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• The incidence matrix of a directed graph defines a Dirac

structure, called the vertex-edge Dirac structure, which is

used for defining port-Hamiltonian dynamics.

• Standard consensus algorithms are of this form, with

energy-storage corresponding to the vertices and

energy-dissipation corresponding to the edges.

• Coordination control is of this type, with energy storage

both at the vertices and on the edges.

• By Kirchhoff’s current laws another Dirac structure can be

derived, called the Kirchhoff-Dirac structure. E.g.

RLC-circuits are port-Hamiltonian with respect to the

Kirchhoff-Dirac structure.

• Chemical reaction networks: from graphs to stochiometry.
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General context and aim: providing a modular framework for

analyzing and synthesizing large-scale systems:

• Component systems need to be interconnectable; need for

interconnection variables and a clear ’interface’.

• Components can be re-used.

• Components can be independently refined and

reduced/approximated.

• Dynamical properties to be inferred from dynamics of the

components and the interconnection structure.

• Towards a synthesis theory of large-scale systems.



Hamiltonian dynamics on graphs, NDNS+ Workshop, April 13-16, 2010 4

Preliminaries on graphs:

A directed graph, G is defined by a finite set V of vertices and a

finite set E of directed edges, together with a mapping from E to

the set of ordered pairs of V ., where no self-loops are allowed.

Thus to any edge e ∈ E there corresponds an ordered pair

(v, w) ∈ V2, with v 6= w, representing the initial vertex v and the final

vertex w of this edge.

A directed graph, graph for short, is specified by its incidence

matrix B, which is an v̄ × ē matrix, v̄ being the number of vertices

and ē being the number of edges, with (i, j)-th element bij equal to

1 if the j-th edge is an edge towards vertex i, equal to −1 if the

j-th edge is an edge originating from vertex i, and 0 otherwise.
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Given a graph G we define its vertex space Λ0 as the vector space

of functions from V to R, that is, R
v̄.

The edge space Λ1 is the vector space of all functions from E to

R, that is R
ē.

In the context of an electrical circuit graph Λ1 is the vector space

of currents through the edges in the circuit. The dual space of Λ1

is denoted by Λ1, and defines the vector space of voltages across

the edges.

The duality product < V |I >= V T I of a vector of currents I ∈ Λ1

with a vector of voltages V ∈ Λ1 is the total power over the circuit.

The dual space of Λ0 is denoted by Λ0 and defines the vector space

of potentials at the vertices.

This can be extended by defining Λ0,Λ1, etc. as the vector space of

functions from the vertices, resp. edges, to R
3.
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The incidence matrix B can be regarded as the matrix

representation of a linear map (denoted by the same symbol)

B : Λ1 → Λ0

called the incidence operator. Its adjoint map is denoted in

matrix representation as

BT : Λ0 → Λ1,

and is called the co-incidence operator.

If we define Λ0 and Λ1 in the previous extended sense, then the

incidence operator is given as

B ⊗ I3
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A modular view on graphs

An open graph G is obtained from an ordinary graph by identifying

a subset Vb ⊂ V of boundary vertices.

Vb are the vertices that are open to interconnection (i.e., with

other open graphs). The remaining subset Vi := V − Vb are the

internal vertices.

Write correspondingly

Λ0 = Λi ⊕ Λb

Λ0 = Λi ⊕ Λb
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A subspace D ⊂ V × V∗ is a (constant) Dirac structure if

D = D⊥⊥

where ⊥⊥ denotes the orthogonal complement with respect to the

indefinite inner product � ·, · � on V × V∗ defined as

� (v1, v
∗
1), (v2, v

∗
2)�:=< v∗1 | v2 > + < v∗2 | v1 >,

with v1, v2 ∈ V , v
∗
1 , v

∗
2 ∈ V

∗, where < · | · > denotes the duality

product between V and V∗.

Example 1 The graph of a skew-symmetric map from V to V∗, or

from V∗ to V is Dirac structure.

For any subspace W ⊂ V the space W ×W◦ is a Dirac structure.
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In the finite-dimensional case an equivalent characterization of

Dirac structures is given as follows:

Proposition 2 A subspace

D ⊂ V × V∗

is a Dirac structure if and only if the following two conditions are

satisfied:

(i) < v∗ | v >= 0, for all (v, v∗) ∈ D

(ii) dimD = dimV
(1)

Given a Dirac structure we can define port-Hamiltonian systems.
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Geometric definition of a port-Hamiltonian system

H(x) D
fS

eS

fP

eP

fR eR

The Hamiltonian H : X → R corresponds to energy-storage:

fS = −ẋ, eS =
∂H

∂x
(x)

Furthermore, the resistive port is terminated by

R(fR, eR) = 0, eT
RfR ≤ 0
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The vertex-edge Dirac structure on an open graph

Partition the incidence matrix B of an open graph as B =





Bi

Bb



.

This defines the following Dirac structure, called the vertex-edge

Dirac structure

Dve(G) := {(f, e, fi, ei, fb, eb) ∈ Λ1 × Λ1 × Λi × Λi × Λb × Λb |

Bif = −fi, Bbf = −fb, e = BT
i ei +BT

b eb}

This follows from

Proposition 3 Let A : V → W be a linear map between the linear

spaces V and W, with adjoint mapping A∗ :W∗ → V∗. Then

D := {(v, w, v∗, w∗) ∈ V ×W × V∗ ×W∗ | w = Av, v∗ = −A∗w∗}

is a Dirac structure.
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Consensus algorithms as port-Hamiltonian systems

Assume the interaction topology of a network of agents is an

undirected graph with set of edges E(G) (symmetric interaction).

The boundary vertices correspond to leader agents and the internal

vertices to follower agents. Associate to each agent v a variable

xv ∈ R (or a vector xv ∈ R
3). A standard consensus algorithm is

ẋv(t) = −
∑

(v,w)∈E(G)

g(v,w)(xv(t)− xw(t))

for all internal vertices v, where g(v,w) > 0 is a weight. Collecting

all follower variables xv into one vector x, and all leader variables xv

into u, endowing the graph with an arbitrary orientation, this is

written

ẋ = −BiGB
T
i x−BiGB

T
b u

with B the incidence matrix, and G diagonal matrix with elements

ge > 0.
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Hence in the absence of leader agents the consensus algorithm is

ẋ = −BGBTx

For any incidence matrix B the matrix BBT is known as the graph

Laplacian matrix of the graph, and the matrix L = BGBT is called

a weighted Laplacian matrix.

The graph Laplacian has many useful properties, characterizing,

among others, the ’connectivity’ of the graph.

Any symmetric positive semi-definite matrix L with diagonal

elements ≥ 0, off-diagonal elements ≤ 0, and with zero row and

column sums, can be written as a weighted Laplacian matrix

L = BGBT of a certain graph, and conversely.
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The consensus algorithm defines a port-Hamiltonian system with

respect to the vertex-edge Dirac structure.

Indeed, the Hamiltonian function is simply given by

H(x) =
1

2
‖ x ‖2

leading to the energy storage equations

ẋ = −fi, ei =
∂H

∂x
(x) = x

Furthermore, the variables f, e correspond to the constitutive

relations for energy dissipation

f = −Ge
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The port-Hamiltonian system is explicitly given as

ẋ = −BiGB
T
i

∂H
∂x

(x)−BiGB
T
b u

y = BbGB
T
i

∂H
∂x

(x) +BbGB
T
b u

with u ∈ Λb, y = fb ∈ Λb, and ∂H
∂x

(x) = x.

We immediately obtain the energy balance

d

dt
H = −

[

xT uT

]

BGBT





x

u



 + yTu

The consensus dynamics can be considered as the dynamics of unit

masses (corresponding to each internal vertex), with linear

dampers associated to the edges, and externally prescribed

boundary velocities u = eb corresponding to the boundary vertices,

and outputs y = fb being the boundary forces.
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For a connected graph there exists for each vector ū a unique

equilibrium vector x̄ such that

0 = −BiGB
T
i x̄−BiGB

T
b ū

The function f : V → R defined as f(v) = x̄v for each internal vertex

v and f(vb) = ūb for each boundary vertex vb is called a harmonic

function.
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We obtain the following shifted energy balance property. Define

the shifted Hamiltonian as

V (x) := H(x)− (x− x̄)T ∂H

∂x
(x̄)−H(x̄) =

1

2
(x− x̄)T (x− x̄)

Then

d

dt
V (x) = −

[

(x− x̄)T (u− ū)T

]

BGBT





x− x̄

u− ū



 + (y − ȳ)T (u− ū)

where ȳ = BbGB
T
i x̄+BbGB

T
b ū is the output equilibrium value.

This shows (by LaSalle’s Invariance principle) that for u = ū the

system converges to the maximal invariant set contained in

{x | (x− x̄)TBiGB
T
i (x− x̄) = 0}

which (for a connected graph) is equal to the single point x̄.

(Since for a connected graph kerBGBT = span � .)
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Coordination control as a port-Hamiltonian system

Consider an open graph where each internal vertex corresponds to

a port-Hamiltonin system. Coordination is achieved by designing a

port-Hamiltonian dynamics associated to each edge.

Simplest case:

Let the dynamics associated to each internal vertex v be given by

the integrator system

ṗv = uv

yv = ∂Hv

∂pv

(pv)

These are coupled to the vertex-edge Dirac structure Dve by setting

(u1, . . . , uv̄) = −fi

(y1, . . . , yv̄) = ei
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Design the port-Hamiltonian dynamics associated to each edge e as

q̇e = we

ze = ∂He

∂qe

(qe)

These are coupled to the vertex-edge Dirac structure Dve by setting

(w1, . . . , wē) = e

(z1, . . . , zē) = −f

The resulting system is given as the port-Hamiltonian system

q̇ = BT
i

∂H
∂p

(q, p) +BT
b eb

ṗ = −Bi
∂H
∂q

(q, p)

fb = BT
b

∂H
∂q

(q, p)

where q = (q1, . . . , qv̄) and p = (p1, . . . , pē), and H(q, p) denotes the

total Hamiltonian.



Hamiltonian dynamics on graphs, NDNS+ Workshop, April 13-16, 2010 20

In a typical formation control context, pv is a momentum variable,

and qe is a configuration variable. Furthermore, eb is an external

(reference) velocity vector, and fb the corresponding generalized

force vector.

Thus the total system is a ’mass-spring system’ with masses

corresponding to the vertices and springs corresponding to the

edges.

Asymptotic stability to the minimum of H will result if ’sufficient’

damping is present either in the vertex or in the edge dynamics.

For example, if the vertex dynamics is

ṗv = −Kvpv + uv, Kv > 0

Set-up can be easily extended by associating general

port-Hamiltonian dynamics to each edge and each vertex.
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Multi-machine power systems

δ̇v = ξv + ωs

˙Mvξv = −Kv(Mvξv)−
∑

w 6=v EvEwBvw[sin(δv − δw)− sin(θ∗vw)]

where δv is the angle of the rotor shaft, ωs is the synchronous

speed for the network, ξv is the deviation from this synchronous

speed, and θ∗vw is the equilibrium value for δv − δw.

In this case

Hv(pv) =
1

2Mv

p2
v

He(qe) = EiEjBij [− sin(qe) + cos(q∗e )− sin(θ∗vw)(qe − θ
∗
vw)]
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Kirchhoff-Dirac structure

Graphs and Kirchhoff’s lawsa

Figure 1: Kirchhoff

aG. Kirchhoff, Über die Auflösung der Gleichungen, auf welche man bei der Un-

tersuchung der Linearen Verteilung galvanische Ströme geführt wird, Ann. Phys.

Chem. 72, pp. 497–508, 1847.
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Consider the vertex-edge Dirac structure

Dve(G) := {(f, e, fi, ei, fb, eb) ∈ Λ1 × Λ1 × Λi × Λi × Λb × Λb |

Bif = −fi, Bbf = −fb, e = BT
i ei +BT

b eb}

and compose this Dirac structure with the trivial Dirac structure

{(fi, ei) | fi = 0}

This yields the Kirchhoff-Dirac structure

DK(G) := {(f, e, fb, eb) ∈ Λ1 × Λ1 × Λb × Λb |

Bif = 0, ∃ei s.t. Bbf = −fb, e = BT
i ei +BT

b eb}

This is the Dirac structure underlying the modeling of e.g.

RLC-circuits. The constraints 0 = −fi = Bif are Kirchhoff’s

current laws at the internal vertices. In this case,

energy-dissipation and energy-storage are both associated to the

edges.
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Special case

The behavior of a purely resistive circuit at its terminals can be

characterized by a linear input-output map

Ib = Lbψb

where ψb are the potentials at the boundary vertices, and the

matrix Lb has the properties of a weighted Laplacian matrix, that is

a symmetric positive semi-definite matrix with diagonal

elements ≥ 0, off-diagonal elements ≤ 0, and with zero row

and column sums

Open question: how to characterize the terminal behavior of

RLC-circuits ?
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Chemical reaction networks

Chemical reactions satisfy the balance laws

ẋ = Sv

where

x = (x1, x2, · · · , xn)T

denotes the vector of concentrations (or mole numbers) of n

chemical species, and

v = (v1, v2, · · · , vm)T

denotes the vector of fluxes corresponding to m chemical reactions

among these species.

The n×m matrix S is called the stochiometric matrix.
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Example 4 For example, the single chemical reaction

A+ 2B → C

will have the stochiometric matrix (vector)

S =









−1

−2

1









A typical size of S of metabolic network of a cell is 540× 609: large

and with more reactions than species.

Furthermore, metabolic reaction networks involve boundary

(exchange) fluxes vb. This leads to a splitting of the stochiometric

matrix as
[

S Sb

]

comparable to the splitting of the incidence matrix of a graph.
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How to express v as a function of x ?

Basic option is mass action kinetics.

The reversible reaction

A+B ↔ C

is a combination of the forward reaction

A+B → C

with rate equation rf = kfab, and the reverse reaction

A+B ← C

with rate equation rr = krc.
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The net rate is thus the mass-action kinetics

v = rf − rr = kfab− krc

More generally, the reversible reaction

mA+ nB ↔ pC + qD

has net reaction rate

v = kfa
mbn − krc

pdq
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A thermodynamical and port-Hamiltonian perspective

Consider the ’chemical reaction part’ of Gibbs law

dG = Σµi(n)dni

with G the Gibbs free energy.

We would like to express the change in mole numbers ṅ as a

function of µ(n) .

Or better, we want to express the flux variables v as functions of

the vector of so-called chemical affinities

A = STµ

(Note that µ(n)T ṅ = AT v.) This will define the dynamics on R
m,

the space of reaction extents.

In general (far from thermodynamical equilibrium) this is not

possible.
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In case of e.g. mass action kinetics (and other cases) we can

however do the following (see the work of Oster, Perelson and

Katchalsky).

Write the stochiometric matrix S as S = Sr − Sf , where

Sf stochiometric matrix corresponding to reactants

Sr stochiometric matrix corresponding to products

Define the forward and reverse chemical affinities




Af

Ar



 =





ST
f

ST
r



µ =
[

Sf Sr

]T

µ

while we rewrite the mass balance equations as

ẋ =
[

Sf Sr

]





vf

vr



 ,





vf

vr



 =





−I

I



 v
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The dual relation is

A =
[

−I I

]





Af

Ar



 = −Af +Ar = STµ

Now the net rate equation is of the form

v = rf (Af )− rr(Ar)

This leads to a port-Hamiltonian dynamics

ṅ = S[rf (Af )− rr(Ar)] + Sbvb

Ab = ST
b

∂G
∂n
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Conclusions

• On any directed (open) graph there is a canonical Dirac

structure: the vertex-edge Dirac structure.

• Underlying consensus algorithms and coordination control

strategies.

• Provides a ’physical’ interpretation, and allows to unify results

and employ techniques from Hamiltonian dynamics.

• Adding Kirchhoff’s current laws at the internal vertices leads

to the Kirchhoff-Dirac structure: merging graph theory with

physical network dynamics.

• From the incidence matrix B to the stochiometric matrix S.
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Port-Hamiltonian systems arsing from port-based network

modeling

Port-based network modeling leads to a representation of a

physical system as a graph, where each edge is decorated with a

(vector) pair of flow variables f ∈ R
m, and effort variables

e ∈ R
m, i.e., a bond graph

H1 fH1

eH1

0

R1

1

IC : f = 0

T H2

H3 0
fR2

eR2

R2

Figure 2: Port-based network modeling
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and each vertex corresponds to one of the following ideal elements:

• Energy-storing elements H:

ẋ = −fH

eH = ∂H
∂x

(x), H(x1, · · · , xm) ∈ R energy

• Power-dissipating elements R:

R(fR, eR) = 0, eT
RfR ≤ 0

• Power-conserving elements: transformers T, gyrators GY, ideal

constraints IC.

• 0- and 1-junctions:

e1 = e2 = · · · = ek, f1 + f2 + · · ·+ fk = 0

f1 = f2 = · · · = fk, e1 + e2 + · · ·+ ek = 0



Hamiltonian dynamics on graphs, NDNS+ Workshop, April 13-16, 2010 35

• 0- and 1-junctions are the basic conservation laws of the

system, and are also power-conserving:

e1f1 + e2f2 + · · ·+ ekfk = 0

• Transformers, gyrators are energy-routing devices, and may

correspond to exchange between different types of energy.

All power-conserving elements have the following properties in

common. They are described by linear equations:

Ff +Ee = 0, f, e ∈ R
l

whose solutions f, e satisfy

eT f = e1f1 + e2f2 + · · ·+ elfl = 0,

rank
[

F E

]

= l

All power-conserving elements taken together define a Dirac

structure.


