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Today’s talk - Outline

The main aim of my project is to better understand the involvement of
transcription factors (TFs) that govern spatio-temporal transcription of genes.

The outline for today’s talk is as follows

Biological background - basic mechanism of transcriptional gene
regulation.

Regression models for gene expression and DNA sequence data.

GEMULA (Gene Expression Modeling Using Lasso)

Application of GEMULA on data from a biological model of neuronal
regeneration.
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DNA → RNA → Protein

Production of a protein requires transcription of the corresponding gene,
i.e. the prodcution of a mRNA (messenger RNA) molecule which carries
a ”message” for the protein synthesizing apparatus of a cell.

Figure: The biological processes of transcription and translation.

Regulation of (the rate of) transcription is a fundamental mechanism by
which cells accomplish differential expression of proteins.
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Typical Structure of an Eukaryotic Gene

The term gene is used to refer to the complete DNA sequence which is
required for the production of a functional protein. Apart from coding
sequences, genes contain regulatory DNA elements that are crucial for
their proper function.
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Gene Expression and Microarrays

Gene expression profiling experiments involve measuring the relative
amount of mRNA expressed in two or more experimental conditions.
DNA microarrays are widely used to quantify gene expression.

Figure: Graphical representation of the experimental steps in a typical
microarray experiment.
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Modeling DNA Sequences of TFBSs

Eac possible window of length 8 is scored according to a model and the
score is compared to a threshold to predict putative TFBSs.

S = · · · TGTAGCTGACGTCAATGATGAAGGGTAGAATGACGTAAC · · ·

In this case S contains 2 TFBSs for the TF CREB.
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Construct Genome-wide Predictors of Gene Expression

Given the regulatory DNA sequences of all known genes ((n)) and a set of
TFBS models (p), putative binding of TFs to gene sequences can be assesed
genome-wide.

The result is a matrix [X1 · · ·Xp] of dimension n × p containing potential
predictors that may explain observed variation in gene expression.
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Modeling Gene Expression Using Regression

Suppose we observe a response vector Y = (Y1, . . . ,Yn) that represens
gene expression for a set of n genes. Additionally, let a set of p predictor
variables X1, . . . ,Xp which are potentially biologically related to Y be
given.

We assume that Y and X1, . . . ,Xp are related through the following
regression model

Y = Xβ + ε, (1)

where

X = [1 f1(X1, . . . ,Xs) · · · fd(X1, . . . ,Xs)],

is an unknown n× (d + 1) design matrix, β = (β0, . . . , βd) is an unknown
vector of regression parameters and ε = (ε1, . . . , εn) ∼ N (0, σ2In).
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Linear Models and Model Selection

How can we model interactions between predictors using simple linear
models ?

And how to perform model selection ?

Solution: GEMULA (Gene Expression Modeling Using Lasso). GEMULA selects
candidate models Mq, q = 1, . . . , Q restricted to models sub-spaces Mq

constrained by parameters γq = (γq1, γq2, γq3), where γq1 represents the
maximum allowed order of interaction between terms, γq2 is the maximum
allowed power to which a candidate predictors is raised and γq3 is the
maximum number of terms allowed in the model. GEMULA uses the lasso for
model selection.
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The Lasso - An Example

Suppose we observe a repsonse Y = (Y1, . . . ,Yn) and additionally let
predictor variables X1, . . . ,X19 be given. We assume that
Y = XMβM + ε, for XM = [1 X1 · · ·X19]. For a given shrinkage
parameter t ∈ R+, lasso estimates of βM minimize

min
βM

n∑
i=1

Yi − βM0 −
dM∑
j=1

βMjXij

2

subject to

dM∑
j=1

|βMj | ≤ t, (2)

A fast algorithm called lars is available to solve this problem. It finds all
solutions in a small number of steps.
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The Lasso - An Example

Figure: Example of a ”lasso path”. At each step of the lars algorithm, one
predictor enters the ”active set”.
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GEMULA: Step I

Let M0 represent the model for which the design matrix satisfies
XM0 = [1 X1 · · ·Xp]. Since at each step k, exactly one predictor enters
the ”active set” Bk

M = {j : βk
Mj 6= 0}, GEMULA uses the mapping

r(j) = min {k : j ∈ Bk
M0
}, j ∈ {1, . . . , p},

and its inverse r−1 defined by

r−1(s) = j ⇔ r(j) = s j ∈ {1, . . . , p}, s ∈ {1, . . . ,K}

to define the order in which predictors enter the model. Now, e.g. when
γ1 = (1, 1, 50), the sub-space Mγ1 consists of all possible regression
models that contain any subset of main effects for the first 50 predictors
and GEMULA uses the lasso to select a model using the design matrix

Xγ1 = [1 Xr−1(1) · · ·Xr−1(50)].
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GEMULA: Step II

Within each sub-space Mq determined by a parameter γq, GEMULA selects a
model using lasso. When interactions between predictors are considered, the
restrictions on the maximum number of allowed terms imposed by γq3 force
GEMULA to limit the number of predictors in the following way. Suppose we set
γ2 = (2, 1, 150), then GEMULA first determines

s∗ = max{s ∈ {1, . . . , p} : s + s(s − 1)/2 ≤ 150},

and then Xγ2 denotes the design matrix that contains all main effects and

possible interactions between the predictors Xr−1(1), . . . , Xr−1(s∗). For each

matrix Xγq , we fit the entire path of lasso solutions and select the optimal

lasso-parameter according to the AIC model selection criterion.
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GEMULA: Step III

GEMULA uses V -fold cross-validation to evaluate the fit of the Q selected
candidate models. The R2-statistics is used as goodness-of-fit measure,
as its has an intuitive and biologically meaningful interpretation. For a
model Mq with fitted response values Ŷ Mq , it is given by

R2(Mq) = 1−
∑n

i=1(Yi − Ŷ Mq )2∑n
i=1(Yi − Ȳ )2

.

Geert Geeven Computational Statistics for the Prediction of Gene Regulatory Interactions



Introduction
Regression Models for Gene Expression

Application in a Complex System - Axonal Regeneration

Models of Neuronal Regeneration
Results

Axonal Regeneration After Injury

Neurons in the peripheral nervous system (PNS) successfully
regenerate following axonal injury.

Neurons in the central nervous system (CNS) generally do not.

Combining different experimental and computational modeling
approaches, we want to gain insight into the transcriptional network
that underlies this difference.
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The Dorsal Root Ganglion

Neurons in the DRG have branches extending both into the PNS and
CNS. This provides an excellent model to study the dramatic differences
in regenerative capacity between PNS and CNS neurons.
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Gene Expression Changes in F11 Cells in Response to
Forskolin Stimulation

The intrinsic potential of neurons to regrow damaged nerve fibers after an
injury depends in part on their ability to initiate a growth promoting gene
expression program. Coordinated expression of regeneration associated
genes is believed to be governed by interactions between TFs and target
genes.

The F11 cell line is a fusion product of mouse neuroblastoma cells with
embryonic rat DRG neurons. Upon stimulation with Forskolin, F11 cells
acquire a neuronal phenotype which results in the outgrowth of neurites.
F11 cells are easy to culture and transfect and provide a good in vitro
model for neuronal regeneration in vivo.

Since cultured F11 cells are a unicellular system, gene expression changes
are more homogeneous and less complex than gene expression from in
vivo samples of neuronal tissue where cells are in a complex and
heterogeneous cellular environment.

Geert Geeven Computational Statistics for the Prediction of Gene Regulatory Interactions



Introduction
Regression Models for Gene Expression

Application in a Complex System - Axonal Regeneration

Models of Neuronal Regeneration
Results

Clustering Genes Based on Expression Profiles

We distinguish between genes whose expression profile show either early
or late response to Forskolin stimulation.
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Models Fitted With GEMULA

Early responsive genes Late responsive genes

Time Model type Model P Model T R̄2
cv Model P Model T R̄2

cv

2h M1 30 30 0.14 8 8 -0.00

2h M2 31 72 0.22 36 53 0.06

2h M3 14 47 0.25 16 27 0.03

4h M1 16 16 0.08 0 0 0

4h M2 31 75 0.14 36 53 0.03

4h M3 14 39 0.07 16 16 0.03

24h M1 50 50 0.01 39 39 0.25

24h M2 31 80 0.11 36 63 0.24

24h M3 14 20 0.02 15 27 0.23

48h M1 5 5 -0.01 44 44 0.25

48h M2 31 85 0.11 35 52 0.27

48h M3 14 60 0.04 16 37 0.24

Table: Comparison of models fitted using GEMULA for early and late Forskolin
responsive genes in F11 cells at all four time-points. Columns 3-5 correspond
to models fitted for the early responsive genes and columns 6-8 to models for
the late responsive genes.
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Predictors Associated to Gene Expression Changes

TFBS ID Motif logo Time Activity

V.AP1.Q4.01 Early Activator

V.AP1.Q4.01 Late Activator

V.AREB6.02 Late Activator

V.CREB.Q4.01 Early Activator

V.CEBPDELTA.Q6 Early Activator

V.CETS1P54.02 Early Repressor

V.CETS1P54.02 Late Repressor

V.E2F.Q6.01 Late Repressor

V.EBF.Q6 Late Activator

V.PPARA.01 Early Repressor

V.PPARA.01 Late Activator

Table: TFBS motif logos of predictors present in models selected by GEMULA.

Geert Geeven Computational Statistics for the Prediction of Gene Regulatory Interactions



Introduction
Regression Models for Gene Expression

Application in a Complex System - Axonal Regeneration

Models of Neuronal Regeneration
Results

Experimental Validation of Predictions

The functional role of PPARα and PPARγ was studied in F11 cultured cells in
vitro. It turned out that PPARγ, and not PPARα promotes neurite outgrowth in
F11 cells and that knock-down of PPARγ significantly decreases neurite
outgrowth.
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Possible Future Improvements

In the future, as more and higher quality data becomes available and we
better understand the different molecular mechanisms of gene regulation,
possible improvements to the model may include

(Even) better suitable TFBS predictors more focused at DNA
elements that are most likely to be functional. For instance, how are
absolute and relative location and conservation of DNA elements
related to functionality?

Inclusion of in vivo TF binding-assay data (ChIP-chip or ChIP-seq).

Inclusion of predictors corresponding to other determinants of
transcription rates such as DNA methylation status and nucleosome
positions.

Use of more accurate (absolute) measurements of gene
transcription, e.g. RNA-seq data instead of DNA microarray data.
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