

Overview

- Introduction
- Model 1: postdisperal learning
- Model 2: predispersal learning
- Model 3: adaptive songtypes
- Model 4: including space
- Outlook

Introduction

- song dialects are common in birds that learn song
- 45 years of research, (practically) no modelling
- 'learning' is all important. Why?

long term goals: understand how the main forces at play shape dialects: formation and stability

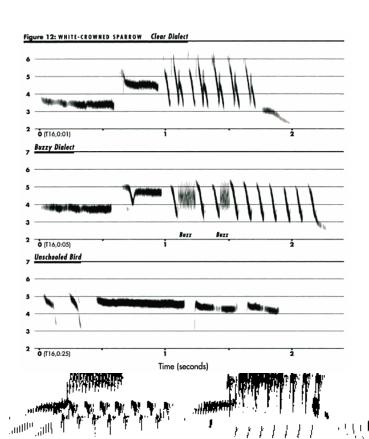
here: maintenance of dialect borders

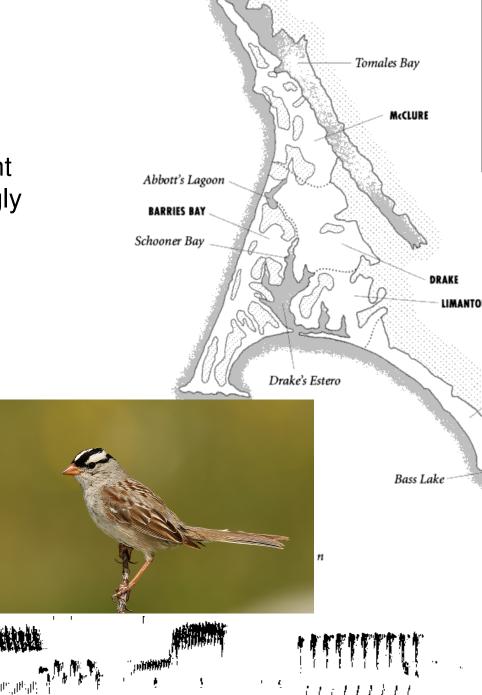
Importance of geographic variation in bird song

- Speciation: 4600 song birds, all learn
- Bird species often defined by song
- Song differences may allude to isolating mechanisms through assortative mating
 - female mate choice, sexual selection
 - male-male competition
 - habitat differences

Enigma 1

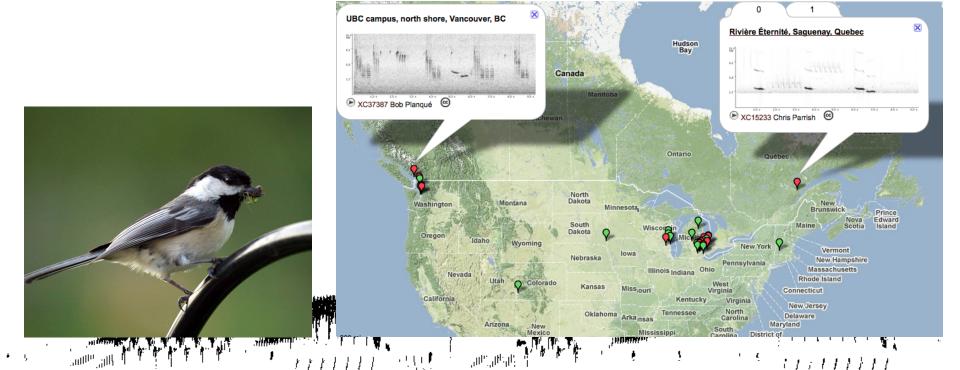
white crowned sparrow: persistent dialects over decades in seemingly homogeneous habitat





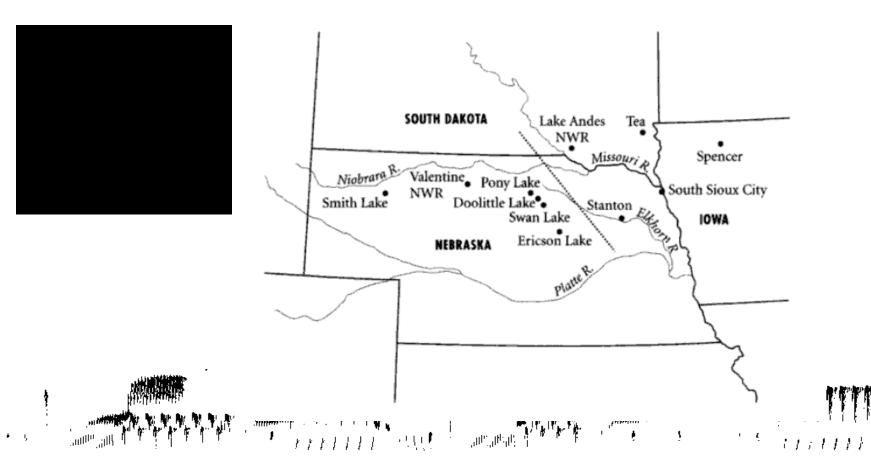
Enigma 2

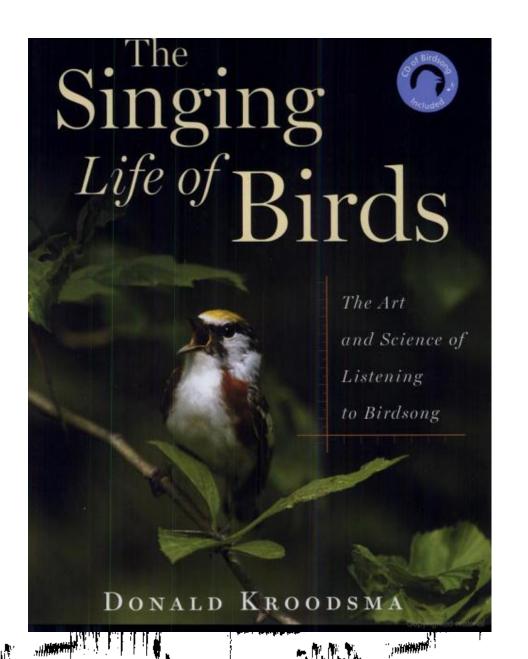
Some species have no dialects over huge ranges, although they learn (chickadee)



Enigma 3

Marsh Wrens: two huge dialect regions, meeting along a long edge





11:1111111

Learning

- juveniles learn from parents
- period of early flexibility varies (~50 days)
- innate part
- can be entirely plastic, but with preference for own species' song

Reproduction

- song is important for choosing mates
- large repertoire: old bird
- song as marker for location
- singing much: fit male

- females prefer locally sung songs
- males more successful when singing local songs
- => assortative mating based on song

Main hypotheses

Local adaptation:

 choose local male (based on song) as it is more likely to be adapted to local environment

Social adaptation

sing songs that are alike to other local songs, or incur social penalties

Epiphenomenon

 byproduct of the dispersal, mating strategies and learning, nonfunctional selection

Main model ingredients

- dispersal
- assortative mating and selection
- learning

distinguish order: predispersal or postdispersal learning

- birds age, disperse, learn (vary song)
- song of newborn birds is average of parents'

$$v(x,t,s,a) V = \int v(x,t,s,a)da$$

$$\frac{ds}{dt} = f(s,V(x,t,s)) = k\left(\frac{\int V(\bar{s})\bar{s}d\bar{s}}{\int V(\bar{s})d\bar{s}} - s\right)$$

$$v_t = -v_a + D_1(a)\Delta_x v - D_3(a)\nabla_s \cdot (f(s, V)v),$$

$$v(x, t, s, 0) = \frac{1}{\int_0^{\bar{a}} \int_S v(s, a)dsda} \int_S v(x, t, s - \sigma, \bar{a})v(x, t, s + \sigma, \bar{a})F(s - \sigma, s + \sigma)d\sigma$$

Model 1: postdispersal learning

- two song types
- two locations
- P_{ij} fraction of males singing songtype i in patch j
- juveniles mature in one year
- census before reproduction
- annual mortality rate μ
 - replacement with exact same number of one-year-old birds, keeping the population at carrying capacity

reproduction: assortative mating

$$p_{i1} = \frac{P_{i1}^2 + \sigma P_{i1} P_{i2}}{P_{i1}^2 + 2\sigma P_{i1} P_{i2} + P_{i2}^2}$$

- σ determines how often birds form mixed-song matings
- newborns learn dialect from one of their parents (at random)

- dispersa' $p_{1j}'=(1-arepsilon)p_{1j}+arepsilon p_{2j}$ $p_{2j}'=(1-arepsilon)p_{2j}+arepsilon p_{1j}$
- ε is the fraction of *successful* colonizers
- Learning

$$p_{ij}^{"} = (1 - \lambda)p_{ij}^{"} + \lambda P_{ij}$$

Put together

$$P'_{ij} = (1 - \mu)P_{ij} + \mu p''_{ij}$$

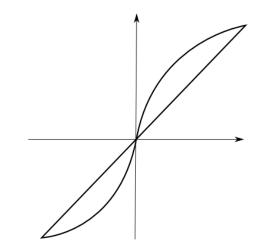
In new variables

$$Q_i = P_{i1} - P_{i2}, q_i = p_{i1} - p_{i2}$$

$$Q_i' = (1 - \kappa)Q_i + \kappa q_i' = (1 - \kappa)Q_i + \kappa((1 - \varepsilon)q_i + \varepsilon q_j)$$

$$\kappa = \mu(1 - \lambda)$$

Using that $q_i=f(Q_i)$ where $f(Q)=\frac{Q}{\frac{1}{2}(1+\sigma)+\frac{1}{2}(1-\sigma)Q^2}$ we get



$$Q_i' = (1 - \kappa)Q_i + \kappa((1 - \varepsilon)f(Q_i) + \varepsilon f(Q_j))$$

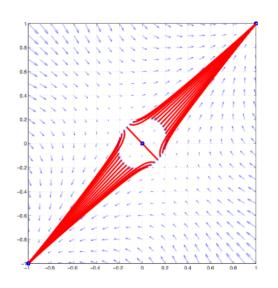
- Three equilibria:
 - (0,0) fully mixed
 - (1,1) only dialect type 1
 - (-1,-1) only dialect type 2
- Also equilibria (Q*,-Q*) where
- these exist if $Q^* = (1-2arepsilon)f(Q^*)$

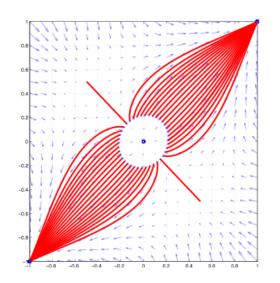
$$\varepsilon < \varepsilon_1 = \frac{1}{4}(1 - \sigma)$$

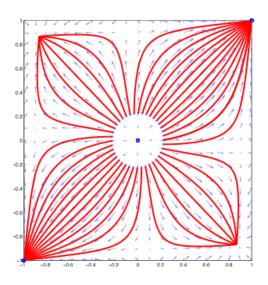
- (-1,-1) and (1,1) are always stable
- (0,0) is always unstable
- As ε decreases past ε_1 , a pair of equilibria $(Q^*, -Q^*)$ branches off, but these are unstable
- As ε decreases further past ε_2 , from each of these two a pair of eq^a bifurcates, conferring stability to (Q^*, Q^*) .

$$0 < \varepsilon_2 = \frac{1}{4}(3 - \sqrt{5 + 4\sigma}) < \varepsilon_1 = \frac{1}{4}(1 - \sigma)$$

Example dynamics model 1









Conclusions model 1

- Assortative mating must be sufficiently strong, and dispersal not too weak to allow dialects to form
- Neither learning or mortality played any role in bifurcations (but they do matter for speed)

Model 2: predispersal learning

$$\begin{aligned} Q_i' &= (1 - \mu)Q_i + \lambda \mu[(1 - \varepsilon)Q_i + \varepsilon Q_j)] \\ &+ \mu(1 - \lambda)[(1 - \varepsilon)q_i + \varepsilon q_j] \end{aligned}$$

- (1,1) and (-1,-1) again stable
- anti-symmetric steady states exist if

$$\varepsilon < \varepsilon_1 = \frac{1}{4}(1-\sigma), \ \lambda < \lambda_1 = \frac{1-4\varepsilon-\sigma}{(1-2\varepsilon)(1-\sigma)}$$

and are stable if

$$\varepsilon < \varepsilon_2 = \frac{1}{4}(3 - \sqrt{5 + 4\sigma}), \quad \lambda < \lambda_2 = \frac{3 - 4\varepsilon - \sqrt{5 + 4\sigma}}{(1 - 2\varepsilon)(3 - \sqrt{5 + 4\sigma})}$$

Conclusion model 2

- Only real difference is in the role of song learning: it shouldn't be too great
- Dispersal and assortative mating play the same role as in model 1

Model 3: adaptive song types

Mortality depends on song type:

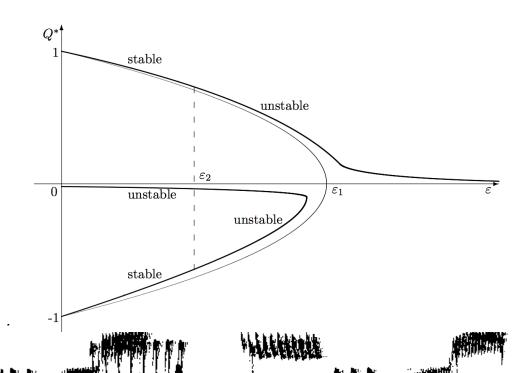
$$P'_{ij} = (1 - \mu_{ij})P_{ij} + (\mu_{ij}P_{ij} + \mu_{ik}P_{ik})p''_{ij}$$

$$\mu_{11} = \mu_{22} = \mu(1 - \delta), \ \mu_{12} = \mu_{21} = \mu(1 + \delta)$$

$$Q_1' = Q_1 + \mu(\delta - Q_1) + \mu(1 - \delta Q_1) \{\lambda Q_1 + (1 - \lambda)(1 - \varepsilon)f(Q_1) + (1 - \lambda)\varepsilon f(Q_2)\}$$

$$Q_2' = Q_2 - \mu(\delta + Q_2) + \mu(1 + \delta Q_2) \{\lambda Q_2 + (1 - \lambda)(1 - \varepsilon)f(Q_2) + (1 - \lambda)\varepsilon f(Q_1)\}$$

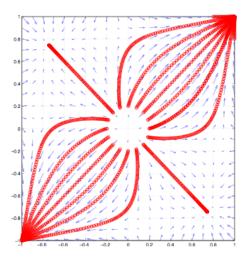
- (1,1) and (-1,-1) are still steady states,
 but (0,0) is not
- For $\delta > 0$ anti-symmetric steady states

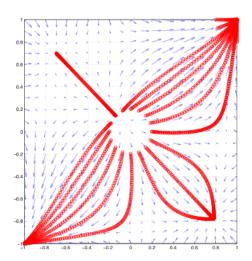


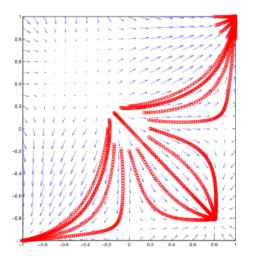
• For $\delta > \delta_1$, (1,1) becomes unstable. Presumably solutions converge to the anti-symmetric steady state in the fourth quadrant

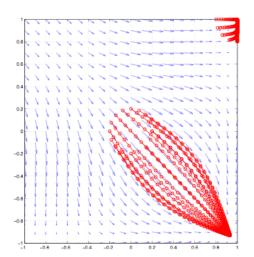
$$\delta_1^2 = (1-\lambda)^2 \frac{(1-\sigma)(1-(1-2\varepsilon)\sigma)}{(1+\lambda)+(1-\lambda)\sigma)((1+\lambda)+(1-2\varepsilon)(1-\lambda)\sigma)} < 1$$

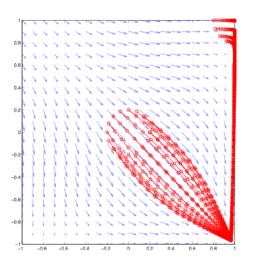
• The other anti-symmetric steady state seems to cease to exist for sufficiently large δ











* PREPARE CALL DESIGNATION OF STREET

Model 4: taking space into account

N-patch postdispersal model, space periodic:

$$Q_i' = (1 - \kappa)Q_i + \kappa((1 - 2\varepsilon)q_i + \varepsilon(q_{i-1} + q_{i+1}))$$

• Set $v_i = f(Q_i)$ so that $Q = f^{-1}(v) =: h(v)$

$$h(v) = \frac{1}{(1-\sigma)v} \left(1 - \sqrt{1 - (1-\sigma^2)v^2} \right)$$

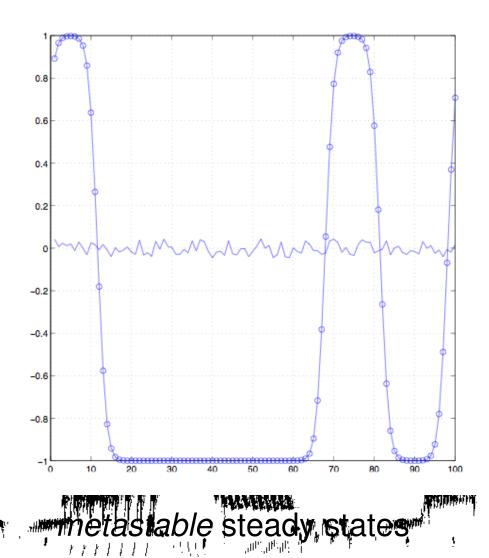
Linearisation around v=0

$$\frac{dv_i}{dt} = \kappa \left(\frac{1-\sigma}{1+\sigma} v_i + \frac{2\varepsilon}{1+\sigma} (v_{i+1} + v_{i-1} - 2v_i) \right)$$

• In Fourier variables, $w_i = \frac{1}{N} \sum_{j=1}^N \exp\Big(-\frac{2\pi i j}{N}\Big) v_j, i = 0, \dots, N-1$

$$\frac{dw_i}{dt} = \kappa \left(\frac{1-\sigma}{1+\sigma} - \frac{8\varepsilon}{1+\sigma}\sin^2\frac{\pi i}{N}\right)w_i$$

- Origin unstable if $\varepsilon < \frac{1}{8}(1-\sigma)$
- Anti-symmetric steady state (Q*,-Q*) now alternating (Q*,-Q*,Q*,-Q*,...) (if N is even)
- Existence and stability of this steady state is same as for N=2 model



In continuum limit of large N

$$Q_t = \tilde{\kappa}(f(Q) - Q + D(f(Q))_{xx})$$

- in v variable $h'(v)v_t = \kappa(v-h(v)+Dv_{xx})$
- v=1 and v=-1 are the only stable uniform equilibria, but solutions close to heteroclinics between 1 and -1 can be metastable

Short term pattern formation controlled by

$$\alpha := \frac{1}{D} \frac{1 - \sigma}{1 + \sigma} = \frac{N^2 (1 - \sigma)}{\varepsilon (1 + \sigma)}$$

- If $\alpha \gg 1$: patterns expected
- If $\alpha \ll 1$: patterns not expected

Conclusions model 4

- Formation of local dialects promoted by
 - more patches
 - less dispersal
 - stronger assortative mating

Overall conclusions

- Mortality has little influence on dialects
- Learning (as modelled here) has either no influence, or a negative one (?)
- A combination of little dispersal and strong assortative mating promotes dialects
- Linking song type to mortality rates allows for invasion of novel song types

Outlook and open questions

- Longevity/stability of song dialect regions?
- Necessary ingredients for novel song types to establish themselves?
- Song learning as a *positive* force in dialect formation? Introduce e.g.
 - copying errors, novelties
 - selective attrition

examples

habitat

Cinereous Tinamou, David Edwards

sexual selection

Tui, Patrik Aberg

speciation

Chiffchaff_BP

Sky Lark, Patrik Aberg

Capuchinbird, Nick Athanas

Willow Warbler, BP

