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f : Rn × V → R. f (x , v) is density of bacteria (e.g. E. Coli) at position x
with velocity v . V ⊂ Rn compact.

S : Rn → R. S(x) is density of chemical signal at position x .

(1) ∂t f (t) = −v · ∇x f (t) + T [S(t)]f (t),

(2) τ∂tS(t) = D∆S(t) + αρ(t)− βS(t) (α, β ≥ 0, τ,D > 0),

ρ(x , t) =
∫

V f (x , v , t) dv .

Turning kernel T [S](x , v ′, v) is probability density of changing velocity
from v to v ′ at position x , given the global signal S

T [S]f (x , v) =
−

∫
V T [S](x , v ′, v) dv ′ · f (x , v) +

∫
V T [S](x , v , v ′)f (x , v ′)dv ′.
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Functional analytic approach

Consider the integral form of (1)− (2) (Variation of Constants-formula):

•f (t) = TΦ(t)f0 +
∫ t

0 TΦ(t − s)T [S(s)]f (s) ds.

•S(t) = Td (t)S0 + ...

•(TΦ(t))t≥0 (strongly continuous) transport semigroup with generator
−v · ∇x . TΦ(t)f (x , v) = f (x − vt , v).

•(Td (t))t≥0 (strongly continuous) diffusion semigroup with generator
D∆.

f ∈ L1(Rn × V ) ∩ Lp(Rn × V ), S ∈W k ,q(Rn) ∩W k ,∞(Rn).

D. Worm (with S. Hille) (Leiden University) Kinetic chemotaxis model April 15, 2010 5 / 12



Some achieved results: global existence, uniqueness and positivity
of mild solutions to (1)− (2):

Local Well-posedness of Kinetic Chemotaxis Models (by Hille), J.
Evol. Equ. 8, 2008.

Global existence of positive mild solutions to a class of kinetic
chemotaxis equations (by Hille, W), MI-Leiden Report 2007-47

f represents density of the bacteria. L1(Rn × V ) ⊂M(Rn × V ).

Question
(How) can we consider solutions of (1)− (2) in a space of measures?
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Flow on state space Rn × V : Φt (x , v) = (x + vt , v).

Transport semigroup TΦ(t)f (x , v) = f (Φ−1
t (x , v)) = f (x − vt , v).

How to formulate this in a space of measures?

PΦ(t)µ(E) := µ ◦ Φ−1
t (E).

Dirac measure δx : PΦ(t)δx = δΦt (x).

µ(t) = PΦ(t)µ0 +
∫ t

0 PΦ(t − s)T [S(s)]µ(s) ds
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State space (S,d) complete separable metric space
M(S) Banach space of finite Borel measures
with total variation norm ‖µ‖TV = µ+(S) + µ−(S).

But: topology is too strong!

If x 6= y , then ‖δx − δy‖TV = 2.

So t 7→ PΦ(t)δx = δΦt (x) only continuous if Φt (x) = x .

In general t 7→ PΦ(t)δx not even strongly measurable.
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Weak topology

Cb(S) = space of bounded continuous functions S → R.

More natural topology onM(S): weak topology σ(M(S),Cb(S)).

Drawbacks: is only a locally convex topology, not given by a norm.

BL(S) = Banach space of bounded Lipschitz functions with norm
‖f‖BL = |f |Lip + ‖f‖∞.

Results by Dudley (1966):

M(S) embeds into BL(S)∗: µ(f ) =
∫

S f dµ.

M+(S) is complete with respect to norm on BL(S)∗.

Restriction of norm topology of BL(S)∗ toM+(S) equals
restriction of weak topology toM+(S).
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Consider SBL := {span of Dirac measures} in BL(S)∗. Then

SBL is a separable Banach space.

M(S) ⊂ SBL dense.

S∗BL = BL(S)

M+(S) is a closed convex cone in SBL.

So we can view SBL as ordered Banach space with positive cone
M+(S).

In generalM+(S)−M+(S) =M(S) ( SBL (unless S uniformly
discrete).

Embedding of semigroups of Lipschitz maps into positive linear
semigroups on ordered Banach spaces generated by measures (by
Hille, W.), Integr. Equ. Oper. Theory 63, 2009.
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Theorem (Hille, W.)
If (Φt )t≥0 is a semiflow on S such that

1 lim supt↓0 |Φt |Lip <∞
2 t 7→ Φt (x) is continuous for all x ,

then (PΦ(t))t≥0 extends to a strongly continuous semigroup on SBL,
leavingM+(S) invariant.

Allows for an interpretation of

µ(t) = PΦ(t)µ0 +

∫ t

0
PΦ(t − s)T [S(s)]µ(s) ds.

+ equation for S.

• Under certain conditions on turning kernel we obtain global existence
and uniqueness of (positive) mild solutions.

Remark: we can exploit SBL to obtain results of existence, uniqueness
and stability of invariant measures for Markov semigroups on spaces
of measures.
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Thank you for your attention

www.math.leidenuniv.nl/∼dworm



Let (Ω,Σ, µ) be a measure space.

Theorem (Hille, W.)
Let p : Ω→M+(S) ⊂ SBL. Then the following are equivalent:

(i) p is strongly measurable as function from Ω to SBL
(ii) for every Borel set E ⊂ S, ω 7→ p(ω)(E) is measurable.

Theorem (Hille, W.)
Let p : Ω→M+(S) ⊂ SBL be Bochner integrable with respect to
µ ∈M+(S). Then∫

Ω
p(ω)dµ(ω)(E) =

∫
Ω

p(ω)(E)dµ(ω).
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