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Types of interaction

Swarming = Aggregation of agents of similar size and body type generally
moving in a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fishes,
birds, micro-organisms (myxo-bacteria, ...) and artificial robots for
unmanned vehicle operation.

Interaction regions between individuals®

“Barbaro, Birnir et al. (2008).
@ Repulsion Region: Ry.

@ Attraction Region: Ay.

@ Orientation Region: Oy.
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Particle models.

Model with an asymptotic velocity

D’Orsogna, Bertozzi et al. model (PRL 2006):

dx,-

L

dt ’

dv;

— =l(a- Blvil*)vi = > VU(|xi — x).

J#
Model assumptions: = Cg/CA > 1, 0=1lp/ly <1
and C¢~ < 1:

@ Self-propulsion and friction terms
determines an asymptotic speed of 186

Pair-wise
Va/pB.
@ Attraction/Repulsion modeled by an
effective pairwise potential U (x).

U(r) = —Cue™ "/ 4 Cre™"/*. r
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Particle models.

Model with an asymptotic velocity

Typical patterns: milling, double milling or flocking.
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Model with an asymptotic velocity

Typical patterns: milling, double milling or flocking.
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Double milling patterns: Carrillo, D’Orsogna, Panferov (2009).
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Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):
@
dt 1y
N
dV,'
o > ay(vi—mi),
Jj=1

with the communication rate, v > O:

= V:

1

aj = a(|xi — xj|) = Ot —xp)
i J
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Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):
@
dt 1y
N
dV,'
o > ay(vi—mi),
Jj=1

with the communication rate, v > O:

= V:

1
(l,‘j = (,l(|X[ 7)@‘) = m
! J

Unconditional flocking: v < 1/2; Ha-Tadmor, Ha-Liu,
Carrillo-Fornasier-Toscani-Rosado.
Conditional flocking: v > 1/2.
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Kinetic Models and measure solutions.

Mesoscopic models

Model with asymptotic velocity + Attraction/Repulsion:

% +v- V)cf + diVVKUZ - ﬁ|v|2)v.ﬂ o diV“ [(V’VU x P)f] =0.

Velocity consensus Model:

of o ' vV—w . ,
a +v-Vf=V, { (/RM 7(] " |x_y‘2)7f(y,w,t) dydw)f(x,v,t)}

=£(f) (x.v.1)

Orientation, Attraction and Repulsion:

T v 9 — v (VU )] = V- (€07 (e v, 1 v, 1)
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Kinetic Models and measure solutions.

1

Definition of the distance

Transporting measures:

Given T : RY — RY mesurable, we say that v = T#p, if
v[K] := p[T~1(K)] for all mesurable sets K C R, equivalently

1C. Villani, AMS Graduate Texts (2003).
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Kinetic Models and measure solutions.

1

Definition of the distance

Transporting measures:

Given T : RY — RY mesurable, we say that v = T#p, if
v[K] := p[T~1(K)] for all mesurable sets K C R, equivalently

/@du:/(gaoT)du
JRd Rd

for all ¢ € C,(RY).

Random variables:

Say that X is a random variable with law given by p, is to say
X:(Q,A,P) — (R? By) is a mesurable map such that X#P = p, i.e.,

/?;L[‘:‘Q(X)d%l:/((pox)dp:E[Q(X)]'

J

1C. Villani, AMS Graduate Texts (2003).
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Kinetic Models and measure solutions.

Definition of the distance

Kantorovich-Rubinstein-Wasserstein Distance:

Wi, v)= inf, {//RR X — 9] d7r(x,y)}

where the transference plan 7 runs over the set of joint probability measures
on RY x RY with marginals f and g € P;(R9)
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Kinetic Models and measure solutions.

Definition of the distance

Kantorovich-Rubinstein-Wasserstein Distance:
Wi (p, v)= inf, {/// / |x —y] d7r(x,y)} = inf(x y) {E[|X — Y]]}
J JRE xR

where the transference plan 7 runs over the set of joint probability measures
on R x R? with marginals f and g € P;(R?) and (X, Y) are all possible
couples of random variables with 1 and v as respective laws.
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Kinetic Models and measure solutions.

Definition of the distance

Monge’s optimal mass transport problem:

Find
1nfT{/ |x — T(x)| dp(x );V:T#/J,}.

Take vy = (1ge X T)#u as transference plan 7.

Y

remblais



Some Swarming Models
[e]e]e]e]e] lele)

Kinetic Models and measure solutions.

1-Wasserstein Distance

Basic Properties

@ Distance to a Dirac: f € P, (Rd )anda € R4, then

W0 = [ = aldro
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Kinetic Models and measure solutions.

1-Wasserstein Distance

Basic Properties

@ Distance to a Dirac: f € P, (Rd )anda € R4, then
Wi(r.6) = [ L= aldf (o).
JRd

@ Translation: f € P;(RY) and a € R, let £, denotes the translated f
with vector a, then

Wi(fa,f) = lal.

© Convergence of measures: Wi (f,,f) — 0 is equivalent to f;, — f
weakly-* as measures and convergence of first moments.

© Completeness: The space P; (Rd ) endowed with the distance W is a
complete metric space.
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Kinetic Models and measure solutions.

Well-posedness in probability measures?

Existence, uniqueness and stability

Take a potential U € Cz(RY), and f a measure on RY x R? with compact
support. There exists a solution f € C([0, +00); P;(R?)) in the sense of
solving the equation through the characteristics: f, := P'#f, with P’ the flow
map associated to the equation.

2
Dobrushin-Hepp-Neunzert, 1977-79 for the Vlasov.
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Kinetic Models and measure solutions.

Well-posedness in probability measures?

Existence, uniqueness and stability

Take a potential U € Cz(RY), and f a measure on RY x R? with compact
support. There exists a solution f € C([0, +00); P;(R?)) in the sense of
solving the equation through the characteristics: f, := P'#f, with P’ the flow
map associated to the equation.

Moreover, the solutions remains compactly supported for all time with a
possibly growing in time support.

Moreover, given any two solutions f and g with initial data f; and go, there is
an increasing function depending on the size of the support of the solutions
and the parameters, such that

4} (fr-,gr) < a(l) Wi (ﬁhg())

2
Dobrushin-Hepp-Neunzert, 1977-79 for the Vlasov.
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Kinetic Models and measure solutions.

Convergence of the particle method

@ Empirical measures: if x;,v; : [0,T) — RY, fori =1,...,N,isa
solution to the ODE system,

dx, i
dt

= Vi,

dv;

E — - +
then the f : [0, T) — Py (R?) given by

N

Fu(0) =" mib(e 0o

i=1

is the solution corresponding to initial atomic measures.
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@ Empirical measures: if x;,v; : [0,T) — R fori=1,...,N,isa

solution to the ODE system,

dX,'

=y,

dt '

propulsion-friction ~ attraction-repulsion

dv; —

o (a =Bl v - ijVU(\x,-ijD +
J#i

then the f : [0, T) — Py (R?) given by

N

Fo(0) =" mib (0,00

i=1

is the solution corresponding to initial atomic measures.
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@ Empirical measures: if x;,v; : [0,T) — R fori=1,...,N,isa
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Kinetic Models and measure solutions.

Convergence of the particle method

@ Empirical measures: if x;,v; : [0,T) — R fori=1,...,N,isa

solution to the ODE system,

dX,'
ad RN
dt " _ ,
. . tat
propulsion-friction attraction-repulsion orienation

dv; ‘ ” N N
jt’ = (a=BWPv - ijVU(\x,- —xj|) + ija,j

j#i j=1

then the f : [0, T) — Py (R?) given by
N

Fu(0) =" mib (00

i=1
is the solution corresponding to initial atomic measures.

@ Convergence of approximations of measures by particles due to the
stability at any given time 7 as an alternative derivation of the kinetic
models.
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Model with asymptotic velocity

Macroscopic equations

Monokinetic Solutions

Assuming that there is a deterministic velocity for each position and time,
S, v, 1) = p(x,1) §(v — u(x, 1)) is a distributional solution if and only if,
ap

e + divy(pu) = 0,

Ou .
e +p (W-Vu = pla—Blu*)u—p(V,.Uxp).
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Model with asymptotic velocity

Macroscopic equations

Monokinetic Solutions

Assuming that there is a deterministic velocity for each position and time,
S, v, 1) = p(x,1) §(v — u(x, 1)) is a distributional solution if and only if,
0
a—[; + divy(pu) = 0,
ou o
P TP Vau=pla—Elulu—p(ViUxp).
Superposition of Monokinetic Solutions

FOovt) = p1(x, 1) 6(v —uy(x, 1)) + p2(x, 1) 6(v — ua(x,t)) is a distributional
solution if and only if

A(p1 + p2)
ot

2 Ou;
;pi {dtl + (u; - Vou; — (a— g

+ dive(pruy + pous) = 0.

wiPui| = —(V U p) p.




Qualitative Properties
[e]e] o)

Model with asymptotic velocity

Particular solutions

Let us look for stationary solutions with an asymptotic speed value
Blulx, 1)]* = o

Flocking

Traveling wave case, u = const such that 8|u(x, #)|> = «, then

p(x, 1) = p(x — ur), and the density is determined by

7(VxU %) =0,
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Let us look for stationary solutions with an asymptotic speed value
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p(x, 1) = p(x — ur), and the density is determined by
B (ViU % p) =0,

from which
Uxp=C, p#0,

in the support of p if the support has not empty interior.

Complete set of solutions depending on regularity of the potential and
stability are open problems.
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Particular solutions

Let us look for stationary solutions with an asymptotic speed value
Blu(x,1)]> = a.
Milling

we setuin a rotatory state,

u= :t\/?XL,
B |x|

where x = (x1,x2), x* = (—x3, 1), and look for p = p(|x|) radial, then

(07

Uxp=D-+ 3

In|x|, whenever p # 0.
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Asymptotic Flocking

Let us consider the N,-particle system:

dxi
i _
dt !
dvi &
-
=S mal =) (05— w)
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Asymptotic Flocking

Let us consider the N,-particle system:

dx;
d% =Vi , %(0) = x}
dv; &
Vi
i Y mja(lx; —x)) (v —vi) -, vi(0) =7,
=1

Due to translation invariancy, w.l.0.g. the mean velocity is zero and thus the
center of mass is preserved along the evolution, i.e.,
Ny Ny

Z mvi(t) =0 and Z mix;(t) = x.
i=1 i=

forall# > 0 and x, € RY.



Qualitative Properties
[e]e] le]elelele]

Cucker-Smale Kinetic model

Asymptotic Flocking

Let us fix any Ry > 0 and Ry > 0, such that all the initial velocities lie inside
the ball B(0, R})) and all positions inside B(x., R}).
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Cucker-Smale Kinetic model

Asymptotic Flocking

Let us fix any Ry > 0 and Ry > 0, such that all the initial velocities lie inside
the ball B(0, R})) and all positions inside B(x., R}).

Let us define the function R"(t) to be

R'(t) == max {|v;(t)], i=1,...,N,}.

Choosing the label i to be the one achieving the maximum, we get

d _,
—R"(1)* = —|v,|2:—22m, vi —v;) - vl a(lx; — x;)

dt
J#
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Cucker-Smale Kinetic model

Asymptotic Flocking

Let us fix any Ry > 0 and Ry > 0, such that all the initial velocities lie inside
the ball B(0, R})) and all positions inside B(x., R}).

Let us define the function R"(t) to be

R'(t) == max {|v;(t)], i=1,...,N,}.

Choosing the label i to be the one achieving the maximum, we get

d _,
—R"(1)* = —|v,|2:—22m, vi —v;) - vl a(lx —x5]) .

dt
J#

Because of the choice of the label i, we have that (v; — v;) - v; > 0 for all
J # i that together with ¢ > 0 imply R"(r) < R}, for all > 0.
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Coming back to the equation for the positions,

xi(f) —x)] <Ryt forallt>Oandalli=1,...,N,.
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Cucker-Smale Kinetic model

Asymptotic Flocking

Coming back to the equation for the positions,

xi(f) —x)] <Ryt forallt>Oandalli=1,...,N,.

a(lx; —xj|) > forallr > 0Oandalli,j=1,...,N,,

1
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Cucker-Smale Kinetic model

Asymptotic Flocking

Coming back to the equation for the positions,

xi(f) —x)] <Ryt forallt>Oandalli=1,...,N,.

a(lx; —xj|) > forallr >0Oandalli,j=1,...,N,,

1
[1+4R3(1 + 1)?]"

with Ry = min(R§, R})).
Coming back to the equation for the maximal velocity

SR = =23 mil(vi —v) -] allx )

J#i

—vj) - v
JFl

SR = —f() R'(1),

2

< —

= T+ 4R+ 07 7 2 m [
2
Ry(



Qualitative Properties
[e]e]ele] lelele]

Cucker-Smale Kinetic model

Asymptotic Flocking

Gronwall’s lemma:

RY(1) < R}, exp {—; Orf(s) ds} .



Qualitative Properties
[e]e]ele] lelele]

Cucker-Smale Kinetic model

Asymptotic Flocking

Gronwall’s lemma:

For v < 1/2, the function f(¢) is not integrable at co and therefore

t
limHoo/f(s) ds = 400
0

and R"(1) — 0 as t — oo giving the convergence to a single point, its mean
velocity, of the support for the velocity.
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Cucker-Smale Kinetic model

Asymptotic Flocking

Gronwall’s lemma:

For v < 1/2, the function f(¢) is not integrable at co and therefore

t
limHoo/f(s) ds = 400
0

and R"(1) — 0 as t — oo giving the convergence to a single point, its mean
velocity, of the support for the velocity.
Again for the position variables, we get

ot t
/|v,~(s)\ds§cl /(1+s)*‘*€ds v <1/2
0 J0

" ot

1
/|Vi(5)‘dé‘§C/ ds=Cln(1+1) ~=1/2,
Jo Jo 1+s
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Asymptotic Flocking

There exists R} > 0 such that

(1) — x| < Ry

Now, a(|x;(t) — x;(t)|) > a(2R*),

d . o T alle — 5
R (1)? = —zgm, i —vj) vl a(lx — x)
< —2a(2RY) > mi[(vi — vj) - vi] = —2a(2R)R"(1)*

J#

from which we finally deduce the exponential decay to zero of R" ().
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Cucker-Smale Kinetic model

Asymptotic Flocking

Unconditional Non-universal Flocking Result for Particles

The unique measure-valued solution for the CS kinetic model with v < 1/2,
with a finite number of particles given by

satisfies that
hmt%oc Wl ([L(t)~ ﬂ%) =0

with

Nl’
a> = Zmié(x—x?o —mt)o(v —m)
i=1

with m the initial mean velocity of the particles.
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Asymptotic Flocking

Unconditional Non-universal Flocking Result for general measures

Given pp € M(RR?*?) compactly supported, then the unique measure-valued
solution to the CS kinetic model with v < 1/2, satisfies the following
bounds on their supports:

supp /(1) C B(x.(0) 4+ mt,R*(t)) x B(m,R"(t))

for all # > 0, with R*(r) < R and R"(1) < Rye~ with R* depending only on
the initial support radius.
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Asymptotic Flocking

Unconditional Non-universal Flocking Result for general measures

Given pp € M(RR?*?) compactly supported, then the unique measure-valued
solution to the CS kinetic model with v < 1/2, satisfies the following
bounds on their supports:

supp /(1) C B(x.(0) 4+ mt,R*(t)) x B(m,R"(t))

for all # > 0, with R*(r) < R and R"(1) < Rye~ with R* depending only on
the initial support radius.
Moreover,

1o W (124(1), Loc (1)) = 0,
where the measure L (1) is defined as

W deanlpo)) = [ ¢ (x5 [T Wlsin) ~ s ) duots)

R4 0

for all ¢ € C)(RY).
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Leadership, Geometrical Constraints, and Cone of Influence

Cucker-Smale with local influence regions:

dx,-

==y,

dt '

dV,‘

7 = > allxi—x)) (v —vi)
JEZ(1)

where ;(r) C {1,...,N} is the set of dependence, given by




Qualitative Properties
o] le]e)

Variations

Leadership, Geometrical Constraints, and Cone of Influence

Cucker-Smale with local influence regions:

dx,-

==y,

dt '

dV,‘

7 = > allxi—x)) (v —vi)
JEZ(1)

where ;(r) C {1,...,N} is the set of dependence, given by

Ei(t):{lgﬁgN:Wza}.

Cone of Vision: <//
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dvi 2 1 e i
L = (@ = BRI = 3 VU= l) = Vi [o0) -]
J# b |x| 4
with the roosting potential ¢ given by ¢(x) := —
4 RRoost

Roosting effect: milling flocks N = 400, Rp0st = 20.
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Variations

dvi 2 1 e i
L = (@ = BRI = 3 VU= l) = Vi [o0) -]
J# b ¥
with the roosting potential ¢ given by ¢(x) := —
4 RRoost

Roosting effect: milling flocks N = 400, Rp0st = 20.

to appear in M3AS, in collaboration with A. Klar, S. Martin, S. Tiwari.
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Adding Noise

Self-Propelling/Friction/Interaction with Noise Particle Model:

Xi = vi,
dvi = [(a—Bil*)vi = Vi > Ul —x|) | dt + V20 dli(1)
JFl

where I';(¢) are N independent copies of standard Wiener processes with
values in RY and o > 0 is the noise strength.
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Variations

Adding Noise

Self-Propelling/Friction/Interaction with Noise Particle Model:

Xp = v,

dvi = [(a—Bil*)vi = Vi > Ul —x|) | dt + V20 dli(1)
JFl

where I';(¢) are N independent copies of standard Wiener processes with
values in RY and o > 0 is the noise strength.
The Cucker—Smale Particle Model with Noise:

dx; = vidt

N m

dvi =Y a(lx; = x|) (v —vi)dt + | 20> a(lx; — xi[) dT(r) .

J=1 J=1
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Conclusions

Conclusions

@ Simple modelling of the three main phenomena: attraction, repulsion,
and orientation; lead to complicated patterns which are observed in
nature and not completely understood.

@ Stability of these patterns will certainly be quite useful to understand
more complicated situations.

@ The results are also interested from the point of view of the control of
electronic robots.

@ More information from particular species should be included to make
more realistic models: visual sectors for birds, more adapted
interactions, pheromone trails for ants, ...



	Some Swarming Models
	Particle models.
	Kinetic Models and measure solutions.

	Qualitative Properties
	Model with asymptotic velocity
	Cucker-Smale Kinetic model
	Variations

	Conclusions

