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Outlook

Wigner’s dynamical transition state theory: classical and quantum

Reaction-Type Dynamics in Dynamical Systems

‘Transformations’ are mediated by phase space bottlenecks

phase space consists of disjoint regions in which system remains for long
times
there are rare - but important - events where the system finds its way
through a phase space bottleneck connecting one such region to another

For Example, in Chemistry

Evolution from reactants to products through ‘transition state’

“On the way from reactants to products, a chemical reaction passes through what
chemists term the transition state – for a brief moment, the participants in the reaction
may look like one large molecule ready to fall apart.”

from R. A. Marcus. Skiing the Reaction Rate Slopes. Science 256 (1992) 1523
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Transition State Theory (Eyring, Polanyi, Wigner 1930s)

Compute reaction rate from directional flux through ‘dividing surface’ in the
transition state region

Dividing surface needs to have ‘no recrossing property’, i.e. it is to be
crossed exactly once by all reactive trajectories and not crossed at all by
non-reactive trajectories

Computational benefits:

compute rate from flux through a dividing surface rather than from
integrating trajectories, i.e. use ‘local’ rather than ‘global’ information
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Classical and quantum reaction dynamics in multidimensional systems

Applications

Chemical reactions (scattering, dissociation, isomerisation, protein folding)

Many, many people

Atomic physics (ionisation of Rydberg atoms in crossed field configurations)

S. Wiggins, L. Wiesenfeld, C. Jaffé & T. Uzer (2001) Phys. Rev. Lett. 86 5478

Condensed matter physics (atom migration in solids, ballistic electron transport)

G. Jacucci, M. Toller, G. DeLorenzi & C. P. Flynn (1984) Phys. Rev. Lett. 52 295

B. Eckhardt (1995) J. Phys. A 28 3469

Celestial mechanics (capture of moons near giant planets, asteroid motion)

C. Jaffé, S. D. Ross, M. W. Lo, J. Marsden, D. Farrelly & T. Uzer (2002) Phys. Rev. Lett. 89 011101

H. W., A. Burbanks & S. Wiggins (2005) Mon. Not. R. Astr. Soc. 361 763

Cosmology

H. P. de Olivieira, A. M. Ozorio de Almeida, I. Danmião Soares & E. V. Tonini (2002) Phys. Rev. D 65 083511
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Key problems and interests

How to construct a dividing surface with the desired properties for
multidimensional systems?

Recent high resolution experiments allow one to probe in unprecendented detail
both

transition states
‘supermolecules’ poised between reactants and products (transition state theory
is not merely a concept to compute a rate, but ‘transition states’ are objects of
their own physical significance)

the dynamics of reactions
violation of ergodicity assumptions (non RRKM behaviour; IVR)

Understanding the mechanisms that govern reaction dynamics is a prerequisite
for the control of chemical reactions

How to realise a quantum version of transition state theory which inherits the
computational benefits of (classical) transition state theory, and as a local and
therefore computationally inexpensive theory makes the computation of quantum
reaction rates feasible for multidimensional systems
(see, e.g., E. Pollak & P. Talkner. (2005) Reaction rate theory: What it was, where it is today, and where is it going? Chaos 15

026116)
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Classical Reaction Dynamics in Multidimensional Systems

Phase Space Conduits for Reaction
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Phase Space Structures near a Saddle

Setup

Consider f -degree-of-freedom Hamiltonian system
(R2f (p1, . . . , pf , q1, . . . , qf ), ω =

Pf
k=1 dpk ∧ dqk ) and Hamilton function H.

Assume that the Hamiltonian vector field„
ṗ
q̇

«
=

 
− ∂H

∂q
∂H
∂p

!
≡ J DH , J =

„
0 −1
1 0

«
has saddle-centre-. . .-centre equilibrium point (‘saddle’ for short) at the origin, i.e.

J D2H has eigenvalues ± λ, ±iω2, . . . , ±iωf , λ, ωk > 0
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

Simplest case

Consider Hamilton function

H = 1
2 p2

x − 1
2λ

2x2 + 1
2 p2

y + 1
2ω

2
y y2

=: Hx + Hy

corresponding vector field is

0B@ṗx
ṗy
ẋ
ẏ

1CA = J DH =

0B@0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

1CA
0BBBBB@

∂H
∂px
∂H
∂py
∂H
∂x
∂H
∂y

1CCCCCA =

0BB@
λ2x

−ω2
y y

px
py

1CCA

Hx and Hy are conserved individually,

Hx = Ex ∈ R , Hy = Ey ∈ [0,∞) , H = E = Ex + Ey ∈ R
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

E < 0 :

Rewrite energy equation H = E as

E +
1
2
λ2x2 =

1
2

p2
x +

1
2

p2
y +

1
2
ω2

y y2| {z }
' S2 for x ∈ (−∞,−

√
−2E
λ

)

or x ∈ (

√
−2E
λ

,∞)

⇒ Energy surface
ΣE = {H = E}

consists of two disconnected components which represent the ‘reactants’ and
‘products’
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

E > 0 :

E +
1
2
λ2x2 =

1
2

p2
x +

1
2

p2
y +

1
2
ω2

y y2| {z }
' S2 for all x ∈ R

⇒ Energy surface

ΣE = {H = E} ' S2 × R (spherical cylinder)

⇒ ΣE bifurcates at E = 0 (the energy of the saddle) from two disconnected
components to a single connected component

Consider projection of ΣE to R3(x , y , py ), i.e. project out

px = ±
q

2E − p2
y + λ2x2 − ω2

y y2

which gives two copies for the two signs of px
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

Ex

EyE = E  + E
x

y

0BB@
ṗx
ṗy
ẋ
ẏ

1CCA =

0BBB@
λ2x

−ω2
y y

px
py

1CCCAΣE for E < 0

ΣE consists of two components representing reactants and products

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y
“reactants” “products” “reactants” “products”
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x
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ṗx
ṗy
ẋ
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−ω2
y y

px
py
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y

p
y

x
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ẋ
ẏ
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ṗy
ẋ
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

Ex

EyE = E  + E
x

y

0BB@
ṗx
ṗy
ẋ
ẏ

1CCA =

0BBB@
λ2x

−ω2
y y

px
py
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Reactive trajectories have Hx = Ex > 0
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x

y

p
y

x

p
y

y
forward reactive trajectory backward reactive trajectory

Holger Waalkens Eindhoven 2010 Classical and Quantum Reaction Dynamics in Multidimensional Systems



Phase Space Conduits for Reaction
Quantum Transition State Theory

Outlook

Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

Ex

EyE = E  + E
x

y

0BB@
ṗx
ṗy
ẋ
ẏ

1CCA =

0BBB@
λ2x

−ω2
y y

px
py

1CCCAΣE for E > 0

Dynamical reaction paths have Hx = Ex = E (i.e. Hy = Ey = 0)

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y
forward reaction path backward reaction path
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

Ex

EyE = E  + E
x

y

0BB@
ṗx
ṗy
ẋ
ẏ

1CCA =

0BBB@
λ2x

−ω2
y y

px
py

1CCCAΣE for E > 0

Lyapunov periodic orbit ' S1 has Hx = Ex = 0 with x = px = 0

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y
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Ex

EyE = E  + E
x

y

0BB@
ṗx
ṗy
ẋ
ẏ

1CCA =

0BBB@
λ2x

−ω2
y y

px
py

1CCCAΣE for E > 0

Stable manifolds W s ' S1 × R has Hx = Ex = 0 with px = −λx

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y
reactants branch W s

r products branch W s
p
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x

y
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ṗx
ṗy
ẋ
ẏ
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px
py
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Unstable manifolds W u ' S1 × R has Hx = Ex = 0 with px = λx
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x

y

p
y

x

p
y

y
products branch W u

p reactants branch W u
r
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Linear vector field for f = 2 degrees of freedom

Ex
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x

y

0BB@
ṗx
ṗy
ẋ
ẏ

1CCA =

0BBB@
λ2x

−ω2
y y

px
py

1CCCAΣE for E > 0

Forward cylinder W s
r ∪W u

p and backward cylinder W s
p ∪W u

r enclose all the
forward and backward reactive trajectories, respectively

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y
forward cylinder backward cylinder
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

Ex

EyE = E  + E
x

y

0BB@
ṗx
ṗy
ẋ
ẏ

1CCA =

0BBB@
λ2x

−ω2
y y

px
py

1CCCAΣE for E > 0

Forward and backward dynamical reaction paths form the centreline of the
forward and backward cylinders, respectively

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y
forward reaction path backward reaction path
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

Ex

EyE = E  + E
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0BB@
ṗx
ṗy
ẋ
ẏ
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0BBB@
λ2x

−ω2
y y
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py
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Dividing surface ' S2 has x = 0,

Lyapunov periodic orbit ' S1 forms its equator and divides it into two
hemispheres ' B2

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y
forward hemisphere B2

f backward hemisphere B2
b
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Apart from its equator (which has x = px = 0) the dividing surface is transverse
to the flow (ẋ = px 6= 0 for px 6= 0)

copy with px ≥ 0 copy with px ≤ 0

x
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p
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y
forward hemisphere B2

f backward hemisphere B2
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Phase Space Structures near a Saddle
General (nonlinear) case

f = 2 degrees of freedom: dividing surface can be constructed from periodic orbit

Periodic Orbit Dividing Surface (PODS) (Pechukas, Pollak and McLafferty, 1970s)

How can one construct a dividing surface for a system with an arbitrary number of

degrees of freedom? What are the phase space conduits for reaction in this case?
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Phase Space Structures near a Saddle
General (nonlinear) case; E > 0

2 DoF 3 DoF f DoF

energy surface S2 × R S4 × R S2f−2 × R

dividing surface S2 S4 S2f−2

normally hyperbolic S1 S3 S2f−3

invariant manifold (NHIM)

(un)stable manifolds S1 × R S3 × R S2f−3 × R

forward/backward B2 B4 B2f−2

hemispheres

“flux” form Ω′ = dϕ ω 1
2ω

2 1
(f−1)!

ωf−1

“action” form ϕ p1dq1 + p2dq2 (p1dq1 + p2dq2 + p3dq3) ∧ 1
2 ω

Pf
k=1 pk dqk ∧

1
(f−1)!

ωf−2

Flux (rate): N(E) =
R

B2f−2
ds; forward

Ω′ =
R

S2f−3
NHIM

ϕ

Uzer et al. (2001) Nonlinearity 15 957-992
H. W. & S. Wiggins (2004) J. Phys. A 37 L435
H. W., A. Burbanks & S. Wiggins (2004) J. Chem. Phys. 121 6207
H. W., A. Burbanks & S. Wiggins (2005) Mon. Not. R. Astr. Soc. 361 763
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Phase Space Structures near a Saddle
General (nonlinear) case; construction of the phase space structures from normal form

Theorem (Normal Form) Consider a Hamiltonian vector field with a saddle equilibrium
point like in our setup, i.e. J D2H has eigenvalues ±λ,±iω2, . . . ,±iωf , λ, ωk > 0.
Assume that the linear frequencies (ω2, . . . , ωf ) are linearly independent over Q. Then,
for any given order, there exists a local, nonlinear symplectic transformation to normal
form (NF) coordinates (P,Q) = (P1, . . . ,Pf ,Q1, . . . ,Qf ) in which the transformed
Hamilton function, to this order, assumes the form

HNF = HNF(I, J2, . . . , Jf ) = λI + ω2J2 + . . .+ ωf Jf + h.o.t. ,

where
I = P1Q1 , J2 =

1
2
(P2

2 + Q2
2) , . . . , Jf =

1
2
(P2

f + Q2
f ) .
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Phase Space Structures near a Saddle
General (nonlinear) case; construction of the phase space structures from normal form

Comments

The NF proves the regularity of the motions near transition states

The NF gives explicit formulae for the phase space structures that control reaction
dynamics

The phase space structures can be realised in the NF coordinates (P,Q) and
mapped back to the original coordinates (p, q) using the inverse of the NF
transformation

The NF gives a simple expression for the flux in terms of the integrals I, J2, . . . , Jf

The NF transformation can be computed in an algorithmic fashion

In general the NF transformation does not converge but has to be truncated at a
suitable order

The NF is of local validity. Unbounded phase space structures like the NHIM’s
stable and unstable manifolds have to be extended from the neighbourhood of
validity of the NF by the flow corresponding to the original vector field
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Example: HCN/CNH Isomerisation

CN

H

r

R

γ
3 DoF for vanishing total angular momentum:

Jacobi coordinates r ,R, γ

Hamilton function

H =
1

2µ
p2

r +
1

2m
p2

R +
1
2

„
1
µr2

+
1

mR2

«
p2

γ + V (r ,R, γ)

where

µ = mCmN/(mC + mN), m = mH(mC + mN)/(mH + mC + mN)

V (r ,R, γ) : Murrell-Carter-Halonen potential energy surface
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Example: HCN/CNH Isomerisation
Unfolding the dynamics

Iso-potential surfaces V = const . saddle(s) at γ = ±67◦

consider energy 0.2 eV above saddle

normal form to 16th order

H. W., A. Burbanks & S. Wiggins (2004) J. Chem. Phys. 121 6207
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Example: HCN/CNH Isomerisation
Phase space structures

dividing surface S4

transverse to Hamiltonian
vector field

minimises the flux

NHIM S3

transition state or activated
complex

(un)stable manifolds S3 × R

phase space conduits for
reaction
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Quantum Transition State Theory

Outlook

The stable and unstable manifolds of the NHIM(s) and the geometry of their
intersections contain the full information about the reaction dynamics

This allows one to study

complex reactions (rare events - how does a system find its way through a
succession of transition states? global recrossings of the dividing surface?)

violations of ergodicity assumptions which are routinely employed in
statistical reaction rate theories (can every initial condition react?)

time scales for reactions (classification of different types of reactive
trajectories)

the control of reactions
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Global Recrossings and Rare Events

The role of homoclinic and heteroclinic connections

Homoclinic connections

orbits contained in the stable and unstable manifold of the same NHIM

Heteroclinic connections

orbits contained in the stable and unstable manifold of different NHIMs

Heteroclinic cycles

succession of heteroclinic connections

H. W., A. Burbanks & S. Wiggins (2004) J. Phys. A 37 L257

H. W., A. Burbanks & S. Wiggins (2004) J. Chem. Phys. 121 6207

Holger Waalkens Eindhoven 2010 Classical and Quantum Reaction Dynamics in Multidimensional Systems



Phase Space Conduits for Reaction
Quantum Transition State Theory

Outlook

Example: HCN/CNH Isomerisation
Fibration of the NHIM and homoclinic and heteroclinic connections

H. W., A. Burbanks & S. Wiggins (2004) J. Phys. A 37 L257

H. W., A. Burbanks & S. Wiggins (2004) J. Chem. Phys. 121 6207
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Example: HCN/CNH Isomerisation
Homoclinic and heteroclinic connections

Heteroclinic connection between invariant 2-tori in different NHIMs
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Outlook

Example: HCN/CNH Isomerisation
Homoclinic and heteroclinic connections

Heteroclinic connection between invariant 2-torus and Lyapunov periodic orbit in
different NHIMs
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Outlook

Example: HCN/CNH Isomerisation
Homoclinic and heteroclinic connections

Homoclinic connection to a single invariant 2-torus in a NHIM
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Violations of ergodicity assumptions

Are all points in phase space reactive i.e. do they all, as initial conditions for Hamilton’s
equations, lead to reactive trajectories?

Theorem (Reactive Phase Space Volume) Consider a region M in an energy surface
(e.g. the energy surface region corresponding to a potential well) with n exit channels
associated with saddle equilibrium points. The energy surface volume of initial
coniditions in M that lead to reactive (escape) trajectories is given by

vol(Mreact) =
nX

j=1

〈t〉Bds;j NBds;j

where

〈t〉Bds;j = mean residence time in the region M of trajectories
starting on the j th dividing surface Bds;j

NBds;j = flux through j th dividing surface Bds;j

H. W., A. Burbanks & S. Wiggins (2005) Phys. Rev. Lett. 95 084301

H. W., A. Burbanks & S. Wiggins (2005) J. Phys. A 38 L759

H. W., A. Burbanks & S. Wiggins (2005) Mon. Not. R. Astr. Soc. 361 763
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Example: HCN/CNH Isomerisation
Reactive phase space volumes

vol(MHCN; react)

vol(MHCN; total)
= 0.09

only 9 % of initial conditions in the HCN well
are reactive!

The procedure to compute vol(Mreact) following
from the theorem is orders of magnitudes more
efficient than a brute force Monte Carlo
computation

H. W., A. Burbanks & S. Wiggins (2005) Phys. Rev. Lett. 95 084301

H. W., A. Burbanks & S. Wiggins (2005) J. Phys. A 38 L759

H. W., A. Burbanks & S. Wiggins (2005) Mon. Not. R. Astr. Soc. 361 763
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Outlook

The stable and unstable manifolds structure the reactive region into subregions of
different types of reactive trajectories with a hierarchy of reaction time scales
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Outlook

Example: HCN/CNH Isomerisation
Reactive phase space subvolumes
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Outlook

Example: Müller-Brown Potential
Reactive phase space volumes

Example with f = 2 degrees of freedom

H =
1
2
(p2

x + p2
y ) + VMB(x , y)

upper deep potential well

lower shallow potential well
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Example: Müller-Brown Potential
Reactive phase space volumes

Example with f = 2 degrees of freedom

H =
1
2
(p2

x + p2
y ) + VMB(x , y)

Iso-residence times in the upper and
lower well on the dividing surface
hemispheres
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Example: Müller-Brown Potential
Reactive phase space volumes

Iso-residence times along the line P2 = 0

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0
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Iso-residence times in the upper and
lower well on the dividing surface
hemispheres
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Quantum Reaction Dynamics in Multidimensional Systems

Quantum Transition State Theory
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Quantum Transition State Theory

classical quantum

Hamilton’s equations Schrödinger equation

ṗ = − ∂H
∂q , q̇ = ∂H

∂p , (p, q) ∈ R2f bHψ ≡ `− ~2

2 ∇
2 + V

´
ψ = Eψ , ψ ∈ L2(Rf )

Main idea: “locally simplify” Hamilton function/operator

symplectic transformations unitary transformations

H 7→ H ◦ φ bH 7→ U bHU?

(classical) normal form quantum normal form

R. Schubert, H. W. & S. Wiggins (2006) Phys. Rev. Lett. 96 218302

H.W., R. Schubert & S. Wiggins (2008) Nonlinearty 21 R1-R118
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Systematic quantum-classical correspondence from Weyl calculus

Weyl calculus:
operator bA ↔ phase space function A (symbol)

bA =
1

(2π~)f

Z
R2f

A(ξq , ξp)bT (ξq , ξp) dξqdξp ↔ A(~, q, p) = Tr(bT (q, p)bA) ,

where bT (q, p) = e
i
~ (〈p,bq〉+〈q,bp〉)

Examples:

A bA
J := 1

2 (p2 + q2) bJ := −~2

2
d2

dq2 + 1
2 q2

I := pq bI := −i~(q d
dq + 1

2 )
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Quantum Normal Form

Theorem (Quantum Normal Form) Consider a Hamilton operator bH whose (principal)
symbol has a saddle equilibrium point like in our classical setup, i.e. J D2H has
eigenvalues ±λ,±iω2, . . . ,±iωf , λ, ωk > 0. Assume that the linear frequencies
(ω2, . . . , ωf ) are linearly independent over Q. Then, for any given order, there exists a
unitary transformation U(N) such that

U(N)bHU(N) ? = bH(N)
QNF + bR(N)

where bH(N)
QNF = H(N)

QNF(bI,bJ2, . . . ,bJf )

and R(N) is of order N + 1, i.e. R(N)(εp, εq, ε2~) = O(εN+1)

R. Schubert, H. W. & S. Wiggins (2006) Phys. Rev. Lett. 96 218302

H.W., R. Schubert & S. Wiggins (2008) Nonlinearty 21 R1-R118
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Quantum Normal Form

Comments

bH(N)
QNF is an operator function of the ‘elementary’ operatorsbI, bJk , k = 2, . . . , f ,

whose spectral properties are well known

This allows one to compute

quantum reaction probabilities (i.e. the analogue of the classical flux) and
quantum resonances (i.e. the quantum lifetimes of the activated complex)

scattering and resonance wavefunctions (‘quantum bottleneck states’) which
are localised on the classical phase space structures

Like the classical normal form the quantum normal form can be computed in an
algorithmic fashion
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Sketch of the Quantum Normal Form Computation

classical quantum

Taylor expansion of Hamilton function H Taylor expansion of the symbol H of bH
about critical point: H =

P∞
s=2Hs with about critical point: H =

P∞
s=2 Hs with

Hs ∈ Ps
cl = span{pαqβ : |α|+ |β| = s} Hs ∈ Ps

qm = span{pαqβ~γ : |α|+ |β|+ 2γ = s}

for saddle-centre-. . . -centre: for saddle-centre-. . . -centre:

H2 = λI + ω2J2 + . . .+ ωf Jf H2 = λI + ω2J2 + . . .+ ωf Jf

I = p1q1, Jk = 1
2 (p2

k + q2
k ) , k = 2, . . . , f I = p1q1, Jk = 1

2 (p2
k + q2

k ) , k = 2, . . . , f

successive symplectic transformations successive unitary transformations

H =: H(2) →H(3) → . . .→H(N) bH =: bH(2) → bH(3) → . . .→ bH(N)

H(n) = H(n−1) ◦ φ−1
Wn

, Wn ∈ Pn
cl

bH(n) = e
i
~

bWn bH(n−1)e−
i
~

bWn , Wn ∈ Pn
qm
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classical quantum

for s < n: H(n)
s = H(n−1)

s for s < n: H(n)
s = H(n−1)

s

for s ≥ n: H(n)
s =

P[ s−1
n−1 ]

j=0
1
j! [adWn ]

jH(n−1)
s−j(n−2)

for s ≥ n: H(n)
s =

P[ s−1
n−1 ]

j=0
1
j! [MadWn ]

j H(n−1)
s−j(n−2)

where adWn := {Wn, ·} where MadWn := {Wn, ·}M

with Poisson bracket {A,B}(p, q) = with Moyal bracket {A,B}M(p, q) =

A(p, q)[〈
↼
∂ p,

⇀
∂ q〉 − 〈

⇀
∂ p,

↼
∂ q〉]B(p, q) 2

~ A(p, q) sin
„

~
2 [〈

↼
∂ p,

⇀
∂ q〉 − 〈

⇀
∂ p,

↼
∂ q〉]

«
B(p, q)

choose Wn, n = 2, . . . ,N, such that choose Wn, n = 2, . . . ,N, such that

{H2,H
(n)
n } = 0 {H2,H

(n)
n }M = 0 (i.e. [bH2, bH(n)

n ] = 0)

from solving the homological equation from solving the homological equation

H(n)
n = H(n−1)

n + {Wn,H2} H(n)
n = H(n−1)

n + {Wn,H2}
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classical quantum

⇒ H(N) = H(N)
CNF +R(N) ⇒ bH(N) = bH(N)

QNF + bR(N)

where H(N)
CNF = H(N)

CNF(I, J2, . . . , Jf ) where bH(N)
QNF = H(N)

QNF(bI,bJ2, . . . ,bJf )

(and R(N) is remainder term of order N + 1) (and R(N) is remainder term of order N + 1)

R. Schubert, H. W. & S. Wiggins (2006) Phys. Rev. Lett. 96 218302

H.W., R. Schubert & S. Wiggins (2008) Nonlinearty 21 R1-R118

Holger Waalkens Eindhoven 2010 Classical and Quantum Reaction Dynamics in Multidimensional Systems



Phase Space Conduits for Reaction
Quantum Transition State Theory

Outlook

Sketch of the Quantum Normal Form Computation

classical quantum

⇒ H(N) = H(N)
CNF +R(N) ⇒ bH(N) = bH(N)

QNF + bR(N)

where H(N)
CNF = H(N)

CNF(I, J2, . . . , Jf ) where bH(N)
QNF = H(N)

QNF(bI,bJ2, . . . ,bJf )

(and R(N) is remainder term of order N + 1) (and R(N) is remainder term of order N + 1)

R. Schubert, H. W. & S. Wiggins (2006) Phys. Rev. Lett. 96 218302

H.W., R. Schubert & S. Wiggins (2008) Nonlinearty 21 R1-R118

Holger Waalkens Eindhoven 2010 Classical and Quantum Reaction Dynamics in Multidimensional Systems



Phase Space Conduits for Reaction
Quantum Transition State Theory

Outlook

Quantum normal form computation of the cumulative reaction probability

Scattering states are eigenfunctions of

ĤQNF = HQNF (̂I, Ĵ2, . . . , Ĵf ),

i.e.
ĤQNF ψ(I,nscatt) = HQNF(I, ~(n2 +

1
2
), . . . , ~(nf +

1
2
))ψ(I,nscatt),

where I ∈ R and nscatt ∈ Nf−1
0 and

ψ(I,nscatt)(q1, . . . , qf ) = ψI(q1)ψn2 (q2) · · ·ψnf (qf )

with quantum numbers nscatt = (n2, . . . , nf ) ∈ Nf−1
0
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Quantum normal form computation of the cumulative reaction probability

A scattering state ψ(I,nscatt) has transmission probability

Tnscatt =

»
1 + exp

„
− 2π

I
~

«–−1

Cumulative reaction probability

N(E) =
X
nscatt

Tnscatt (E) =
X

nscatt∈Nf−1
0

»
1 + exp

„
− 2π

Inscatt (E)

~

«–−1
,

where Inscatt (E) is determined by

HQNF
`
Inscatt (E), ~(n2 + 1/2), . . . , ~(nf + 1/2)

´
= E
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Example: Coupled Eckart-Morse-Morse Potential

H =
1
2
(p2

x + p2
y + p2

z ) + VE(x) + VM;y (y) + VM;z(z)| {z }+ ε (px py + px pz + py pz)| {z }
VE(x) =

A eax

1 + eax
+

B eax

(1 + eax )2
‘kinetic coupling’

VM;y (y) = Dy

“
e(−2αy y) − 2e(−αy y)

”
VM;z(z) = Dz

“
e(−2αz z) − 2e(−αz z)

”

Iso-potential surfaces:
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Example: Coupled Eckart-Morse-Morse Potential
Cumulative reaction probability
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Example: Coupled Eckart-Morse-Morse Potential
Cumulative reaction probability

Cumulative reaction probability N(E) ≈ ‘number of open transmission channels at
energy E ’

p1 p2

q2

p3

q3q1

(0,0)

(1,1)

(0,1)(1,0)

(2
,2)

(2
,1)(1

,2)

(2
,0)
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,0)
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Example: Coupled Eckart-Morse-Morse Potential
Cumulative reaction probability

Cumulative reaction probability N(E) ≈ integrated density of states of the activated
complex to energy E

J3

I

S1

IR

S1 IR2S1 IR2

S1 IR2 S1 IR2
J2

2

S1

2 2 RI

2 RI2

2

classical flux
J3

J2
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Example: Coupled Eckart-Morse-Morse Potential
Cumulative reaction probability

Cumulative reaction probability N(E) = integrated density of states of the activated
complex to energy E

J3

I

J2

N(E)

2
1 h J2

J3

h2
5h2

3

2
5 h

2
3 h

2
1 h
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Quantum resonances (Gamov-Siegert resonances)

Heisenberg uncertainty relation prohibits the existence of an invariant subsystem
analogous to the classical case in quantum mechanics

Wavepackets initialised on the (classical) activated complex decay exponentially in
time. This is described by the resonances.

Formal definition of resonances: poles of the meromorphic continuation of the resolventbR(E) = (bH − E)−1

to the lower half plane

Quantum resonances are obtained from complex Bohr-Sommerfeld quantization
conditions

E(n1,n2,...,nf )
= H(N)

QNF

`
In1 , Jn2 , . . . , Jnf

´
In1 = −i~(n1 + 1

2 ), Jn2 = ~(n2 + 1
2 ), . . . , Jnf = ~(nf + 1

2 ), n1, . . . , nd ∈ N0
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Quantum resonances (Gamov-Siegert resonances)
Husimi functions of resonance states in the saddle plane
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Example: Coupled Eckart-Morse-Morse Potential
Quantum resonances
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Periodic Orbit Formula for Cumulative Reaction Probability

n(E) :=
dN(E)

dE
≈ n0(E) + nosc(E)

where
n0(E): Thomas-Fermi or Weyl term (corresponds to classical flux at energy E)

nosc(E): sum over the fully resonant tori contained in the NHIM at energy E

More precisely, each qth repetition of a resonant torus with frequencies Ω ∼ µ where
µ ∈ Nf

0 coprime, contributes to nosc(E) a term

nµ,q(E) =
2π

~(f+1)/2

λ

sinh
`
πq |µ||Ω|λ

´ cos
`
q(2πµ · J/~− πµα/2− 2π|µ|λI1/|Ω|) + πβ/4

´
q(f−3)/2|µ|(f−3)/2|Ω|2

p
| det K (Jµ)|

where
λ =

∂H0
∂I (0, J) (stability index of resonant torus)

α is the vector of Maslov indices (here αk = 2)

K is the curvature tensor of the energy surface ΣE = {J : H0(0, J) = E} (NHIM)

β is the index of K
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Periodic Orbit Formula for Cumulative Reaction Probability
Example: Eckart-Morse-Morse potential

Energy surfaces ΣE with resonance lines µ1/µ2
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Periodic Orbit Formula for Cumulative Reaction Probability
Example: Eckart-Morse-Morse potential

Exact (dashed line) and periodic orbit approximation (solid line) of n(E) including
resonant tori with µ1, µ2 ≤ 3
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Summary

reaction-type dynamics is controlled by high dimensional phase space structures:

NHIM (‘activated complex’)
its stable and unstable manifolds

which can be explicitly constructed from algorithms based on a Poincaré-Birkhoff
normal form

this opens the way to investigate key questions in reaction rate theory

quantum normal form leads to an efficient procedure to compute resonances and
reaction rates for high dimensional systems

Outlook

effect of rotation/vibration coupling on isomerisation problems (global effects of
SO(3) reduction)

experimental observability of ‘quantum bottleneck states’

state-to-state reactivity in complex reactions
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