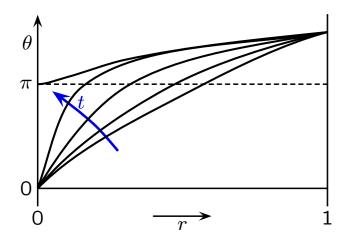
Matched asymptotics for the harmonic map heat flow

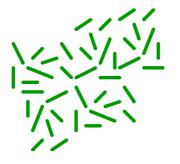
- Nematic liquid crystals
- The harmonic map heat flow
- Singularity formation (bubbling)
- Symmetric setting
- Matched asymptotic expansions
- Stability



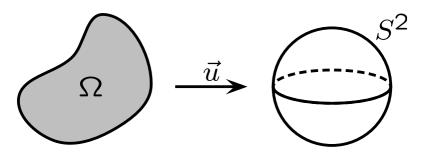
Jan Bouwe van den Berg (VU Amsterdam) John King (Nottingham) JF Williams (Vancouver, SFU) Joost Hulshof (VU Amsterdam)

Nematic liquid crystals

For example: LCD screens, polymer fibres A nematic liquid crystals consists of molecules that are elongated, i.e. like little rods or arrows. In particular, they have a direction.



The molecules are pointing in direction $\vec{u}(x)$. Normalise to length 1: $|\vec{u}(x)| = 1$ $\Rightarrow \quad \vec{u}(x) \in S^2$



Time dependent: $\vec{u}(x,t) \in S^2 \subset \mathbb{R}^3$

Energy

The (simplest) energy of a configuration $\vec{u}(x)$ is

$$E(\vec{u}) = \frac{1}{2} \int_{\Omega} |\nabla \vec{u}|^2 dx \qquad \text{where } |\nabla \vec{u}|^2 = \sum_{i,j} \left(\frac{\partial u_i}{\partial x_j}\right)^2$$

Energy is minimal when all molecules are parallel.

The stationary points are called harmonic maps.

Harmonic maps have been extensively studied in geometry: general maps $u: M \to N$ (Riemannian manifolds)

Energy

The (simplest) energy of a configuration $\vec{u}(x)$ is

$$E(\vec{u}) = \frac{1}{2} \int_{\Omega} |\nabla \vec{u}|^2 dx \qquad \text{where } |\nabla \vec{u}|^2 = \sum_{i,j} \left(\frac{\partial u_i}{\partial x_j}\right)^2$$

Energy is minimal when all molecules are parallel.

The stationary points are called harmonic maps.

Harmonic maps have been extensively studied in geometry: general maps $u: M \to N$ (Riemannian manifolds)

Dynamics: decrease the free energy as fast a possible:

gradient flow
$$\vec{u}_t = -\nabla E(\vec{u})$$

This leads to the harmonic map heat equation.

Mathematical context

$$E(u) = \frac{1}{2} \int |\nabla \vec{u}|^2$$

 $u: M \rightarrow N$ Riemannian manifolds (with a metric)

Mathematical context

$$E(u) = \frac{1}{2} \int |\nabla \vec{u}|^2$$

N Riomannian manifolds (with a mot

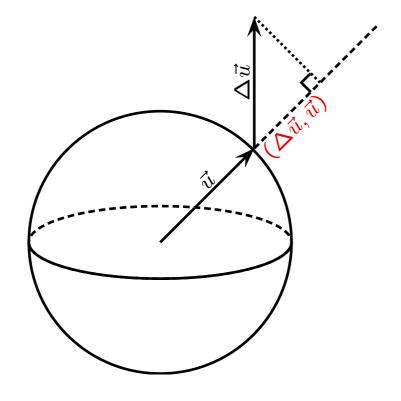
 $u: M \to N$ Riemannian manifolds (with a metric)

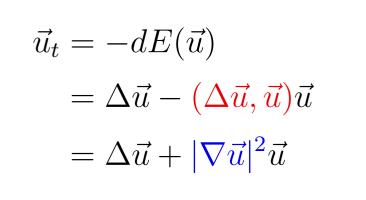
- $u: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ Critical points: $\nabla^2 u = \Delta u = 0$ are harmonic functions Gradient dynamics: heat equation $u_t = \Delta u$.
- $u : \mathbb{R} \to N$ parametrised curves Critical points: geodesics.
- $u: \mathbb{R}^2 \to S^1$ difficulty in choosing function spaces Ginzburg-Landau functional

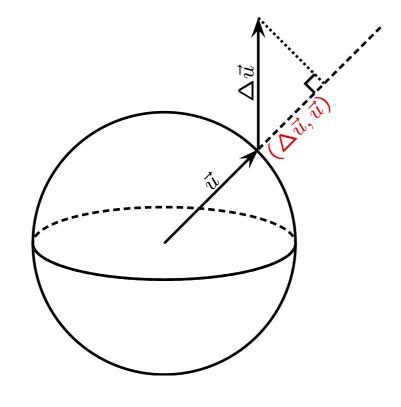
$$E(u) = \frac{1}{2} \int |\nabla \vec{u}|^2 + \frac{1}{4\varepsilon^2} (1 - |\vec{u}|^2)^2$$

$$\vec{u}_t = -dE(\vec{u})$$
$$= \Delta \vec{u} - (\Delta \vec{u}, \vec{u})\vec{u}$$

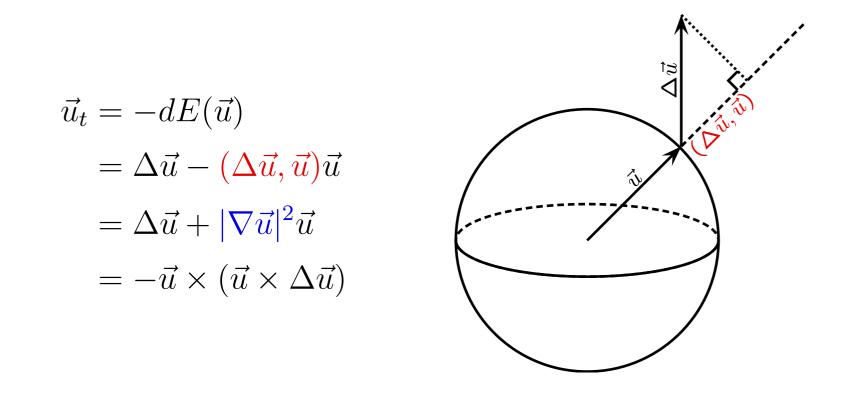
$$\vec{u}_t = -dE(\vec{u})$$
$$= \Delta \vec{u} - (\Delta \vec{u}, \vec{u})\vec{u}$$







 $0 = \nabla \cdot \nabla(\vec{u}, \vec{u}) = \nabla \cdot 2(\nabla \vec{u}, \vec{u}) = 2[(\Delta \vec{u}, \vec{u}) + (\nabla \vec{u}, \nabla \vec{u})]$



 $0 = \nabla \cdot \nabla(\vec{u}, \vec{u}) = \nabla \cdot 2(\nabla \vec{u}, \vec{u}) = 2[(\Delta \vec{u}, \vec{u}) + (\nabla \vec{u}, \nabla \vec{u})]$

In ferromagnetism (Landau-Lifshitz equation): $\vec{u}_t = \alpha \, \vec{u} \times \Delta \vec{u} - \beta \, \vec{u} \times (\vec{u} \times \Delta \vec{u})$

PDE Properties

 $\begin{cases} \vec{u}_t = \Delta \vec{u} + |\nabla \vec{u}|^2 \vec{u} & x \in \Omega, t > 0 \\ \vec{u}(x,t) = \vec{u}_1(x) & x \in \partial \Omega \text{ (boundary conditions)} \\ \vec{u}(x,0) = \vec{u}_0(x) & \text{initial conditions} \end{cases}$

- $|\vec{u}_0(x)| = 1 \implies |\vec{u}(x,t)| = 1$ for all t
- $\frac{d}{dt}E(\vec{u}(t)) \le 0$
- Classical solution on some maximal interval [0,T)
- If $T < \infty$, then $|\nabla \vec{u}| \to \infty$ as $t \uparrow T$.
- How to continue after t = T?

PDE Properties

 $\begin{cases} \vec{u}_t = \Delta \vec{u} + |\nabla \vec{u}|^2 \vec{u} & x \in \Omega, t > 0 \\ \vec{u}(x,t) = \vec{u}_1(x) & x \in \partial \Omega \text{ (boundary conditions)} \\ \vec{u}(x,0) = \vec{u}_0(x) & \text{initial conditions} \end{cases}$

- $|\vec{u}_0(x)| = 1 \implies |\vec{u}(x,t)| = 1$ for all t
- $\frac{d}{dt}E(\vec{u}(t)) \le 0$
- Classical solution on some maximal interval [0,T)
- If $T < \infty$, then $|\nabla \vec{u}| \to \infty$ as $t \uparrow T$.
- Weak solutions exist for all time
- Unique if you require E(t) non-increasing ($\Omega \subset \mathbb{R}^2$)
- $\Omega \subset \mathbb{R}^3$ is much harder: 1. too many solutions
 - 2. singularities have finite energy

PDE Properties

 $\begin{cases} \vec{u}_t = \Delta \vec{u} + |\nabla \vec{u}|^2 \vec{u} & x \in \Omega, t > 0 \\ \vec{u}(x,t) = \vec{u}_1(x) & x \in \partial \Omega \text{ (boundary conditions)} \\ \vec{u}(x,0) = \vec{u}_0(x) & \text{initial conditions} \end{cases}$

- $|\vec{u}_0(x)| = 1 \implies |\vec{u}(x,t)| = 1$ for all t
- $\frac{d}{dt}E(\vec{u}(t)) \le 0$
- Classical solution on some maximal interval [0,T)
- If $T < \infty$, then $|\nabla \vec{u}| \to \infty$ as $t \uparrow T$.
- Weak solutions exist for all time
- Unique if you require E(t) non-increasing ($\Omega \subset \mathbb{R}^2$)
- Smooth except at a finite number of points (x_0, T)

[Struwe]

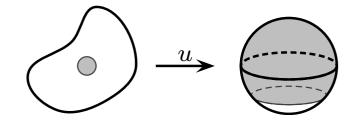
Singularity/blowup/bubbling

Near a singular point (x_0, T) there is a scaling factor R(t)

1.
$$R(t) \to 0$$
 as $t \to T$
2. $\vec{u}(\frac{x-x_0}{R(t)}, t) \to \vec{u}(x)$ as $t \to T$

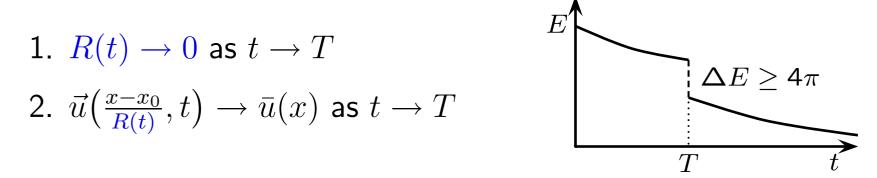
where \bar{u} solves $\Delta \bar{u} + |\nabla \bar{u}|^2 \bar{u} = 0$, a non-constant harmonic map.

A sphere "bubbles off"



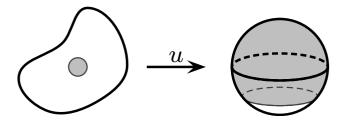
Singularity/blowup/bubbling

Near a singular point (x_0, T) there is a scaling factor R(t)



where \bar{u} solves $\Delta \bar{u} + |\nabla \bar{u}|^2 \bar{u} = 0$, a non-constant harmonic map.

A sphere "bubbles off"

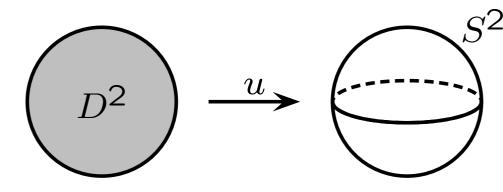


[Chang, Ding, Ye] Example where singularity occurs in finite time

- Goals: analyse the unknown scaling factor R(t).
 - analyse the stability of bubbling.

Choosing coordinates

 $\vec{u}_t = \Delta \vec{u} + |\nabla \vec{u}|^2 \vec{u}$ harmonic map heat flow (gradient) $\Omega = D^2 =$ unit disk (or cylinder uniform in z).

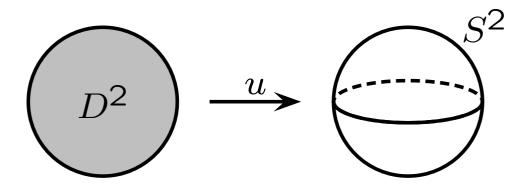


polar coordinates on $D^2 \,$ spherical coordinates on $S^2 \,$

 $\vec{u}(\cdot,t):(r,\phi) \to \begin{pmatrix} \sin\theta \,\cos\psi\\ \sin\theta \,\sin\psi\\ \cos\theta \end{pmatrix}$

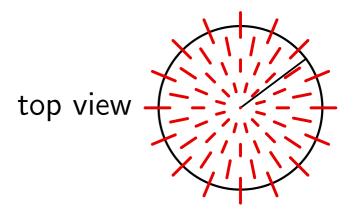
Choosing coordinates

 $\vec{u}_t = \Delta \vec{u} + |\nabla \vec{u}|^2 \vec{u}$ harmonic map heat flow (gradient) $\Omega = D^2 =$ unit disk (or cylinder uniform in z).

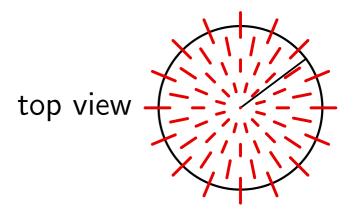


polar coordinates on D^2 spherical coordinates on S^2 $\vec{u}(\cdot,t):(r,\phi) \rightarrow \begin{pmatrix} \sin\theta \cos\psi\\ \sin\theta \sin\psi\\ \cos\theta \end{pmatrix}$

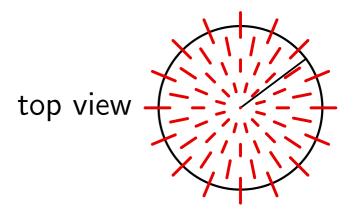
$$\begin{cases} \theta_t = \theta_{rr} + \frac{1}{r}\theta_r + \frac{1}{r^2}\theta_{\phi\phi} - \frac{\sin 2\theta}{2}(\psi_r^2 + \frac{1}{r^2}\psi_{\phi}^2) \\ \psi_t = \psi_{rr} + \frac{1}{r}\psi_r + \frac{1}{r^2}\psi_{\phi\phi} + \frac{\sin 2\theta}{(\sin \theta)^2}(\psi_r\theta_r + \frac{1}{r^2}\psi_{\phi}\theta_{\phi}) \end{cases}$$



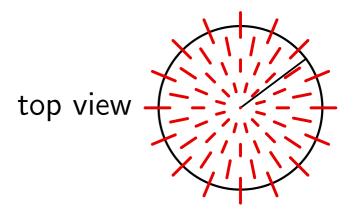
side view ~



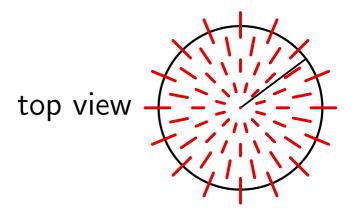
side view



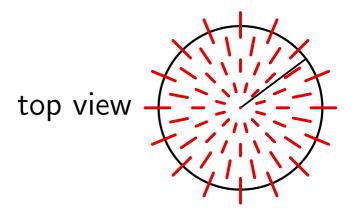
side view



side view ~

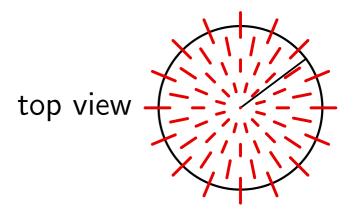


side view ~



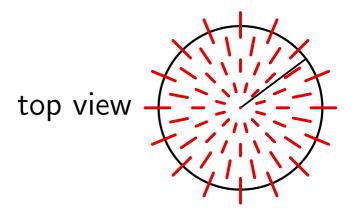
side view ~

All molecules are directed in the radial direction.

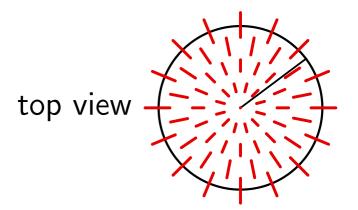


side view

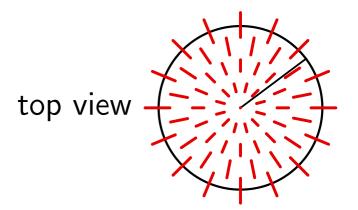
 \sim



side view

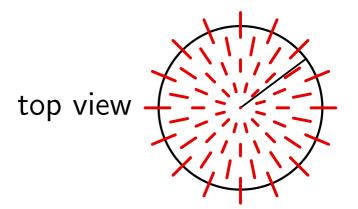


side view

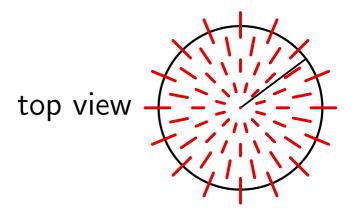


side view

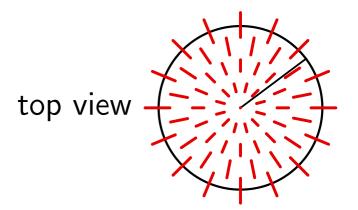
All molecules are directed in the radial direction.



side view

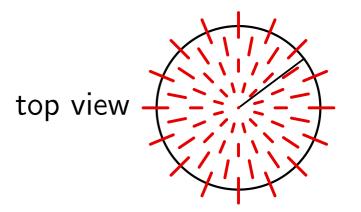


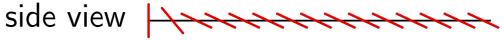
side view \sim



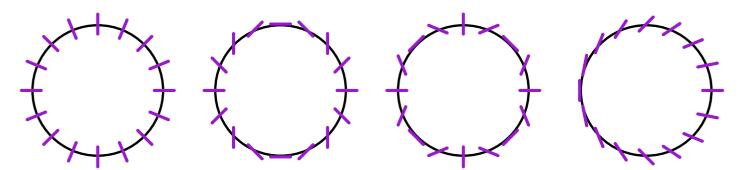
side view

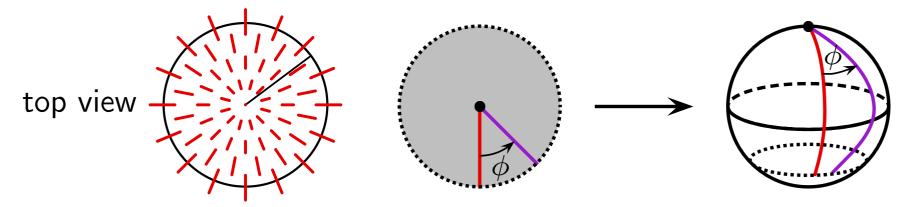
All molecules are directed in the radial direction.



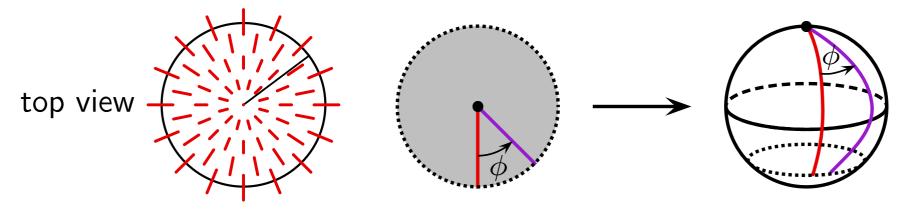


Other symmetries:





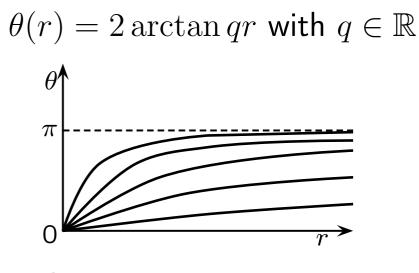
All molecules are directed in the radial direction.



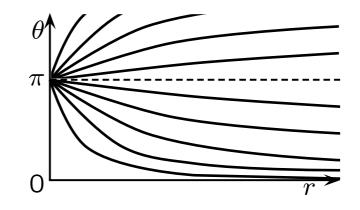
This means: $\psi(r, \phi, t) = \phi$ and $\theta(r, \phi, t) = \theta(r, t)$

$$\begin{cases} \theta_t = \theta_{rr} + \frac{1}{r}\theta_r - \frac{\sin 2\theta}{2r^2}, \\ \theta(1,t) = \theta_1, \\ \theta(0,t) \in \pi \mathbb{Z} \quad \text{finite energy } E = \pi \int_0^1 \left(\theta_r^2 + \frac{\sin^2 \theta}{r^2}\right) r dr. \end{cases}$$

Equilibria (harmonic maps)

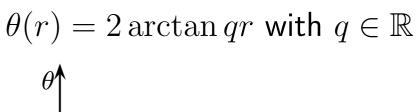


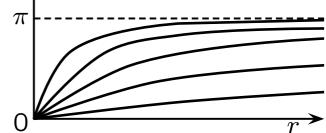
and $m\pi + 2 \arctan qr$



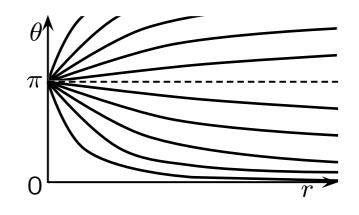
Scaling invariance/symmetry: $\theta(r,t) \Rightarrow \theta(\lambda r, \lambda^2 t)$

Equilibria (harmonic maps)



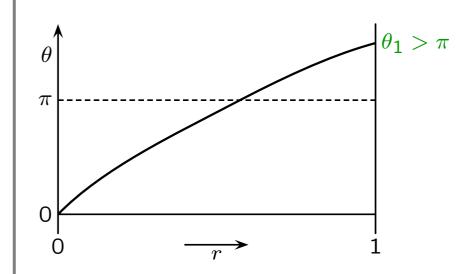


and $m\pi + 2 \arctan qr$



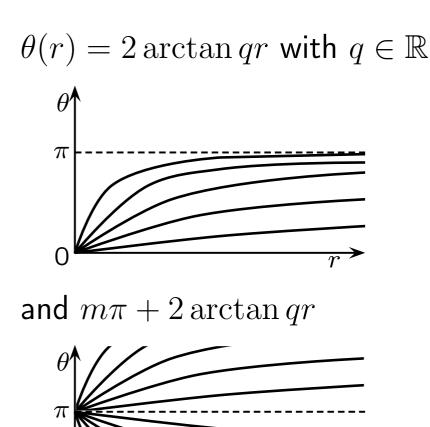
Scaling invariance/symmetry: $\theta(r,t) \Rightarrow \theta(\lambda r, \lambda^2 t)$

and blowup



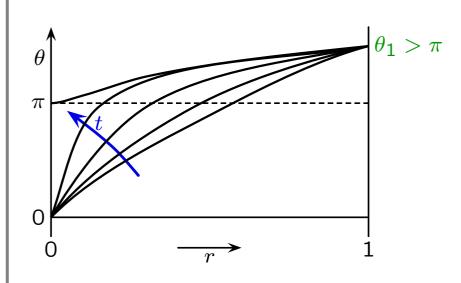
No suitable equilibrium

Equilibria (harmonic maps)



 $0 \qquad r \\ Scaling invariance/symmetry: \\ \theta(r,t) \Rightarrow \theta(\lambda r, \lambda^2 t)$

and blowup



No suitable equilibrium \Rightarrow jump/singularity in r = 0

Scaling $R(t) \stackrel{\text{def}}{=} \frac{2}{\theta_r(0,t)} \to 0$

Scaled variables $\xi = \frac{r}{R(t)}$ Then $\theta(\xi, t) \rightarrow 2 \arctan \xi$

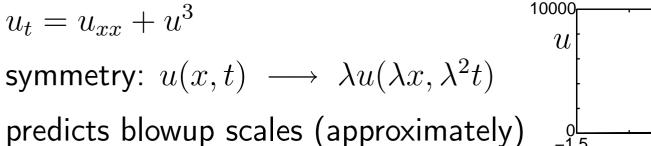
Blowup rate not self-similar

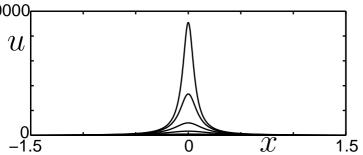
Blowup in other equations

 $u' = u^2$

symmetry: u(t) solution $\Rightarrow \lambda u(\lambda t)$ solution

predicts blowup speed $u(t) = \frac{1}{T-t}$



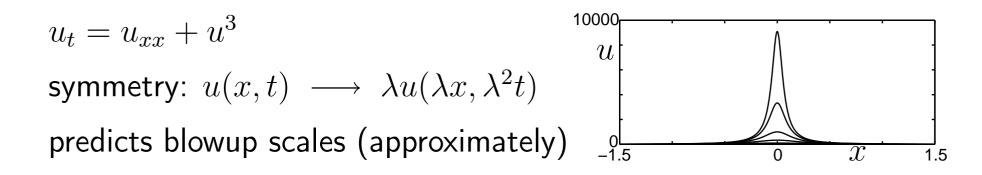


Blowup in other equations

 $u' = u^2$

symmetry: u(t) solution $\Rightarrow \lambda u(\lambda t)$ solution

predicts blowup speed $u(t) = \frac{1}{T-t}$



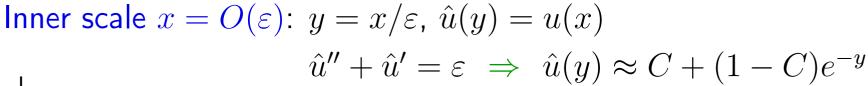
Symmetry-prediction does not work for harmonic map:

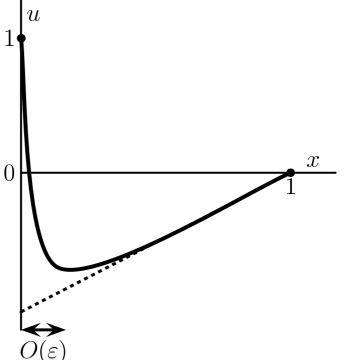
- 1. $|\nabla u|$ blows up
- 2. behaviour is "quasi-stationary"

Matched asymptotics: simpler example

$$\begin{cases} \varepsilon u'' + u' = 1\\ u(0) = 1, u(1) = 0 \end{cases} \qquad 0 < \varepsilon \ll 1$$

Outer scale x = O(1): $u' \approx 1 \implies u(x) \approx x - 1$



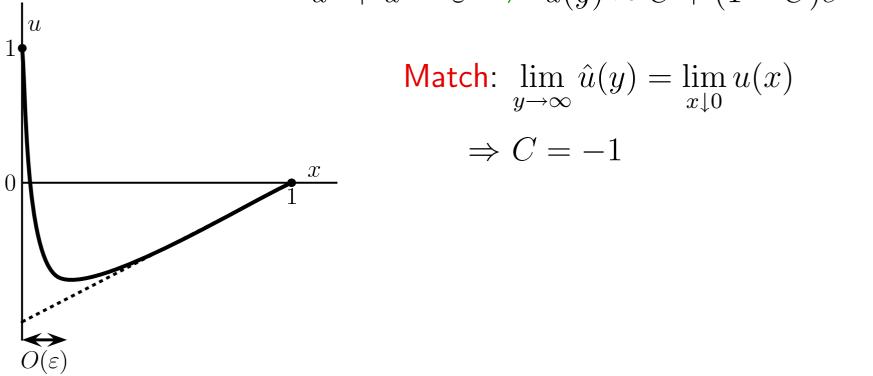


Matched asymptotics: simpler example

$$\begin{cases} \varepsilon u'' + u' = 1\\ u(0) = 1, u(1) = 0 \end{cases} \qquad 0 < \varepsilon \ll 1$$

Outer scale x = O(1): $u' \approx 1 \implies u(x) \approx x - 1$

Inner scale $x = O(\varepsilon)$: $y = x/\varepsilon$, $\hat{u}(y) = u(x)$ $\hat{u}'' + \hat{u}' = \varepsilon \implies \hat{u}(y) \approx C + (1 - C)e^{-y}$

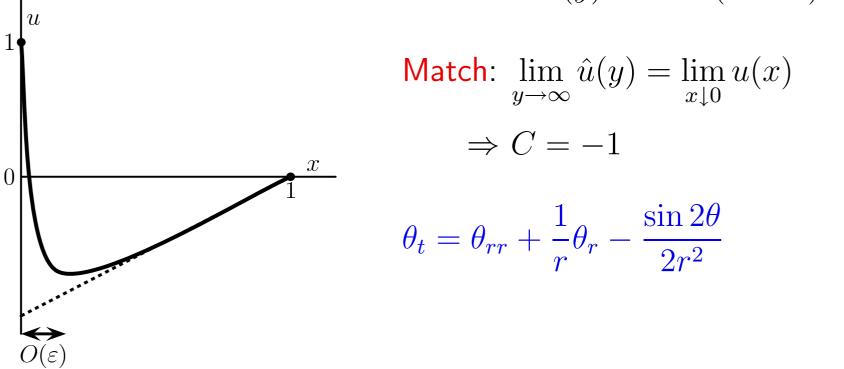


Matched asymptotics: simpler example

$$\begin{cases} \varepsilon u'' + u' = 1\\ u(0) = 1, u(1) = 0 \end{cases} \qquad 0 < \varepsilon \ll 1$$

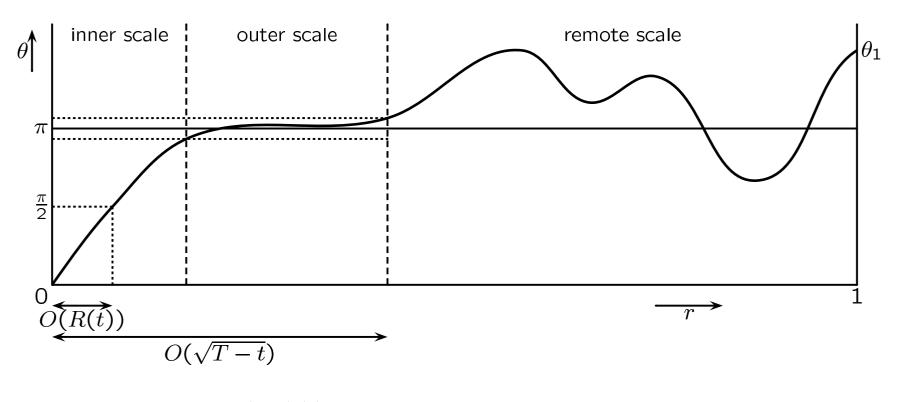
Outer scale x = O(1): $u' \approx 1 \implies u(x) \approx x - 1$

Inner scale $x = O(\varepsilon)$: $y = x/\varepsilon$, $\hat{u}(y) = u(x)$ $\hat{u}'' + \hat{u}' = \varepsilon \implies \hat{u}(y) \approx C + (1 - C)e^{-y}$



Matched asymptotics

We need three scales to calculate R(t)



 $\begin{array}{ll} \text{inner:} \ r = O(R(t)) & \xi = \frac{r}{R(t)} & \theta \sim 2 \arctan \xi + \dots \\ \text{outer:} \ r = O(\sqrt{T-t}) & y = \frac{r}{\sqrt{T-t}} & \theta \sim \pi + \dots \\ \text{remote:} \ r = O(1) & \theta \sim \theta(r,T) + \dots \end{array}$

Inner approximation

New equation in $\xi = \frac{r}{R(t)}$ with $R(t) \to 0$:

$$R^2\theta_t - R'R\xi\theta_\xi = \theta_{\xi\xi} + \frac{1}{\xi}\theta_\xi - \frac{\sin 2\theta}{2\xi^2}$$

Expand $\theta = \theta_0 + RR' \theta_1 + (RR')^2 \theta_2 + \dots$

$$\begin{aligned} \theta_0 \text{ solves } \theta_{0\xi\xi} + \frac{1}{\xi}\theta_{0\xi} - \frac{\sin 2\theta_0}{2\xi^2} &= 0. \\ \theta_1 \text{ solves } \theta_{1\xi\xi} + \frac{1}{\xi}\theta_{1\xi} - \frac{\cos 2\theta_0}{\xi^2}\theta_1 &= -\xi\theta_{0\xi}. \end{aligned}$$

 $\begin{aligned} \theta(\xi,t) \sim \pi - 2\xi^{-1} + R'(t)R(t)(-\xi\ln\xi + \xi) + \dots \\ & \text{as } \xi \to \infty \text{ and } t \uparrow T. \end{aligned}$

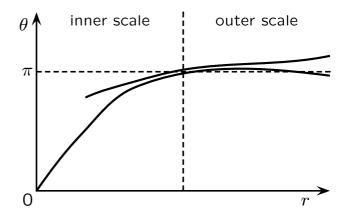
Matching

outer variables: $y = \frac{r}{\sqrt{T-t}}$, $\tau = -\ln(T-t) \to \infty$ $\theta_{\text{outer}}(y,\tau) \sim \pi + e^{-\tau/2} [\sigma(\tau)y + \sigma'(\tau)(4y^{-1} - 2y\ln y) + \dots] + \dots$ with $\sigma(\tau)$ unknown.

Matching

outer variables: $y = \frac{r}{\sqrt{T-t}}$, $\tau = -\ln(T-t) \to \infty$ $\theta_{\text{outer}}(y,\tau) \sim \pi + e^{-\tau/2} [\sigma(\tau)y + \sigma'(\tau)(4y^{-1} - 2y\ln y) + \dots] + \dots$ with $\sigma(\tau)$ unknown.

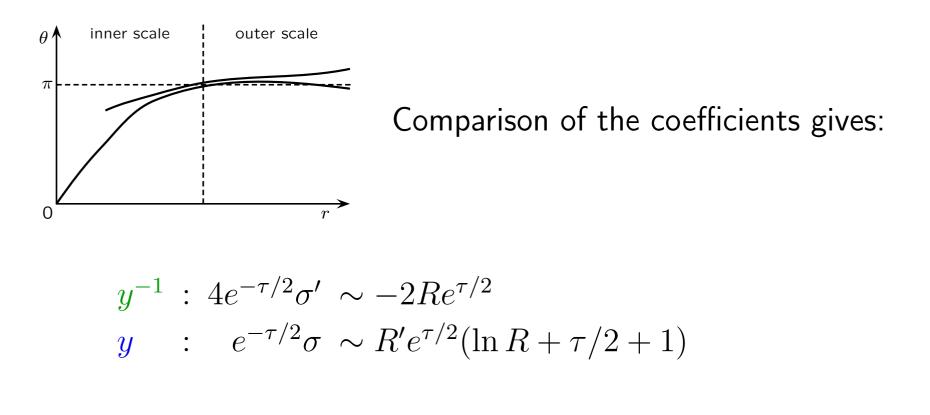
 $\theta_{\text{inner}}(y,\tau) \sim \pi - 2e^{\tau/2}Ry^{-1} + e^{\tau/2}R'y(-\ln y + \ln R + \tau/2 + 1) + \dots$



Matching

outer variables: $y = \frac{r}{\sqrt{T-t}}$, $\tau = -\ln(T-t) \to \infty$ $\theta_{\text{outer}}(y,\tau) \sim \pi + e^{-\tau/2} [\sigma(\tau)y + \sigma'(\tau)(4y^{-1} - 2y\ln y) + \dots] + \dots$ with $\sigma(\tau)$ unknown.

 $\theta_{\text{inner}}(y,\tau) \sim \pi - 2e^{\tau/2}Ry^{-1} + e^{\tau/2}R'y(-\ln y + \ln R + \tau/2 + 1) + \dots$



Zoom/scaling factor R(t):

$$R(t) \sim \kappa \frac{T-t}{|\ln(T-t)|^2}$$
 as $t \uparrow T$. $\ll \sqrt{T-t}$

Zoom/scaling factor R(t):

$$\frac{R(t)}{|\ln(T-t)|^2} \qquad \text{as } t \uparrow T.$$

Proofs [Angenent, Hulshof, Matano]

•
$$R(t) = o(T-t)$$
 as $t \uparrow T$.

Zoom/scaling factor R(t):

$$\frac{R(t)}{|\ln(T-t)|^2} \qquad \text{as } t \uparrow T.$$

Proofs [Angenent, Hulshof, Matano]

•
$$R(t) = o(T - t)$$
 as $t \uparrow T$.
• θ_{π}
• η_{π}
• η_{π}
• $\theta_{1} = \pi$
• $R(t) = e^{-2\sqrt{t} + o(\sqrt{t})}$ as $t \to \infty$.

Zoom/scaling factor R(t):

$$\frac{R(t)}{|\ln(T-t)|^2} \qquad \text{as } t \uparrow T.$$

Proofs [Angenent, Hulshof, Matano]

•
$$R(t) = o(T - t)$$
 as $t \uparrow T$.
• θ_{π}
• η_{π}

• Partial results: general case is open.

$$\theta_t = \theta_{rr} + \frac{1}{r}\theta_r - \frac{\sin 2\theta}{2r^2}$$

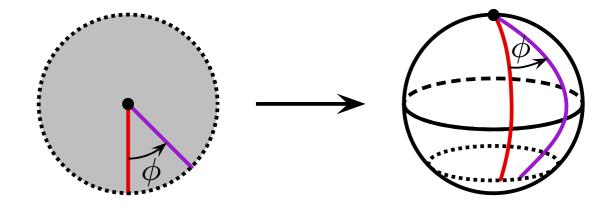
High symmetry \Rightarrow Topological obstruction \Rightarrow Blowup How about non-symmetric perturbations?

$$\begin{cases} \theta_t = \theta_{rr} + \frac{1}{r}\theta_r + \frac{1}{r^2}\theta_{\phi\phi} - \frac{\sin 2\theta}{2}(\psi_r^2 + \frac{1}{r^2}\psi_{\phi}^2) \\ \psi_t = \psi_{rr} + \frac{1}{r}\psi_r + \frac{1}{r^2}\psi_{\phi\phi} + \frac{\sin 2\theta}{(\sin \theta)^2}(\psi_r\theta_r + \frac{1}{r^2}\psi_{\phi}\theta_{\phi}) \end{cases}$$

High symmetry \Rightarrow Topological obstruction \Rightarrow Blowup Equivariant: $\theta = \theta(r, t)$ and $\psi = \phi + \chi(r, t)$ $\begin{cases} \theta_t = \theta_{rr} + \frac{1}{r}\theta_r - \frac{\sin 2\theta}{2}(\chi_r^2 + \frac{1}{r^2}) \\ \chi_t = \chi_{rr} + \frac{1}{r}\chi_r + \frac{\sin 2\theta}{(\sin \theta)^2}\chi_r\theta_r \end{cases}$

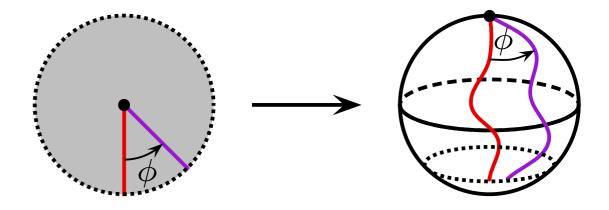
High symmetry \Rightarrow Topological obstruction \Rightarrow Blowup Equivariant: $\theta = \theta(r, t)$ and $\psi = \phi + \chi(r, t)$ $\begin{cases} \theta_t = \theta_{rr} + \frac{1}{r}\theta_r - \frac{\sin 2\theta}{2}(\chi_r^2 + \frac{1}{r^2}) \\ \gamma_t = \gamma_{-} \pm \frac{1}{2}\gamma_{-} \pm \frac{\sin 2\theta_{-}}{2} & \phi \end{cases}$

$$\chi_t = \chi_{rr} + \frac{1}{r}\chi_r + \frac{\sin 2\theta}{(\sin \theta)^2}\chi_r\theta_r$$



High symmetry \Rightarrow Topological obstruction \Rightarrow Blowup Equivariant: $\theta = \theta(r, t)$ and $\psi = \phi + \chi(r, t)$ $\begin{cases} \theta_t = \theta_{rr} + \frac{1}{r}\theta_r - \frac{\sin 2\theta}{2}(\chi_r^2 + \frac{1}{r^2}) \\ \chi_t = \chi + \frac{1}{r}\chi + \frac{\sin 2\theta}{r} = 0 \end{cases}$

$$\chi_t = \chi_{rr} + \frac{1}{r}\chi_r + \frac{\sin 2\theta}{(\sin \theta)^2}\chi_r\theta_r$$



We only need to consider one radius

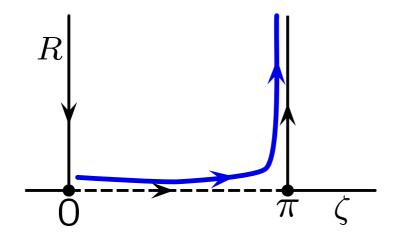
Matched asymptotics again

inner:
$$\begin{cases} \theta = 2 \arctan \xi + R'(t)R(t) \dots \\ \chi = \zeta(t) + R(t)^2 \zeta'(t) \dots \end{cases}$$

Matched asymptotics again

inner:
$$\begin{cases} \theta = 2 \arctan \xi + R'(t) R(t) \dots \\ \chi = \zeta(t) + R(t)^2 \zeta'(t) \dots \end{cases}$$

The singularity is a saddle point



Numerics

Numerics

Conclusion: instability

Radially symmetric blowup in the harmonic map heat flow is co-dimension 1 unstable under equivariant perturbations

There is no proof

Conclusion: instability

Radially symmetric blowup in the harmonic map heat flow is co-dimension 1 unstable under equivariant perturbations

There is no proof (very frustrating)

Conclusion: instability

Radially symmetric blowup in the harmonic map heat flow is co-dimension 1 unstable under equivariant perturbations

There is no proof (very frustrating)

Other results

- Instability dynamics: fast rotation of sphere over 180°
- Same result for Landau-Lifshitz

 $\vec{u}_t = \alpha \, \vec{u} \times \Delta \vec{u} - \beta \, \vec{u} \times (\vec{u} \times \Delta \vec{u})$

No radially symmetric case, but an equivariant one

 Hints for continuation after bubbling: immediately reattach sphere rotated by 180°