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Numquam ponenda est pluralitas sine necessitate

William Occam (1288-1348) proposed a meta-theory of knowledge:

“For nothing ought to be posited without necessity.”

Can be interpreted as a

I Aesthetic principle: enhances model interpretability through
parsimonious representation

I Pragmatic principle: computability.

I A priori information principle: represents expectation about
nature of solution.

I Prediction principle: bias-variance trade-off

I Bayesian principle?

Exercise: Predict the next two numbers in the sequence

−1, 3, 7, 11, ...
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Occam’s razor does not have to be an aesthetic principle...

You probably thought 15, 19, using the hypothesis

H1 : Add 4 to the previous number.

But why not −19.9, 1043.8, using the hypothesis

H2 : if x is current number, then next number is given by

−x3/11 + 9/11x2 + 23/11.

Relative evidence of two hypotheses given data D:

P(H1|D)

P(H2|D)
=

P(H1)

P(H2)

P(D|H1)

P(D|H2)

where P(H1)/P(H2) could include an “aesthetic Occam”
preference.
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... let the data speak for themselves!

Simple hypothesis uses two parameters:
(i) α=starting value and (ii) β=increment, assumed randomly
drawn between −50 and +50, in which case

P(D|H1) = P(α = −1;β = 4) =

(
1

101

)2

= 1× 10−4.

Complex hypothesis uses (arguably) 7 parameters:
(i) α=starting value and (ii-vii) β1

β2
, β3
β4

, β5
β6

in the polynomial, again,
assumed randomly drawn between −50 and +50, in which case

P(D|H2) = ... =
1

101

(
4

101

1

50

)(
4

101

1

50

)(
2

101

1

50

)
= 2.5×10−12.

So, P(H1|D)/P(H2|D) = 4× 107 IN FAVOUR OF SPARSITY.
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Example I: deletion/amplification of DNA

It is known that deletion and amplification of certain parts of DNA
plays a role in the severity of breast-cancer.

John Bartlett (Royal Infirmary, Glasgow) wants to use deletion and
amplification data on 62 breast cancer patients across 59 genes.

His expectation: a few gene deletions and gene amplifications
will affect the severity of the breast cancer (measured as NPI).

NPIi =
59∑

j=1

xijβj ,+εi (patienti = 1, . . . , 62),

subject to sparsity, i.e. many βj ≈ 0.
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Penalized inference: operational definition of sparsity

High-dimensional inference. As we want lots of small β, we
consider the constraint maximization of

l(β) subject to ||β||q ≤ c ,

whose dual is equal to the penalized likelihood

lλ(β) = l(β)− λ||β||qq

There are several special cases:

I q = 2: Ridge regression (1958)
Under normality leads again to a simple quadratic form.

I q = 1: Lasso regression (Tibshirani, 1996)
No closed form solution.
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Geometry of the L1 penalty = Sparsity
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Lasso applied to DNA deletion/amplification data

Some stopping rule selects 7 out of 59 genes.
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Example II. gene regulatory networks

“A collection of DNA segments in a cell which “interact” with
each other via their RNA or proteins and with other substances in
the cell, thereby governing the rates at which genes in the network

are transcribed.”

Ernst Wit Living in a Sparse World



Gaussian Graphical Models

I Absence/presence of an edge
indicates conditional
independence of the
variables:

I No edge joining Y and Z
⇐⇒ Y⊥Z |rest

If U = (X ,Y ,Z ) in a graph are Gaussian, then

U ∼ N(µ,Σ).

whereby Θ = Σ−1 represents conditional independence, i.e.

if θY ,Z = 0, then Y is independent of Z given rest.
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Estimating Θ

The Gaussian profile likelihood is given by

l(Σ) = −1

2
log |Σ| − 1

2
(y − µ̂)tΣ−1(y − µ̂),

and so

l(Θ) =
1

2
log |Θ| − 1

2
(y − µ̂)tΘ(y − µ̂)

=
1

2
(log |Θ| − Trace(SΘ)) ,

where S the empirical covariance matrix of X . Then

δl(Θ)

δΘ
= Θ−1 − S ,

and so Θ̂ = S−1.
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Estimating the graph using the L1 penalty

Use the lasso regularized log-likelihood:

max
Θ

[log |Θ| − Trace(SΘ)− λ||Θ||1] ,

with score equations:

Θ−1 − S − λSign(Θ) = 0.

NOTE: Compare this with the Lasso problem:

min
β

(y − Xβ)t(y − Xβ) + λ||β||1

with solution
X tXβ − X ty + λSign(β) = 0.
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An example: Cell signalling network for different λ
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III. Relationship L1 and angles between x variables

Let’s return to our old problem:

y = Xβ + ε

By location and scale transformations we can always assume that
the covariates are standardized with mean 0 and unit length, and
that the response variable has mean 0,

n∑
i=1

yi = 0,
n∑

i=1

xij = 0,
n∑

i=1

x2
ij = 1 for j = 1, 2, . . . , p.
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Graphical definition of Least Angle Regression

LAR algorithm in the case of p = 2 covariates.
The entire LAR sequence require O(p3 + np2) computations
(p < n).
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LAR analysis of the diabetes study
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(left) estimates of regression coefficients β̂j plotted versus
∑
|β̂j |;

(right) absolute current correlation as function of LAR step; heavy
curve shows maximum current correlation.
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Relationship L1 and LAR

Let β̂ be the Lasso solution for some λ, with

µ̂ = X β̂.

This means that β̂ solves

X tXβ − X ty + λSign(β) = 0.

Then it is easy to show that the sign of any nonzero coordinate β̂j

must agree with the sign sj of the current correlation
ĉj = xT

j (y − µ̂),

sign(β̂j ) = sign(ĉj ) = sj . (1)

Therefore, a simple modification LAR produces Lasso estimates:

Remove variable from active LAR set a.s.a. (1) is
violated.
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IV. Generalized linear models

Y is a random variable with pdf

pY(y;θ, λ) = a(y;λ) exp{λ(yTθ − k(θ))}, y ∈ Y ⊆ Rn, (2)

with respect to a σ-finite measure ν on Rn, where a(·) and k(·)
are specific given functions.

GLMs (McCullagh and Nelder, 1989):

E (Y ) = µ

η = xTβ

g(µ) = η

In order to simplify our notation we denote

µ(β) =
(
g−1(xT

1 β), g−1(xT
2 β), . . . , g−1(xT

n β)
)T

.
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Example: logistic regression

Observations Y are binary and Bernoulli distributed,

p(y) = py (1− p)1−y

= exp

(
y logit(p)− log(

1

1− p
)

)
Therefore,

θ = logit(p).

and

E (Y ) = p

η = xTβ

η = logit(p)

Let

µ(β) =
(

logit(xT
1 β), logit(xT

2 β), . . . , logit(xT
n β)

)T
.
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Differential manifold

Let Mn be the mean value parameter space.

Amari (1982):
Mn can be treated as a n-dimensional differentiable manifold.

Vos (1991):
µ(β) is an embedding with domain B

M̃p = {µ ∈Mn : µ = µ(β), with β ∈ B}. (3)

The vector space

Tµ(β)M̃p = span{∂β1µ(β), ∂β2µ(β), . . . , ∂βpµ(β)}

is called tangent space of M̃p at µ(β).
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Metric space using the Fisher information

The expected Fisher information matrix defines an inner product,
denoted by 〈 , 〉µ(β), on each tangent space:

〈v1, v2〉p(µ) = Eµ

 n∑
i=1

dµi ,1∂i`(µ) ·
n∑

j=1

dµ2,j∂j`(µ)


= dµ′1I (µ)dµ2.

A given generalized linear model can be treated as a Riemannian
submanifold of (Mn, 〈 , 〉µ(β)). Let r be the tangent residual vector

r(µ(β)) =
n∑

i=1

(yi − µi (β))∂i`(µ(β)) ∈ Tp(µ(β))S

It can be shown that the MLE of β is defined as

r(µ(β̂))⊥Tp(µ(β̂))M.
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Angles in a GLM

We will define a solution path in parameter space and need some
notation:

let β(γ) be a double differentiable curve;

let `(β(γ)) = `(γ) be the log-likelihood function;

∂βm`(γ) = ∂m`(γ) be the derivative of `(γ) with respect to
βm.

The derivative of the likelihood ∂m`(β(γ)) can be written as inner
product between r(β(γ)) and m-th base of tangent space of M at
µ(β(γ)),

∂m`(β(γ)) =
〈
∂mµ(β(γ)); r(β(γ))

〉
µ(β(γ))

. (4)

Using the law of cosines, this is equivalent with

∂m`(β(γ)) = cos (ρm(β(γ))) · ‖r (β(γ)) ‖µ(β(γ)) · ‖∂mµ(β(γ))‖µ(β(γ))

= cos (ρm(β(γ))) · ‖r (β(γ)) ‖µ(β(γ)) · i
1/2
m (β(γ)). (5)
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Extension of LAR (1)

Using expression (4) we have the following differential geometric
identity

ρm(β(γ)) = arccos
∂m`(γ)

‖r (β(γ)) ‖µ(β(γ))‖∂mµ(β(γ))‖µ(β(γ))
.(6)

where

I ρm(β(γ)) is the angle between r(β(γ))
I ∂mµ(β(γ)), im(β(γ)) is the expected Fisher information for
βm(γ)

I ‖ · ‖µ(β(γ)) is the norm defined on the tangent space.

(6) shows that the gradient of the log-likelihood function does not
generalize the equiangularity condition, since we are not
considering the variation related to

i
1/2
m (β(γ)) = ‖∂mµ(β(γ))‖µ(β(γ)).
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Extension of LAR (2)

Expression (6) suggests that a genuine generalization of the Least
Angle Regression method should be based on the following
indentity

ru
m(γ) = i

−1/2
m (β(γ)) · ∂m`(γ) = cos (ρm(β(γ))) · ‖r(β(γ))‖µ(β(γ)).

(7)
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Simulation study

We have evaluated the dgLARS method by means of a simulation
study.

We have simulated 1000 samples of (100,200,500) observations
with 5000 variables using the following generalized linear model:

Yi ∼ Ber(πi ),

logit(πi ) = ηi ,

ηi = 1 + 2 · xi1 + 3 · xi2 + 4 · xi3.

I We have used IID standard Gaussian predictors to obtain the
design matrix X.

I The size of the true model, i.e. the number of predictors with
non-zero coefficients, is 3. .
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Figure (a) shows the solution path βA(γ) obtained with the
proposed algorithm after 15 steps. Figure (b) shows the path of
|ru(γ)| as function of the number of variables included in the
active set. Heavy lines identify the paths related to the variables
used to simulate the response variable.
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Comparison L1 and dgLAR

200 data sets from a logistic regression model. Sample size was
equal to 50/100 and the number of covariates was equal to
500/1000.
We considered a model with two important groups as follow

(X1,X2, . . . ,X5) v N5(0,Σ),

(X6,X7, . . . ,X10) v N5(0,Σ),

Xi v N(0, 1), i = 11, . . . , p,

with

Σ =


1 ρ . . . ρ ρ
ρ 1 . . . ρ ρ
...

...
. . .

...
...

ρ ρ . . . 1 ρ
ρ ρ . . . ρ 1


and ρ = 0.9. We chose β = (5, . . . , 5︸ ︷︷ ︸

10

, 0, . . . , 0︸ ︷︷ ︸
p−10

).
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k/n
n p 0.2 0.4 0.6 0.8 1

50 500 5.04 5.31 5.53 5.7 5.83
(0.24) (0.25) (0.24) (0.23) (0.24)

50 1000 4.92 5.23 5.44 5.62 5.80
dgLARS (0.23) (0.24) (0.23) (0.23) (0.23)

100 500 5.95 6.29 6.47 6.66 6.80
(0.20) (0.20) (0.20) (0.20) (0.19)

100 1000 5.81 6.04 6.21 6.42 6.61
(0.22) (0.23) (0.22) (0.22) (0.21)

50 500 5.04 5.26 5.21 5.2 5.15
(0.25) (0.24) (0.24) (0.23) (0.23)

50 1000 4.89 5.13 5.15 5.17 5.14
L1-penalty (0.22) (0.23) (0.22) (0.22) (0.21)

100 500 5.99 6.02 6.08 6.03 5.91
(0.20) (0.21) (0.20) (0.20) (0.20)

100 1000 5.81 5.92 5.99 5.92 5.90
(0.22) (0.23) (0.22) (0.22) (0.22)

The numbers in parentheses are the corresponding coefficient of deviations.

Average number of true variables identified by the dgLARS and
L1-regularized logistic regression model based on 200 replicates.
The average is expressed as function of the ratio between the steps
of the algorithms (k) and the sample size (n).
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Figure shows the average number of average number of true
variables identified by the dgLARS and L1-regularized logistic
regression model based on 200 replications. The average is
expressed as function of the ratio between the steps of the
algorithms (k) and the sample size (n).
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Conclusions:

I Penalized inference and least angle extensions are important
methods to deal with high-dimensional feature spaces.

I L1 penalized graphical models have interesting genomic
applications.

I dgLAR is based on a natural generalization of the geometrical
theory underlying the original LAR algorithm.
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