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For example: LCD screens, polymer fibres

A nematic liquid crystals consists of molecules that are elongated,
I.e. like little rods or arrows.

In particular, they have a direction.

\ \/\7<\7 The molecules are pointing in direction u(x).
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Time dependent: (z,t) € S* C R?



The (simplest) energy of a configuration u(x) is

1
E(u) = 5 /Q Vii|*dx where |Vii|* = Z(%‘;{f

0]
Energy is minimal when all molecules are parallel.

The stationary points are called harmonic maps.

Harmonic maps have been extensively studied in geometry:
general maps u : M — N (Riemannian manifolds)



The (simplest) energy of a configuration u(x) is

1
E(u) = 5 /Q Vii|*dx where |Vii|* = Z(%f

.

0]
Energy is minimal when all molecules are parallel.

The stationary points are called harmonic maps.

Harmonic maps have been extensively studied in geometry:
general maps u : M — N (Riemannian manifolds)

Dynamics: decrease the free energy as fast a possible:
gradient flow 4, = —VE(u)

This leads to the harmonic map heat equation.



E(u) = %/\W\?

u : M — N Riemannian manifolds (with a metric)



1
u : M — N Riemannian manifolds (with a metric)

e u:NOQCR"—R
Critical points: V?u = Aw = 0 are harmonic functions
Gradient dynamics: heat equation u; = Au.

e u: R — N parametrised curves
Critical points: geodesics.

o u:R? — St difficulty in choosing function spaces
Ginzburg-Landau functional

1 S 1 .
B(w) = 5 [ Vil + (1 — i)



Harmonic map heat flow
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= AT + |Vil*a

= —u X (u X Au)

0=V V(&) =V-2Vi,i) =

In ferromagnetism (Landau-Lifshitz equation):

0, = il x ATl — B x (i x A#)



I, = A+ |Vil]*d rEQt>0
)

r € 0F2 (boundary conditions)

x,0) = ty(z) initial conditions

[Up(x)| =1 = |u(x,t)] =1 for all ¢
LE(U(t) <0
Classical solution on some maximal interval [0,7T)

If T < o0, then |Vi| - ccast T,

How to continue after t =17



iy = AU+ |Vi)*u reQt>0
) r € 0F2 (boundary conditions)

x,0) = ty(z) initial conditions

o |Ug(z)|=1 = |u(z,t)|=1forallt

o LE(u(t) <0

e C(lassical solution on some maximal interval [0, T")

o If T < o0, then |Vi| moc0astT.

e Weak solutions exist for all time

e Unique if you require E(t) non-increasing (2 C R?)

o () C IR? is much harder: 1. too many solutions
2. singularities have finite energy



iy = AU+ |Vi)*u reQt>0
) r € 0F2 (boundary conditions)

x,0) = ty(z) initial conditions

o |up(x)|=1 = |u(z,t)] =1 for all ¢

o LE(u(t) <0

e C(lassical solution on some maximal interval [0, T")

o If T < o0, then |Vi| moc0astT.

e Weak solutions exist for all time

e Unique if you require E(t) non-increasing (2 C R?)
e Smooth except at a finite number of points (x,T')

[Struwe]



Near a singular point (xg,T") there is a scaling factor R(t)

A

1. R(t) = 0ast—T E\
2. (R(t)o,t)—>ﬂ($) ast — T '_\

where @ solves Aw + |Vu|?a = 0, a non-constant harmonic map.

A sphere “bubbles off” _uy a
"/
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Near a singular point (xg,T") there is a scaling factor R(t)

1. R(t) = 0ast—T E\
2. (R(t)o,t)—>ﬂ($) ast — T '_\

where @ solves Aw + |Vu|?a = 0, a non-constant harmonic map.

A sphere “bubbles off” _uy a
"/

[Chang,Ding,Ye] Example where singularity occurs in finite time

Goals: e analyse the unknown scaling factor R(t).
e analyse the stability of bubbling.



iy = At + |Vil*d harmonic map heat flow (gradient)
() = D? = unit disk  (or cylinder uniform in z).
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polar coordinates on D? (-, 1)
spherical coordinates on 52 ’
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= Ad + |Vu)|*u harmonic map heat flow (gradient)
Q D? = unit disk  (or cylinder uniform in 2)

i sin 0 cos Y
polar coordinates on D? ~ . .
' ' 1) 9 v,
spherical coordinates on S (1) (1, ¢) — SmcosSl@nw

Ht _ 97“7“"‘ 19 4 9¢ o s1n29(¢2 T2¢;)
wt — wrr =+ %% 2 % 2123)02 (wTQ + r2 wd)eﬁb)




All molecules are directed in the radial direction.

top view side view PFce<—<AHH 100



All molecules are directed in the radial direction.

top view side view |FPoe—4/AH 100



All molecules are directed in the radial direction.

top view side view M'Jeeee\



All molecules are directed in the radial direction.

top view side view Poe<—~A 0o



All molecules are directed in the radial direction.

top view side view Poe~—</A Possse



All molecules are directed in the radial direction.

top view side view Poe—~At s



All molecules are directed in the radial direction.

top view side view Poc—</ s



All molecules are directed in the radial direction.

top view side view Po—Af s



All molecules are directed in the radial direction.

top view side view Peesflossssssss



All molecules are directed in the radial direction.

top view side view Pl



All molecules are directed in the radial direction.

top view side view prosbrsssssssss=



All molecules are directed in the radial direction.

top view side view f—fssssssssss



All molecules are directed in the radial direction.

top view side view Possssssssssss



All molecules are directed in the radial direction.

top view side view Possssssssssss

Other symmetries:

OO0



All molecules are directed in the radial direction.

top view




All molecules are directed in the radial direction.
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This means: ¢(r,¢,t) = ¢ and O(r, ¢, t) = 0(r, 1)

y
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0(r) = 2arctan gr with ¢ € R

Scaling invariance/symmetry:
O(r,t) = 0(\r, \*t)



0(r) = 2arctan gr with ¢ € R

Scaling invariance/symmetry:
O(r,t) = 0(\r, \*t)

No suitable equilibrium

01>



0(r) = 2arctan gr with ¢ € R

Scaling invariance/symmetry:
O(r,t) = 0(\r, \*t)

01>

No suitable equilibrium
= jump/singularity in r =0

Scaling R(t) © er(Qo 5 — 0

/'a

Scaled variables £ = RO
Then 6(&,t) — 2arctan &

Blowup rate not self-similar



ZL/ — 2L2

symmetry: u(t) solution = Au(At) solution

predicts blowup speed u(t) = 7

3 1000
Ut = Ugy T+ U

symmetry: u(x,t) — Mu(Ax, \°t)

predicts blowup scales (approximately) _8‘5

1.5



ZL/ — 2L2

symmetry: u(t) solution = Au(At) solution

predicts blowup speed u(t) = 7

3 1000
Ut = Ugy T+ U

symmetry: u(x,t) — Mu(Ax, \°t)

predicts blowup scales (approximately) _8‘5 - s

1.5

Symmetry-prediction does not work for harmonic map:

1. |Vu| blows up
2. behaviour is “quasi-stationary”
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u(0) =1,u(1) =0

Outerscale z =0O(1): v/ =1 = u(z)~z—1

Inner scale x = O(e): y = x/e, u(y) = u(x)
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cu" +u =1
D<ek ]
u(0) =1,u(1) =0

Outerscale z =0O(1): v/ =1 = u(z)~z—1
Inner scale x = O(e): y = x/e, u(y) = u(x)
W +u = = uly) ~C+(1—-C)e™?

Match: lim a(y) = limu(x)
Yy— 00 x]0

= (C=-1

L d
.
.
L d
*
.
L d
‘C
L 3
p




cu" +u =1
D<ek ]
u(0) =1,u(1) =0

Outerscale z =0O(1): v/ =1 = u(z)~z—1

Inner scale x = O(e): y = x/e, u(y) = u(x)
W +u = = uly) ~C+(1—-C)e™?

Match: lim a(y) = limu(x)
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We need three scales to calculate R(?)

QT inner scale : outer scale i remote scale / o,
g ..........
0 ; 1
O]ZR(t)) R r
B OT —¢t) i
inner: r = O(R(t)) §= =0 0 ~ 2arctané + ...
outer: T =0T -1t) y=—= O~m+...

remote: r = O(1)

0~0(rT)+....



New equation in £ = 755 with R(t) — 0:

R29t — R/thgg = (955 + %(95 — Sggge

Expand 0 = (90 -+ RR/ 91 -+ (RR/)2 (92 + ...

0 solves Opee + %Qog — % = 0.

91 solves (9155 -+ %915 — COS£2290 (91 — —f@og

& t) ~m =26+ RI(OR(E)(—EInE+ &) + ...
as§{ —ooandtTT.



outer variables: y = ==, 7=—-In(T"—t) — oc

Oouter (Y, T) ~ T+ T 2[o(T)y+o'(7)(4y ' —2ylny)+...]+...

with o(7) unknown.



outer variables: y = ==, 7=—-In(T"—t) — oc

Oouter (Y, T) ~ T+ T 2[o(T)y+o'(7)(4y ' —2ylny)+...]+...

with o(7) unknown.

Oioner (Y, T) ~ m—2e72 Ry~ ' +e™2R'y(— Iny+1In R+7/2+1)+. ..

9/\ inner scale ! outer scale
]

1
7T _____________________
1




outer variables: y = ==, 7=—-In(T"—t) — oc

Oouter (Y, T) ~ T+ T 2[o(T)y+o'(7)(4y ' —2ylny)+...]+...

with o(7) unknown.

Oioner (Y, T) ~ m—2e72 Ry~ ' +e™2R'y(— Iny+1In R+7/2+1)+. ..

A inner scale ! outer scale
1
]

1
7T _____________________
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Comparison of the coefficients gives:

y—l : 46—7'/2 / N_2R67/2
y : e %0 ~ReInR+1/2+1)



Zoom /scaling factor R(t):

T —t
“Tn(T — 1)]2

R(t) ~

ast T 1T.

<K



Zoom /scaling factor R(t):

T —t
K
In(T —t)|?

R(t) ~ ast TT.

Proofs [Angenent, Hulshof, Matano]
e R(t)=0o(T —t)astT.



Zoom /scaling factor R(t):

T —t

B~ w TP

ast T 1T.

Proofs [Angenent, Hulshof, Matano]
e R(t)=0o(T—t)astT.

0L =

R(t) = e 2ViHoWVD a5 1 — 0.



Zoom /scaling factor R(t):

T —t

B~ w TP

ast T 1T.

Proofs [Angenent, Hulshof, Matano]
e R(t)=0o(T—t)astT.

/

0

0L =

R(t) = ¢ 2VHeVD 35 ¢ — .

e Partial results: general case is open.
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High symmetry = Topological obstruction = Blowup

How about non-symmetric perturbations?
Ht — 97“7“ i %97* i %quqb . sin29( 2 4 T%wq%)
wt — wrr + %wr 2 wqb 212 3)92 (wre + 2¢¢9¢)




High symmetry = Topological obstruction = Blowup
Equivariant: 8 = 0(r,t) and ¢ = ¢ + x(r, 1)
Op =0, + %97‘ - %(X% + %2)

sin 260

Xt = Xrr T %XT T (sin 0)2 Xrer




High symmetry = Topological obstruction = Blowup
Equivariant: 8 = 0(r,t) and ¢ = ¢ + x(r, 1)
Op =0, + %97‘ - %(X% + %2)

sin 260

Xt = Xrr T %XT T (sin 0)2 Xrer
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High symmetry = Topological obstruction = Blowup
Equivariant: 8 = 0(r,t) and ¢ = ¢ + x(r, 1)
Op =0, + %97‘ - %(X% + %2)

sin 260

Xt = Xrr T %XT T (sin 0)2 Xfrer
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We only need to consider one radius




S { 0 = 2arctané + R'(t)R(1) . ..
X = C(t) +R(t)*¢(1)...



S { 0 = 2arctané + R'(t)R(1) . ..
X = C(t) +R(t)*¢(1)...




Numerics
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Numerics
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Media File (video/avi)


Radially symmetric blowup in the harmonic map heat flow is
co-dimension 1 unstable under equivariant perturbations

There is no proof



Radially symmetric blowup in the harmonic map heat flow is
co-dimension 1 unstable under equivariant perturbations

There is no proof (very frustrating)



Radially symmetric blowup in the harmonic map heat flow is
co-dimension 1 unstable under equivariant perturbations

There is no proof (very frustrating)

Other results
e Instability dynamics: fast rotation of sphere over 180°

e Same result for Landau-Lifshitz
Uy = au X Au— Bu x (u x Au)
No radially symmetric case, but an equivariant one

e Hints for continuation after bubbling:
immediately reattach sphere rotated by 180°
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