Zheltov, Kochina, PMM, 24(1960), 5, pp. 852–864
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“Structured physics”: Mass-transfer at air-liquid interfaces

I Species A(g) penetrates Ω and
dissolves in pore water as A(aq)

I A(aq) + B(aq) →
precipitate + water

I
DA(g)

DA(aq)
= O(ε2)
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A concrete example

Sewer pipes corrosion (micro – macro)
I H2S(g) penetrates Ω and dissolves in pore water as H2S(aq)

I H2SO4 + CaCO3(aq) → gypsum + water

I
DH2S(g)

DH2S(aq)
= O(ε2)

(jointly with Tasnim Fatima (Eindhoven))

I How important is the precise shape of the microstructure?
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Generic model (GM): micro – macro

θ∂tU(t , x)− D∆U(t , x) = −
Z

ΓR

b(U(t , x)− u(t , x , y))dλ2
y in S × Ω,

∂tu(t , x , y)− d1∆y u(t , x , y) = −kη(u(t , x , y), v(t , x , y)) in S × Ω× Y ,

∂tv(t , x , y)− d2∆y v(t , x , y) = −αkη(u(t , x , y), v(t , x , y)) in S × Ω× Y ,

U(t , x) = Uext(t , x) on S × ∂Ω,

∇y u(t , x , y) · ny = 0 on S × Ω× ΓN ,

∇y v(t , x , y) · ny = 0 on S × Ω× Γ.

−∇y u(t , x , y) · ny = −b(U(t , x)− u(t , x , y)) on S × Ω× ΓR .

+ i.c.

Adrian Muntean CASA, TU Eindhoven (The Netherlands)

Nonlinear micro-macro transmission conditions



Microstructure models of heterogeneous media Two-scale RD systems Analysis of the generic model Estimates for the fast-reaction asymptotics Numerical illustration

Geometry of the microstructure Y
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The GM model has 3 main qualities:

1. minimal: We need 3 PDEs to model air-liquid transfer and fast reaction in
the liquid phase

2. robust: Well-posedness is guaranteed

3. general: Many situations incorporating both structured transport and
chemical reactions are captured by GM

Difficulties?
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History-dependent processes!
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Assumptions on data and parameters

(A1) D > 0, d1 > 0, d2 > 0.

(A2) b : R → R+ is globally Lipschitz s. t. it exists a constant ĉ > 0 satisfying
b(z) ≤ ĉz if z > 0 and b(z) = 0 if z ≤ 0.

(A3) η : R× R → R+ by η(r , s) := R(r)Q(s), where R,Q ∈ C1(R,R+).
Assume R(r) > 0 if r > 0 and R(r) = 0 if r ≤ 0, and similarly, Q(s) > 0
if s > 0 and Q(s) = 0 if s ≤ 0.
k , α ∈ R, k > 0, and α > 0.

(A4) Uext ∈ H2(S × Ω) ∩ L∞+ (S × Ω), UI − Uext(0, ·) ∈ H1
0 (Ω) ∩ L∞+ (Ω),

uI , vI ∈ H1(Ω; H1(Y )) ∩ L∞+ (Ω× Y ).
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Find (U, u, v) with

U − Uext ∈ L2(S,H1
0 (Ω)), (u, v) ∈ L2(S, L2(Ω,H1(Y )))2

such that

d
dt

Z
Ω

θUϕ +

Z
Ω

θD∇U∇ϕ+

Z
Ω

Z
ΓR

b(U − u)ϕdλ2
y dx = 0

d
dt

Z
Ω×Y

uφ +

Z
Ω×Y

d1∇y u∇yφ

−
Z

Ω

Z
ΓR

b(U − u)φdλ2
y dx + k

Z
Ω×Y

ηφ = 0

d
dt

Z
Ω×Y

vψ +

Z
Ω×Y

d2∇y v∇yψ + αk
Z

Ω×Y
ηψ = 0,

for all (ϕ, φ, ψ) ∈ H1
0 (Ω)× L2(Ω; H1(Y ))2, and

U(0) = UI in Ω, u(0) = uI , v(0) = vI in Ω× Y .
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Basic estimates (1): Positivity of concentrations

Estimate the boundary term:Z
Ω

Z
ΓR

b(U − u)(U− − u−)dλ2
y dx ≤

Z
Ω

Z
ΓR

b(U − u)U−dλ2
y dx

≤ ĉ
Z

Ω

Z
ΓR

H(U − u)(U − u)U−dλ2
y dx

≤ ĉ
Z

Ω

Z
ΓR

H(U − u)[UU− − u+U+ + u−U−]dλ2
y dx

≤ ĉλ2
y (ΓR)

Z
Ω

|U−|2 + ĉ
Z

Ω

Z
ΓR

u−U−dλ2
y dx

≤ ĉλ2
y (ΓR)

Z
Ω

|U−|2 +

 
ĉλ2

y (ΓR)
√
ε

!2 Z
Ω

|U−|2 + ε

Z
Ω

Z
ΓR

|u−|2dλ2
y dx

≤ ĉλ2
y (ΓR)(1 +

ĉλ2
y (ΓR)

ε
)||U−||2L2(Ω) + ε

Z
Ω

Z
Y
||u−||2H1(Y ).
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Basic estimates (2): L∞-bounds on concentrations
Estimate the boundary term: Set

M1 := max{||Uext ||L∞(S×Ω), ||UI ||L∞(Ω)},
M2 := max{||uI ||L∞(Ω×Y ),M1},
M3 := ||vI ||L∞(Ω×Y ).

Z
Ω

Z
ΓR

b(U − u)(u −M2)
+dλ2

y dx ≤ ĉ
Z

Ω

Z
ΓR

H(U − u)(U − u)(u −M2)
+dλ2

y dx

≤ ĉ
Z

Ω

Z
ΓR

H(U − u)(U −M1)(u −M2)
+dλ2

y dx − ĉ
Z

Ω

Z
ΓR

H(U − u)|(u −M2)
+|2dλ2

y dx

≤ ĉ
Z

Ω

Z
ΓR

H(U − u)(U −M1)
+(u −M2)

+dλ2
y dx − ĉ

Z
Ω

Z
ΓR

H(U − u)|(u −M2)
+|2dλ2

y dx

≤
ĉ
2

Z
Ω

Z
ΓR

H(U − u)|(U −M1)
+|2dλ2

y dx −
ĉ
2

Z
Ω

Z
ΓR

H(U − u)|(u −M2)
+|2dλ2

y dx

≤
ĉ
2
λ2

y (ΓR)||U −M1)
+||2L2(Ω)

.

Uniqueness follows easily ( via interpolation-trace inequality)
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Two-scale Galerkin approximation
Let {ξi}i∈N be a basis of L2(Ω), with ξj ∈ H1

0 (Ω), o.n.s. w.r.t. L2(Ω)-norm. Let
{ζjk}j,k∈N be a basis of L2(Ω× Y ), with

ζjk (x , y) = ξj (x)ηk (y),

where {ηk}k∈N is a basis of L2(Y ), with ηk ∈ H1(Y ), forming an o.n.s. w.r.t.
L2(Y )-norm.
Define the projection operators on finite dimensional subspaces PN

x ,PN
y associated to

the bases {ξj}j∈N, and {ηk , }k∈N. For (ϕ,ψ) of the form

ϕ(x) =
X
j∈N

ajξj (x), ψ(x , y) =
X

j,k∈N
bjkξj (x)ηk (y),

we define

(PN
x ϕ)(x) =

NX
j=1

ajξj (x),

(PN
x ψ)(x , y) =

NX
j=1

X
k∈N

bjk σj (x)ηk (y)

(PN
y ψ)(x , y) =

X
j∈N

NX
k=1

bjk σj (x)ηk (y).
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I {σj}j∈N, and {ηk}k∈N are chosen s.t. PN
x ,PN

y are stable w.r.t. L∞-norm
and H2-norm;

I The Galerkin system has a unique global solution (αN , βN , γN) in
C1([0,T ])N × C1([0,T ])N2

× C1([0,T ])N2
.
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Uniform (in N) estimates
Theorem: Assume that the projection operators PN

x ,PN
y are stable w.r.t.

L∞-norm and H2-norm, and that (A1)–(A4) are satisfied. Then the following
statements hold:

(i) The finite-dimensional approximations UN
0 (t), uN(t), and vN(t) are

positive and uniformly bounded. More precisely, we have for a.e.
(x , y) ∈ Ω× Y , all t ∈ S, and all N ∈ N

0 ≤ UN
0 (t , x) ≤ m1, 0 ≤ uN(t , x , y) ≤ m2, 0 ≤ vN(t , x , y) ≤ m3,

where

m1 := 2||Uext ||L∞(S×Ω) + ||UI ||L∞(Ω),

m2 := max{||uI ||L∞(Ω×Y ),m1},
m3 := ||vI ||L∞(Ω×Y ).

(ii) There exists a constant c > 0, independent of N, such that

||UN
0 ||L∞(S,H1(Ω)) + ||∂tUN

0 ||L2(S,L2(Ω)) ≤ c,

||uN ||L∞(S,L2(Ω;H1(Y ))) + ||∂tuN ||L2(S,L2(Ω;L2(Y ))) ≤ c,

||vN ||L∞(S,L2(Ω;H1(Y ))) + ||∂tvN ||L2(S,L2(Ω;L2(Y ))) ≤ c.
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Assume (A1)–(A4) to be satisfied. Then there exists a constant c > 0,
independent of N, such that the following estimates hold

||∇x uN ||L∞(S,L2(Ω×Y ) + ||∇x vN ||L∞(S,L2(Ω×Y ) ≤ c

||∇y∇x uN ||L2(S,L2(Ω×Y ) + ||∇y∇x vN ||L2(S,L2(Ω×Y ) ≤ c.

Adrian Muntean CASA, TU Eindhoven (The Netherlands)
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Theorem:

There exists a subsequence, again denoted by (UN
0 , u

N , vN), and a limit
(U0, u, v) ∈ L2(S; H1(Ω))×

ˆ
L2(S; L2(Ω; H1(Y )))

˜2
, with

(∂tUN
0 , ∂tuN , ∂tvN) ∈ L2(S × Ω)×

ˆ
L2(S × Ω× Y )

˜2
, such that

(i) (UN
0 , u

N , vN) → (U0, u, v) weakly in L2(S; H1(Ω))×
h
L2(S; L2(Ω; H1(Y )))

i2

(ii) (∂tUN
0 , ∂tuN , ∂tvN) → (∂tU0, ∂tu, ∂tv) weakly in L2

(iii) (UN
0 , u

N , vN) → (U0, u, v) strongly in L2

(iv) uN |ΓR → u|ΓR strongly in L2(S × Ω, L2(ΓR))

Adrian Muntean CASA, TU Eindhoven (The Netherlands)
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Proof of the convergence theorem (sketch)

(i), (ii) result from the energy estimates.
Since

||UN
0 ||L2(S,H1(Ω)) + ||∂tUN

0 ||L2(S,L2(Ω)) ≤ c,

Lions-Aubin’s compactness theorem implies that there exists a subset (again
denoted by UN

0 ) such that

UN
0 −→ U0 strongly in L2(S × Ω).

To get the strong convergences for the cell solutions uN , vN , we need the
higher regularity with respect to the variable x , i.e.

||uN ||H1(Ω,H1(Y )) + ||vN ||H1(Ω,H1(Y )) ≤ c.

Moreover, we have that

||∂tuN ||L2(S×Ω×Y ) + ||∂tvN ||L2(S×Ω×Y ) ≤ c.

Adrian Muntean CASA, TU Eindhoven (The Netherlands)
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Since the embedding

H1(Ω,H1(Y )) ↪→ L2(Ω,Hβ(Y ))

is compact for all 1
2 < β < 1, it follows again from Lions-Aubin’s compactness

theorem that there exist subsequences (again denoted uN , vN ), such that

(uN , vN) −→ (u, v) strongly in L2(S × L2(Ω,Hβ(Y )),

for all 1
2 < β < 1. This together with the continuity of the trace operator

Hβ(Y ) ↪→ L2(ΓR), for
1
2
< β < 1

yield the desired convergences.
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Key idea for the fast-reaction asymptotics

Get k -independent estimates!

I L∞-bounds on all concentrations
I energy estimates
I ||η(u, v)||L1(S×Ω×Y ) = O

` 1
k

´
I extra two-scale regularity + assumed regularity for the micro free

boundary
I ...
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Concentration profiles in the fast-reaction limit

Solution profiles of the two-scale model at different times (k = 103). Left columns:
Profiles of U. Central and right column: Local cell profiles of u and v at x = 0.1 and

x = 0.5.
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Concentration profiles in the fast-reaction limit

Solution profiles of the two-scale model at different times (k = 104). Left columns:
Profiles of U. Central and right column: Local cell profiles of u and v at x = 0.1 and

x = 0.5.
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Open issues

1. Remove the sign condition on the transfer function b(·)
2. Any connection between the asymptotics k →∞ and t →∞?

3. x-dependent microstructures ...
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