
Matched asymptotics for the harmonic map heat flow

• Nematic liquid crystals

• The harmonic map heat flow

• Singularity formation (bubbling)

• Symmetric setting

• Matched asymptotic expansions
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Nematic liquid crystals

For example: LCD screens, polymer fibres
A nematic liquid crystals consists of molecules that are elongated,
i.e. like little rods or arrows.
In particular, they have a direction.

The molecules are pointing in direction ~u(x).

Normalise to length 1: |~u(x)| = 1

⇒ ~u(x) ∈ S2

~u
Ω

S2

Time dependent: ~u(x, t) ∈ S2 ⊂ R
3
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Energy

The (simplest) energy of a configuration ~u(x) is

E(~u) =
1

2

∫

Ω

|∇~u|2dx where |∇~u|2 =
∑

i,j

(

∂ui

∂xj

)2

Energy is minimal when all molecules are parallel.

The stationary points are called harmonic maps.

Harmonic maps have been extensively studied in geometry:
general maps u : M → N (Riemannian manifolds)
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∫

Ω

|∇~u|2dx where |∇~u|2 =
∑

i,j

(

∂ui

∂xj

)2

Energy is minimal when all molecules are parallel.

The stationary points are called harmonic maps.

Harmonic maps have been extensively studied in geometry:
general maps u : M → N (Riemannian manifolds)

Dynamics: decrease the free energy as fast a possible:

gradient flow ~ut = −∇E(~u)

This leads to the harmonic map heat equation.
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Mathematical context

E(u) =
1

2

∫

|∇~u|2

u : M → N Riemannian manifolds (with a metric)
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Mathematical context

E(u) =
1

2

∫

|∇~u|2

u : M → N Riemannian manifolds (with a metric)

• u : Ω ⊂ R
n → R

Critical points: ∇2u = ∆u = 0 are harmonic functions
Gradient dynamics: heat equation ut = ∆u.

• u : R → N parametrised curves
Critical points: geodesics.

• u : R
2 → S1 difficulty in choosing function spaces

Ginzburg-Landau functional

E(u) =
1

2

∫

|∇~u|2 +
1

4ε2
(1 − |~u|2)2
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Harmonic map heat flow

~ut = −dE(~u)

= ∆~u− (∆~u, ~u)~u
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= ∆~u− (∆~u, ~u)~u

(∆
~u,

~u)

~u

∆
~u
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Harmonic map heat flow

~ut = −dE(~u)

= ∆~u− (∆~u, ~u)~u

= ∆~u+ |∇~u|2~u

(∆
~u,

~u)

~u

∆
~u

0 = ∇ · ∇(~u, ~u) = ∇ · 2(∇~u, ~u) = 2[(∆~u, ~u) + (∇~u,∇~u)]
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Harmonic map heat flow

~ut = −dE(~u)

= ∆~u− (∆~u, ~u)~u

= ∆~u+ |∇~u|2~u
= −~u× (~u× ∆~u)

(∆
~u,

~u)

~u

∆
~u

0 = ∇ · ∇(~u, ~u) = ∇ · 2(∇~u, ~u) = 2[(∆~u, ~u) + (∇~u,∇~u)]

In ferromagnetism (Landau-Lifshitz equation):

~ut = α~u× ∆~u− β ~u× (~u× ∆~u)
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PDE Properties















~ut = ∆~u+ |∇~u|2~u x ∈ Ω, t > 0

~u(x, t) = ~u1(x) x ∈ ∂Ω (boundary conditions)

~u(x, 0) = ~u0(x) initial conditions

• |~u0(x)| = 1 ⇒ |~u(x, t)| = 1 for all t

• d
dt
E(~u(t)) ≤ 0

• Classical solution on some maximal interval [0, T )

• If T <∞, then |∇~u| → ∞ as t ↑ T .

• How to continue after t = T?
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~ut = ∆~u+ |∇~u|2~u x ∈ Ω, t > 0

~u(x, t) = ~u1(x) x ∈ ∂Ω (boundary conditions)

~u(x, 0) = ~u0(x) initial conditions

• |~u0(x)| = 1 ⇒ |~u(x, t)| = 1 for all t

• d
dt
E(~u(t)) ≤ 0

• Classical solution on some maximal interval [0, T )

• If T <∞, then |∇~u| → ∞ as t ↑ T .

• Weak solutions exist for all time

• Unique if you require E(t) non-increasing (Ω ⊂ R
2)

• Ω ⊂ R
3 is much harder: 1. too many solutions

2. singularities have finite energy
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PDE Properties















~ut = ∆~u+ |∇~u|2~u x ∈ Ω, t > 0

~u(x, t) = ~u1(x) x ∈ ∂Ω (boundary conditions)

~u(x, 0) = ~u0(x) initial conditions

• |~u0(x)| = 1 ⇒ |~u(x, t)| = 1 for all t

• d
dt
E(~u(t)) ≤ 0

• Classical solution on some maximal interval [0, T )

• If T <∞, then |∇~u| → ∞ as t ↑ T .

• Weak solutions exist for all time

• Unique if you require E(t) non-increasing (Ω ⊂ R
2)

• Smooth except at a finite number of points (x0, T )

[Struwe]
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Singularity/blowup/bubbling

Near a singular point (x0, T ) there is a scaling factor R(t)

1. R(t) → 0 as t→ T

2. ~u
(

x−x0

R(t)
, t

)

→ ū(x) as t→ T

tT

E

∆E ≥ 4π

where ū solves ∆ū+ |∇ū|2ū = 0, a non-constant harmonic map.

A sphere “bubbles off” u
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Singularity/blowup/bubbling

Near a singular point (x0, T ) there is a scaling factor R(t)

1. R(t) → 0 as t→ T

2. ~u
(

x−x0

R(t)
, t

)

→ ū(x) as t→ T

tT

E

∆E ≥ 4π

where ū solves ∆ū+ |∇ū|2ū = 0, a non-constant harmonic map.

A sphere “bubbles off” u

[Chang,Ding,Ye] Example where singularity occurs in finite time

Goals: • analyse the unknown scaling factor R(t).
Goals: • analyse the stability of bubbling.
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Choosing coordinates

~ut = ∆~u+ |∇~u|2~u harmonic map heat flow (gradient)
Ω = D2 = unit disk (or cylinder uniform in z).

polar coordinates on D2

spherical coordinates on S2 ~u(·, t) : (r, φ) →





sin θ cosψ
sin θ sinψ

cos θ
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Choosing coordinates

~ut = ∆~u+ |∇~u|2~u harmonic map heat flow (gradient)
Ω = D2 = unit disk (or cylinder uniform in z).

polar coordinates on D2

spherical coordinates on S2 ~u(·, t) : (r, φ) →





sin θ cosψ
sin θ sinψ

cos θ











θt = θrr + 1
r
θr + 1

r2 θφφ − sin 2θ
2

(ψ2
r + 1

r2ψ
2
φ)

ψt = ψrr + 1
r
ψr + 1

r2ψφφ + sin 2θ
(sin θ)2

(ψrθr + 1
r2ψφθφ)
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Radially symmetric situation

All molecules are directed in the radial direction.

top view side view
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Radially symmetric situation

All molecules are directed in the radial direction.

top view side view
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Radially symmetric situation

All molecules are directed in the radial direction.

top view side view

Other symmetries:
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Radially symmetric situation

All molecules are directed in the radial direction.

top view
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Radially symmetric situation

All molecules are directed in the radial direction.

top view

This means: ψ(r, φ, t) = φ and θ(r, φ, t) = θ(r, t)



















θt = θrr +
1

r
θr −

sin 2θ

2r2
,

θ(1, t) = θ1,

θ(0, t) ∈ πZ finite energy E = π

∫ 1

0

(

θ2
r +

sin2 θ

r2

)

rdr.
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Equilibria (harmonic maps)

θ(r) = 2 arctan qr with q ∈ R

π

0

θ

r

and mπ + 2 arctan qr

π

0

θ

r

Scaling invariance/symmetry:
θ(r, t) ⇒ θ(λr, λ2t)
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Equilibria (harmonic maps) and blowup

θ(r) = 2 arctan qr with q ∈ R

π

0

θ

r

and mπ + 2 arctan qr

π

0

θ

r

Scaling invariance/symmetry:
θ(r, t) ⇒ θ(λr, λ2t)

r

θ
θ1 > π

0 1

0

π

No suitable equilibrium
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Equilibria (harmonic maps) and blowup

θ(r) = 2 arctan qr with q ∈ R

π

0

θ

r

and mπ + 2 arctan qr

π

0

θ

r

Scaling invariance/symmetry:
θ(r, t) ⇒ θ(λr, λ2t)

r

θ

t

θ1 > π

0 1

0

π

No suitable equilibrium
⇒ jump/singularity in r = 0

Scaling R(t)
def
= 2

θr(0,t)
→ 0

Scaled variables ξ = r
R(t)

Then θ(ξ, t) → 2 arctan ξ

Blowup rate not self-similar
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Blowup in other equations

u′ = u2

symmetry: u(t) solution ⇒ λu(λt) solution

predicts blowup speed u(t) = 1
T−t

ut = uxx + u3

symmetry: u(x, t) −→ λu(λx, λ2t)

predicts blowup scales (approximately) −1.5 0 1.5
0

10000

x

u
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Blowup in other equations

u′ = u2

symmetry: u(t) solution ⇒ λu(λt) solution

predicts blowup speed u(t) = 1
T−t

ut = uxx + u3

symmetry: u(x, t) −→ λu(λx, λ2t)

predicts blowup scales (approximately) −1.5 0 1.5
0

10000

x

u

Symmetry-prediction does not work for harmonic map:

1. |∇u| blows up
2. behaviour is “quasi-stationary”
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Matched asymptotics: simpler example

{

εu′′ + u′ = 1

u(0) = 1, u(1) = 0
0 < ε≪ 1

Outer scale x = O(1): u′ ≈ 1 ⇒ u(x) ≈ x− 1

Inner scale x = O(ε): y = x/ε, û(y) = u(x)

û′′ + û′ = ε ⇒ û(y) ≈ C + (1 − C)e−y
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Matched asymptotics: simpler example

{

εu′′ + u′ = 1

u(0) = 1, u(1) = 0
0 < ε≪ 1

Outer scale x = O(1): u′ ≈ 1 ⇒ u(x) ≈ x− 1

Inner scale x = O(ε): y = x/ε, û(y) = u(x)

û′′ + û′ = ε ⇒ û(y) ≈ C + (1 − C)e−y

Match: lim
y→∞

û(y) = lim
x↓0

u(x)

⇒ C = −1
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Matched asymptotics: simpler example

{

εu′′ + u′ = 1

u(0) = 1, u(1) = 0
0 < ε≪ 1

Outer scale x = O(1): u′ ≈ 1 ⇒ u(x) ≈ x− 1

Inner scale x = O(ε): y = x/ε, û(y) = u(x)

û′′ + û′ = ε ⇒ û(y) ≈ C + (1 − C)e−y

Match: lim
y→∞

û(y) = lim
x↓0

u(x)

⇒ C = −1

θt = θrr +
1

r
θr −

sin 2θ

2r2
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Matched asymptotics

We need three scales to calculate R(t)

inner: r = O(R(t)) ξ = r
R(t)

θ ∼ 2 arctan ξ + . . .

outer: r = O(
√
T − t) y = r√

T−t
θ ∼ π + . . .

remote: r = O(1) θ ∼ θ(r, T ) + . . . .
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Inner approximation

New equation in ξ = r
R(t)

with R(t) → 0:

R2θt − R′Rξθξ = θξξ + 1
ξ
θξ − sin 2θ

2ξ2

Expand θ = θ0 + RR′ θ1 + (RR′)2 θ2 + . . .

θ0 solves θ0ξξ + 1
ξ
θ0ξ − sin 2θ0

2ξ2 = 0.

θ1 solves θ1ξξ + 1
ξ
θ1ξ − cos 2θ0

ξ2 θ1 = −ξθ0ξ.

θ(ξ, t) ∼ π − 2ξ−1 + R′(t)R(t)(−ξ ln ξ + ξ) + . . .

as ξ → ∞ and t ↑ T .

. – p.14/20



Matching

outer variables: y = r√
T−t

, τ = − ln(T − t) → ∞

θouter(y, τ) ∼ π+e−τ/2[σ(τ)y+σ′(τ)(4y−1−2y ln y)+ . . . ]+ . . .

with σ(τ) unknown.
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Matching

outer variables: y = r√
T−t

, τ = − ln(T − t) → ∞

θouter(y, τ) ∼ π+e−τ/2[σ(τ)y+σ′(τ)(4y−1−2y ln y)+ . . . ]+ . . .

with σ(τ) unknown.

θinner(y, τ) ∼ π−2eτ/2Ry−1+eτ/2R′y(− ln y+lnR+τ/2+1)+. . .

0

π

θ

r

inner scale outer scale
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Matching

outer variables: y = r√
T−t

, τ = − ln(T − t) → ∞

θouter(y, τ) ∼ π+e−τ/2[σ(τ)y+σ′(τ)(4y−1−2y ln y)+ . . . ]+ . . .

with σ(τ) unknown.

θinner(y, τ) ∼ π−2eτ/2Ry−1+eτ/2R′y(− ln y+lnR+τ/2+1)+. . .

0

π

θ

r

inner scale outer scale

Comparison of the coefficients gives:

y−1 : 4e−τ/2σ′ ∼ −2Reτ/2

y : e−τ/2σ ∼ R′eτ/2(lnR + τ/2 + 1)
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Result

Zoom/scaling factor R(t):

R(t) ∼ κ
T − t

|ln(T − t)|2 as t ↑ T. ≪
√
T − t
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Result

Zoom/scaling factor R(t):

R(t) ∼ κ
T − t

|ln(T − t)|2 as t ↑ T.

Proofs [Angenent, Hulshof, Matano]

• R(t) = o(T − t) as t ↑ T .

•

r

θ

θ1 = π

0 1

π

R(t) = e−2
√

t+o(
√

t) as t→ ∞.
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Result

Zoom/scaling factor R(t):

R(t) ∼ κ
T − t

|ln(T − t)|2 as t ↑ T.

Proofs [Angenent, Hulshof, Matano]

• R(t) = o(T − t) as t ↑ T .

•

r

θ

θ1 = π

0 1

π

R(t) = e−2
√

t+o(
√

t) as t→ ∞.

• Partial results: general case is open.

θt = θrr + 1
r
θr − sin 2θ

2r2
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Stability : Equivariance

High symmetry ⇒ Topological obstruction ⇒ Blowup

How about non-symmetric perturbations? ψ = φ+ χ(r, t)






θt = θrr + 1
r
θr + 1

r2 θφφ − sin 2θ
2

(ψ2
r + 1

r2ψ
2
φ)

χtψt = ψrr + 1
r
ψr + 1

r2ψφφ + sin 2θ
(sin θ)2

(ψrθr + 1
r2ψφθφ)
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Stability : Equivariance

High symmetry ⇒ Topological obstruction ⇒ Blowup

Equivariant: θ = θ(r, t) and ψ = φ+ χ(r, t)






θt = θrr + 1
r
θr − sin 2θ

2
(χ2

r + 1
r2 )

ψtχt = χrr + 1
r
χr + sin 2θ

(sin θ)2
χrθr

. – p.17/20



Stability : Equivariance

High symmetry ⇒ Topological obstruction ⇒ Blowup

Equivariant: θ = θ(r, t) and ψ = φ+ χ(r, t)






θt = θrr + 1
r
θr − sin 2θ

2
(χ2

r + 1
r2 )

ψtχt = χrr + 1
r
χr + sin 2θ

(sin θ)2
χrθr
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Stability : Equivariance

High symmetry ⇒ Topological obstruction ⇒ Blowup

Equivariant: θ = θ(r, t) and ψ = φ+ χ(r, t)






θt = θrr + 1
r
θr − sin 2θ

2
(χ2

r + 1
r2 )

ψtχt = χrr + 1
r
χr + sin 2θ

(sin θ)2
χrθr

We only need to consider one radius
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Matched asymptotics again

inner:

{

θ = 2 arctan ξ +R′(t)R(t) . . .

χ = ζ(t) +R(t)2ζ ′(t) . . .
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Matched asymptotics again

inner:

{

θ = 2 arctan ξ +R′(t)R(t) . . .

χ = ζ(t) +R(t)2ζ ′(t) . . .

The singularity is a saddle point
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Numerics
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Conclusion: instability

Radially symmetric blowup in the harmonic map heat flow is
co-dimension 1 unstable under equivariant perturbations

There is no proof
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Conclusion: instability

Radially symmetric blowup in the harmonic map heat flow is
co-dimension 1 unstable under equivariant perturbations

There is no proof (very frustrating)

Other results

• Instability dynamics: fast rotation of sphere over 180◦

• Same result for Landau-Lifshitz

~ut = α~u× ∆~u− β ~u× (~u× ∆~u)

No radially symmetric case, but an equivariant one

• Hints for continuation after bubbling:
immediately reattach sphere rotated by 180◦
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