Matched asymptotics for the harmonic map heat flow

- Nematic liquid crystals
- The harmonic map heat flow
- Singularity formation (bubbling)
- Symmetric setting
- Matched asymptotic expansions
- Stability

Jan Bouwe van den Berg (VU Amsterdam) John King (Nottingham)
JF Williams (Vancouver, SFU)
Joost Hulshof (VU Amsterdam)

Nematic liquid crystals

For example: LCD screens, polymer fibres
A nematic liquid crystals consists of molecules that are elongated, i.e. like little rods or arrows.

In particular, they have a direction.

The molecules are pointing in direction $\vec{u}(x)$. Normalise to length $1:|\vec{u}(x)|=1$

$$
\Rightarrow \quad \vec{u}(x) \in S^{2}
$$

Time dependent: $\vec{u}(x, t) \in S^{2} \subset \mathbb{R}^{3}$

Energy

The (simplest) energy of a configuration $\vec{u}(x)$ is

$$
E(\vec{u})=\frac{1}{2} \int_{\Omega}|\nabla \vec{u}|^{2} d x \quad \text { where }|\nabla \vec{u}|^{2}=\sum_{i, j}\left(\frac{\partial u_{i}}{\partial x_{j}}\right)^{2}
$$

Energy is minimal when all molecules are parallel.
The stationary points are called harmonic maps.
Harmonic maps have been extensively studied in geometry: general maps $u: M \rightarrow N$ (Riemannian manifolds)

Energy

The (simplest) energy of a configuration $\vec{u}(x)$ is

$$
E(\vec{u})=\frac{1}{2} \int_{\Omega}|\nabla \vec{u}|^{2} d x \quad \text { where }|\nabla \vec{u}|^{2}=\sum_{i, j}\left(\frac{\partial u_{i}}{\partial x_{j}}\right)^{2}
$$

Energy is minimal when all molecules are parallel.
The stationary points are called harmonic maps.
Harmonic maps have been extensively studied in geometry: general maps $u: M \rightarrow N$ (Riemannian manifolds)

Dynamics: decrease the free energy as fast a possible:

$$
\text { gradient flow } \vec{u}_{t}=-\nabla E(\vec{u})
$$

This leads to the harmonic map heat equation.

Mathematical context

$$
E(u)=\frac{1}{2} \int|\nabla \vec{u}|^{2}
$$

$u: M \rightarrow N$ Riemannian manifolds (with a metric)

Mathematical context

$$
E(u)=\frac{1}{2} \int|\nabla \vec{u}|^{2}
$$

$u: M \rightarrow N$ Riemannian manifolds (with a metric)

- $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$

Critical points: $\nabla^{2} u=\Delta u=0$ are harmonic functions Gradient dynamics: heat equation $u_{t}=\Delta u$.

- $u: \mathbb{R} \rightarrow N$ parametrised curves

Critical points: geodesics.

- $u: \mathbb{R}^{2} \rightarrow S^{1}$ difficulty in choosing function spaces Ginzburg-Landau functional

$$
E(u)=\frac{1}{2} \int|\nabla \vec{u}|^{2}+\frac{1}{4 \varepsilon^{2}}\left(1-|\vec{u}|^{2}\right)^{2}
$$

Harmonic map heat flow

$$
\begin{aligned}
\vec{u}_{t} & =-d E(\vec{u}) \\
& =\Delta \vec{u}-(\Delta \vec{u}, \vec{u}) \vec{u}
\end{aligned}
$$

Harmonic map heat flow

$$
\begin{aligned}
\vec{u}_{t} & =-d E(\vec{u}) \\
& =\Delta \vec{u}-(\Delta \vec{u}, \vec{u}) \vec{u}
\end{aligned}
$$

Harmonic map heat flow

$$
\begin{aligned}
\vec{u}_{t} & =-d E(\vec{u}) \\
& =\Delta \vec{u}-(\Delta \vec{u}, \vec{u}) \vec{u} \\
& =\Delta \vec{u}+|\nabla \vec{u}|^{2} \vec{u}
\end{aligned}
$$

$$
0=\nabla \cdot \nabla(\vec{u}, \vec{u})=\nabla \cdot 2(\nabla \vec{u}, \vec{u})=2[(\Delta \vec{u}, \vec{u})+(\nabla \vec{u}, \nabla \vec{u})]
$$

Harmonic map heat flow

$$
\begin{aligned}
\vec{u}_{t} & =-d E(\vec{u}) \\
& =\Delta \vec{u}-(\Delta \vec{u}, \vec{u}) \vec{u} \\
& =\Delta \vec{u}+|\nabla \vec{u}|^{2} \vec{u} \\
& =-\vec{u} \times(\vec{u} \times \Delta \vec{u})
\end{aligned}
$$

$0=\nabla \cdot \nabla(\vec{u}, \vec{u})=\nabla \cdot 2(\nabla \vec{u}, \vec{u})=2[(\Delta \vec{u}, \vec{u})+(\nabla \vec{u}, \nabla \vec{u})]$
In ferromagnetism (Landau-Lifshitz equation):

$$
\vec{u}_{t}=\alpha \vec{u} \times \Delta \vec{u}-\beta \vec{u} \times(\vec{u} \times \Delta \vec{u})
$$

PDE Properties

$$
\begin{cases}\vec{u}_{t}=\Delta \vec{u}+|\nabla \vec{u}|^{2} \vec{u} & x \in \Omega, t>0 \\ \vec{u}(x, t)=\vec{u}_{1}(x) & x \in \partial \Omega \text { (boundary conditions) } \\ \vec{u}(x, 0)=\vec{u}_{0}(x) & \text { initial conditions }\end{cases}
$$

- $\left|\vec{u}_{0}(x)\right|=1 \Rightarrow|\vec{u}(x, t)|=1$ for all t
- $\frac{d}{d t} E(\vec{u}(t)) \leq 0$
- Classical solution on some maximal interval $[0, T)$
- If $T<\infty$, then $|\nabla \vec{u}| \rightarrow \infty$ as $t \uparrow T$.
- How to continue after $t=T$?

PDE Properties

$$
\begin{cases}\vec{u}_{t}=\Delta \vec{u}+|\nabla \vec{u}|^{2} \vec{u} & x \in \Omega, t>0 \\ \vec{u}(x, t)=\vec{u}_{1}(x) & x \in \partial \Omega \text { (boundary conditions) } \\ \vec{u}(x, 0)=\vec{u}_{0}(x) & \text { initial conditions }\end{cases}
$$

- $\left|\vec{u}_{0}(x)\right|=1 \Rightarrow|\vec{u}(x, t)|=1$ for all t
- $\frac{d}{d t} E(\vec{u}(t)) \leq 0$
- Classical solution on some maximal interval $[0, T)$
- If $T<\infty$, then $|\nabla \vec{u}| \rightarrow \infty$ as $t \uparrow T$.
- Weak solutions exist for all time
- Unique if you require $E(t)$ non-increasing $\left(\Omega \subset \mathbb{R}^{2}\right)$
- $\Omega \subset \mathbb{R}^{3}$ is much harder: 1 . too many solutions

2. singularities have finite energy

PDE Properties

$$
\begin{cases}\vec{u}_{t}=\Delta \vec{u}+|\nabla \vec{u}|^{2} \vec{u} & x \in \Omega, t>0 \\ \vec{u}(x, t)=\vec{u}_{1}(x) & x \in \partial \Omega \text { (boundary conditions) } \\ \vec{u}(x, 0)=\vec{u}_{0}(x) & \text { initial conditions }\end{cases}
$$

- $\left|\vec{u}_{0}(x)\right|=1 \Rightarrow|\vec{u}(x, t)|=1$ for all t
- $\frac{d}{d t} E(\vec{u}(t)) \leq 0$
- Classical solution on some maximal interval $[0, T)$
- If $T<\infty$, then $|\nabla \vec{u}| \rightarrow \infty$ as $t \uparrow T$.
- Weak solutions exist for all time
- Unique if you require $E(t)$ non-increasing $\left(\Omega \subset \mathbb{R}^{2}\right)$
- Smooth except at a finite number of points $\left(x_{0}, T\right)$
[Struwe]

Singularity/blowup/bubbling

Near a singular point $\left(x_{0}, T\right)$ there is a scaling factor $R(t)$

$$
\begin{aligned}
& \text { 1. } R(t) \rightarrow 0 \text { as } t \rightarrow T \\
& \text { 2. } \vec{u}\left(\frac{x-x_{0}}{R(t)}, t\right) \rightarrow \bar{u}(x) \text { as } t \rightarrow T
\end{aligned}
$$

where \bar{u} solves $\Delta \bar{u}+|\nabla \bar{u}|^{2} \bar{u}=0$, a non-constant harmonic map.

A sphere "bubbles off"

Singularity/blowup/bubbling

Near a singular point $\left(x_{0}, T\right)$ there is a scaling factor $R(t)$

$$
\begin{aligned}
& \text { 1. } R(t) \rightarrow 0 \text { as } t \rightarrow T \\
& \text { 2. } \vec{u}\left(\frac{x-x_{0}}{R(t)}, t\right) \rightarrow \bar{u}(x) \text { as } t \rightarrow T
\end{aligned}
$$

where \bar{u} solves $\Delta \bar{u}+|\nabla \bar{u}|^{2} \bar{u}=0$, a non-constant harmonic map.

A sphere "bubbles off"

[Chang,Ding, Ye] Example where singularity occurs in finite time
Goals: - analyse the unknown scaling factor $R(t)$.

- analyse the stability of bubbling.

Choosing coordinates

$\vec{u}_{t}=\Delta \vec{u}+|\nabla \vec{u}|^{2} \vec{u} \quad$ harmonic map heat flow (gradient) $\Omega=D^{2}=$ unit disk (or cylinder uniform in z).

polar coordinates on D^{2} spherical coordinates on S^{2}

$$
\vec{u}(\cdot, t):(r, \phi) \rightarrow\left(\begin{array}{c}
\sin \theta \cos \psi \\
\sin \theta \sin \psi \\
\cos \theta
\end{array}\right)
$$

Choosing coordinates

$\vec{u}_{t}=\Delta \vec{u}+|\nabla \vec{u}|^{2} \vec{u} \quad$ harmonic map heat flow (gradient) $\Omega=D^{2}=$ unit disk (or cylinder uniform in z).

polar coordinates on D^{2} spherical coordinates on S^{2}

$$
\vec{u}(\cdot, t):(r, \phi) \rightarrow\left(\begin{array}{c}
\sin \theta \cos \psi \\
\sin \theta \sin \psi \\
\cos \theta
\end{array}\right)
$$

$$
\left\{\begin{array}{l}
\theta_{t}=\theta_{r r}+\frac{1}{r} \theta_{r}+\frac{1}{r^{2}} \theta_{\phi \phi}-\frac{\sin 2 \theta}{2}\left(\psi_{r}^{2}+\frac{1}{r^{2}} \psi_{\phi}^{2}\right) \\
\psi_{t}=\psi_{r r}+\frac{1}{r} \psi_{r}+\frac{1}{r^{2}} \psi_{\phi \phi}+\frac{\sin 2 \theta}{(\sin \theta)^{2}}\left(\psi_{r} \theta_{r}+\frac{1}{r^{2}} \psi_{\phi} \theta_{\phi}\right)
\end{array}\right.
$$

Radially symmetric situation

All molecules are directed in the radial direction.

side view

Radially symmetric situation

All molecules are directed in the radial direction.

side view

Radially symmetric situation

All molecules are directed in the radial direction.

side view

Radially symmetric situation

All molecules are directed in the radial direction.

Radially symmetric situation

All molecules are directed in the radial direction.

Radially symmetric situation

All molecules are directed in the radial direction.

Radially symmetric situation

All molecules are directed in the radial direction.

Radially symmetric situation

All molecules are directed in the radial direction.

side view

Radially symmetric situation

All molecules are directed in the radial direction.

side view

Radially symmetric situation

All molecules are directed in the radial direction.

side view

Radially symmetric situation

All molecules are directed in the radial direction.

side view

Radially symmetric situation

All molecules are directed in the radial direction.

side view

Radially symmetric situation

All molecules are directed in the radial direction.

side view

Radially symmetric situation

All molecules are directed in the radial direction.

Other symmetries:

Radially symmetric situation

All molecules are directed in the radial direction.

Radially symmetric situation

All molecules are directed in the radial direction.

This means: $\psi(r, \phi, t)=\phi$ and $\theta(r, \phi, t)=\theta(r, t)$

$$
\left\{\begin{array}{l}
\theta_{t}=\theta_{r r}+\frac{1}{r} \theta_{r}-\frac{\sin 2 \theta}{2 r^{2}} \\
\theta(1, t)=\theta_{1}, \\
\theta(0, t) \in \pi \mathbb{Z} \quad \text { finite energy } E=\pi \int_{0}^{1}\left(\theta_{r}^{2}+\frac{\sin ^{2} \theta}{r^{2}}\right) r d r
\end{array}\right.
$$

Equilibria (harmonic maps)

$\theta(r)=2 \arctan q r$ with $q \in \mathbb{R}$

and $m \pi+2 \arctan q r$

Scaling invariance/symmetry:

$$
\theta(r, t) \Rightarrow \theta\left(\lambda r, \lambda^{2} t\right)
$$

Equilibria (harmonic maps)

and blowup
$\theta(r)=2 \arctan q r$ with $q \in \mathbb{R}$

and $m \pi+2 \arctan q r$

Scaling invariance/symmetry:

$$
\theta(r, t) \Rightarrow \theta\left(\lambda r, \lambda^{2} t\right)
$$

No suitable equilibrium

Equilibria (harmonic maps)

and blowup
$\theta(r)=2 \arctan q r$ with $q \in \mathbb{R}$

and $m \pi+2 \arctan q r$

Scaling invariance/symmetry:

$$
\theta(r, t) \Rightarrow \theta\left(\lambda r, \lambda^{2} t\right)
$$

No suitable equilibrium \Rightarrow jump/singularity in $r=0$

Scaling $R(t) \stackrel{\text { def }}{=} \frac{2}{\theta_{r}(0, t)} \rightarrow 0$
Scaled variables $\xi=\frac{r}{R(t)}$
Then $\theta(\xi, t) \rightarrow 2 \arctan \xi$
Blowup rate not self-similar

Blowup in other equations

$u^{\prime}=u^{2}$
symmetry: $u(t)$ solution $\Rightarrow \lambda u(\lambda t)$ solution predicts blowup speed $u(t)=\frac{1}{T-t}$
$u_{t}=u_{x x}+u^{3}$
symmetry: $u(x, t) \longrightarrow \lambda u\left(\lambda x, \lambda^{2} t\right)$
predicts blowup scales (approximately)

Blowup in other equations

$u^{\prime}=u^{2}$
symmetry: $u(t)$ solution $\Rightarrow \lambda u(\lambda t)$ solution
predicts blowup speed $u(t)=\frac{1}{T-t}$
$u_{t}=u_{x x}+u^{3}$
symmetry: $u(x, t) \longrightarrow \lambda u\left(\lambda x, \lambda^{2} t\right)$
predicts blowup scales (approximately)

Symmetry-prediction does not work for harmonic map:

1. $|\nabla u|$ blows up
2. behaviour is "quasi-stationary"

Matched asymptotics: simpler example

$$
\left\{\begin{array}{l}
\varepsilon u^{\prime \prime}+u^{\prime}=1 \\
u(0)=1, u(1)=0
\end{array} \quad 0<\varepsilon \ll 1\right.
$$

Outer scale $x=O(1): u^{\prime} \approx 1 \Rightarrow u(x) \approx x-1$
Inner scale $x=O(\varepsilon): y=x / \varepsilon, \hat{u}(y)=u(x)$

Matched asymptotics: simpler example

$$
\left\{\begin{array}{l}
\varepsilon u^{\prime \prime}+u^{\prime}=1 \\
u(0)=1, u(1)=0
\end{array} \quad 0<\varepsilon \ll 1\right.
$$

Outer scale $x=O(1): u^{\prime} \approx 1 \Rightarrow u(x) \approx x-1$
Inner scale $x=O(\varepsilon): y=x / \varepsilon, \hat{u}(y)=u(x)$

Match: $\lim _{y \rightarrow \infty} \hat{u}(y)=\lim _{x \downarrow 0} u(x)$

$$
\Rightarrow C=-1
$$

Matched asymptotics: simpler example

$$
\left\{\begin{array}{l}
\varepsilon u^{\prime \prime}+u^{\prime}=1 \\
u(0)=1, u(1)=0
\end{array} \quad 0<\varepsilon \ll 1\right.
$$

Outer scale $x=O(1): u^{\prime} \approx 1 \Rightarrow u(x) \approx x-1$
Inner scale $x=O(\varepsilon): y=x / \varepsilon, \hat{u}(y)=u(x)$

Match: $\lim _{y \rightarrow \infty} \hat{u}(y)=\lim _{x \downarrow 0} u(x)$
$\Rightarrow C=-1$
$\theta_{t}=\theta_{r r}+\frac{1}{r} \theta_{r}-\frac{\sin 2 \theta}{2 r^{2}}$

Matched asymptotics

We need three scales to calculate $R(t)$

$$
\begin{array}{rll}
\text { inner: } & r=O(R(t)) & \xi=\frac{r}{R(t)} \\
\text { outer: } & r=O(\sqrt{T-t}) & y=\frac{r}{\sqrt{T-t}} \\
\text { remote: } \quad r=O(1) & \theta \sim \pi+\ldots \\
\text { rectan } \xi+\ldots \\
& & \theta \sim \theta(r, T)+\ldots
\end{array}
$$

Inner approximation

New equation in $\xi=\frac{r}{R(t)}$ with $R(t) \rightarrow 0:$

$$
R^{2} \theta_{t}-R^{\prime} R \xi \theta_{\xi}=\theta_{\xi \xi}+\frac{1}{\xi} \theta_{\xi}-\frac{\sin 2 \theta}{2 \xi^{2}}
$$

Expand $\theta=\theta_{0}+R R^{\prime} \theta_{1}+\left(R R^{\prime}\right)^{2} \theta_{2}+\ldots$
θ_{0} solves $\theta_{0 \xi \xi}+\frac{1}{\xi} \theta_{0 \xi}-\frac{\sin 2 \theta_{0}}{2 \xi^{2}}=0$.
θ_{1} solves $\theta_{1 \xi \xi}+\frac{1}{\xi} \theta_{1 \xi}-\frac{\cos 2 \theta_{0}}{\xi^{2}} \theta_{1}=-\xi \theta_{0 \xi}$.
$\theta(\xi, t) \sim \pi-2 \xi^{-1}+R^{\prime}(t) R(t)(-\xi \ln \xi+\xi)+\ldots$ as $\xi \rightarrow \infty$ and $t \uparrow T$.

Matching

outer variables: $y=\frac{r}{\sqrt{T-t}}, \quad \tau=-\ln (T-t) \rightarrow \infty$
$\theta_{\text {outer }}(y, \tau) \sim \pi+e^{-\tau / 2}\left[\sigma(\tau) y+\sigma^{\prime}(\tau)\left(4 y^{-1}-2 y \ln y\right)+\ldots\right]+\ldots$ with $\sigma(\tau)$ unknown.

Matching

outer variables: $y=\frac{r}{\sqrt{T-t}}, \quad \tau=-\ln (T-t) \rightarrow \infty$
$\theta_{\text {outer }}(y, \tau) \sim \pi+e^{-\tau / 2}\left[\sigma(\tau) y+\sigma^{\prime}(\tau)\left(4 y^{-1}-2 y \ln y\right)+\ldots\right]+\ldots$ with $\sigma(\tau)$ unknown.
$\theta_{\text {inner }}(y, \tau) \sim \pi-2 e^{\tau / 2} R y^{-1}+e^{\tau / 2} R^{\prime} y(-\ln y+\ln R+\tau / 2+1)+\ldots$

Matching

outer variables: $y=\frac{r}{\sqrt{T-t}}, \quad \tau=-\ln (T-t) \rightarrow \infty$
$\theta_{\text {outer }}(y, \tau) \sim \pi+e^{-\tau / 2}\left[\sigma(\tau) y+\sigma^{\prime}(\tau)\left(4 y^{-1}-2 y \ln y\right)+\ldots\right]+\ldots$ with $\sigma(\tau)$ unknown.
$\theta_{\text {inner }}(y, \tau) \sim \pi-2 e^{\tau / 2} R y^{-1}+e^{\tau / 2} R^{\prime} y(-\ln y+\ln R+\tau / 2+1)+\ldots$

Comparison of the coefficients gives:

$$
y^{-1}: 4 e^{-\tau / 2} \sigma^{\prime} \sim-2 R e^{\tau / 2}
$$

$$
y \quad: \quad e^{-\tau / 2} \sigma \sim R^{\prime} e^{\tau / 2}(\ln R+\tau / 2+1)
$$

Result

Zoom/scaling factor $R(t)$:

$$
R(t) \sim \kappa \frac{T-t}{|\ln (T-t)|^{2}} \quad \text { as } t \uparrow T . \quad \ll \sqrt{T-t}
$$

Result

Zoom/scaling factor $R(t)$:

$$
R(t) \sim \kappa \frac{T-t}{|\ln (T-t)|^{2}} \quad \text { as } t \uparrow T
$$

Proofs [Angenent, Hulshof, Matano]

- $R(t)=o(T-t)$ as $t \uparrow T$.

Result

Zoom/scaling factor $R(t)$:

$$
R(t) \sim \kappa \frac{T-t}{|\ln (T-t)|^{2}} \quad \text { as } t \uparrow T
$$

Proofs [Angenent, Hulshof, Matano]

- $R(t)=o(T-t)$ as $t \uparrow T$.

$$
R(t)=e^{-2 \sqrt{t}+o(\sqrt{t})} \text { as } t \rightarrow \infty
$$

Result

Zoom/scaling factor $R(t)$:

$$
R(t) \sim \kappa \frac{T-t}{|\ln (T-t)|^{2}} \quad \text { as } t \uparrow T
$$

Proofs [Angenent, Hulshof, Matano]

- $R(t)=o(T-t)$ as $t \uparrow T$.

$$
R(t)=e^{-2 \sqrt{t}+o(\sqrt{t})} \text { as } t \rightarrow \infty
$$

- Partial results: general case is open.

$$
\theta_{t}=\theta_{r r}+\frac{1}{r} \theta_{r}-\frac{\sin 2 \theta}{2 r^{2}}
$$

Stability: Equivariance

High symmetry \Rightarrow Topological obstruction \Rightarrow Blowup How about non-symmetric perturbations?

$$
\left\{\begin{array}{l}
\theta_{t}=\theta_{r r}+\frac{1}{r} \theta_{r}+\frac{1}{r^{2}} \theta_{\phi \phi}-\frac{\sin 2 \theta}{2}\left(\psi_{r}^{2}+\frac{1}{r^{2}} \psi_{\phi}^{2}\right) \\
\psi_{t}=\psi_{r r}+\frac{1}{r} \psi_{r}+\frac{1}{r^{2}} \psi_{\phi \phi}+\frac{\sin 2 \theta}{(\sin \theta)^{2}}\left(\psi_{r} \theta_{r}+\frac{1}{r^{2}} \psi_{\phi} \theta_{\phi}\right)
\end{array}\right.
$$

Stability: Equivariance

High symmetry \Rightarrow Topological obstruction \Rightarrow Blowup
Equivariant: $\theta=\theta(r, t)$ and $\psi=\phi+\chi(r, t)$

$$
\left\{\begin{array}{l}
\theta_{t}=\theta_{r r}+\frac{1}{r} \theta_{r}-\frac{\sin 2 \theta}{2}\left(\chi_{r}^{2}+\frac{1}{r^{2}}\right) \\
\chi_{t}=\chi_{r r}+\frac{1}{r} \chi_{r}+\frac{\sin 2 \theta}{(\sin \theta)^{2}} \chi_{r} \theta_{r}
\end{array}\right.
$$

Stability: Equivariance

High symmetry \Rightarrow Topological obstruction \Rightarrow Blowup
Equivariant: $\theta=\theta(r, t)$ and $\psi=\phi+\chi(r, t)$

$$
\left\{\begin{array}{l}
\theta_{t}=\theta_{r r}+\frac{1}{r} \theta_{r}-\frac{\sin 2 \theta}{2}\left(\chi_{r}^{2}+\frac{1}{r^{2}}\right) \\
\chi_{t}=\chi_{r r}+\frac{1}{r} \chi_{r}+\frac{\sin 2 \theta}{(\sin \theta)^{2}} \chi_{r} \theta_{r}
\end{array}\right.
$$

Stability: Equivariance

High symmetry \Rightarrow Topological obstruction \Rightarrow Blowup
Equivariant: $\theta=\theta(r, t)$ and $\psi=\phi+\chi(r, t)$

$$
\left\{\begin{array}{l}
\theta_{t}=\theta_{r r}+\frac{1}{r} \theta_{r}-\frac{\sin 2 \theta}{2}\left(\chi_{r}^{2}+\frac{1}{r^{2}}\right) \\
\chi_{t}=\chi_{r r}+\frac{1}{r} \chi_{r}+\frac{\sin 2 \theta}{(\sin \theta)^{2}} \chi_{r} \theta_{r}
\end{array}\right.
$$

We only need to consider one radius

Matched asymptotics again

inner: $\left\{\begin{aligned} \theta & =2 \arctan \xi+R^{\prime}(t) R(t) \ldots \\ \chi & =\zeta(t)+R(t)^{2} \zeta^{\prime}(t) \ldots\end{aligned}\right.$

Matched asymptotics again

inner: $\left\{\begin{aligned} \theta & =2 \arctan \xi+R^{\prime}(t) R(t) \ldots \\ \chi & =\zeta(t)+R(t)^{2} \zeta^{\prime}(t) \ldots\end{aligned}\right.$

The singularity is a saddle point

Numerics

Numerics

Conclusion: instability

Radially symmetric blowup in the harmonic map heat flow is co-dimension 1 unstable under equivariant perturbations

There is no proof

Conclusion: instability

Radially symmetric blowup in the harmonic map heat flow is co-dimension 1 unstable under equivariant perturbations

There is no proof (very frustrating)

Conclusion: instability

Radially symmetric blowup in the harmonic map heat flow is co-dimension 1 unstable under equivariant perturbations

There is no proof (very frustrating)
Other results

- Instability dynamics: fast rotation of sphere over 180°
- Same result for Landau-Lifshitz

$$
\vec{u}_{t}=\alpha \vec{u} \times \Delta \vec{u}-\beta \vec{u} \times(\vec{u} \times \Delta \vec{u})
$$

No radially symmetric case, but an equivariant one

- Hints for continuation after bubbling: immediately reattach sphere rotated by 180°

