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Swarming

Fish schools and Birds flocks.
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Particle models.

Types of interaction

Swarming = Aggregation of agents of similar size and body type generally
moving in a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fishes,
birds, micro-organisms (myxo-bacteria, ...) and artificial robots for
unmanned vehicle operation.

Interaction regions between individualsa

a
Barbaro, Birnir et al. (2008).

Repulsion Region: Rk.

Attraction Region: Ak.

Orientation Region: Ok.
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Particle models.

Literature

Equations of motion (coupled ODEs): Aoki (1982), Huth-Wissel JTB
(1992), Parrish-Edelstein-Keshet Science (1999), Levine PRE (2000),
Birnir JSP (2007), Barbaro (fishes) (2009), Parisi (birds) (2009),
Hemelrijk (starlings-fishes) (2009).

Discrete particle models: Viczek PRL (1995), Gregoire-Chate PRL
(2004), Couzin Nature (2005), Franks JTB (2001).

Swarm Intelligence models: Ant Colony Optimization (search for
optimal paths - Dorigo 1992), particle swarm optimization (optimizing
fitness function on interacting particles - Kennedy 1995).

Continuum Fields (PDE-s): Toner PRL (1995), Grunbaum JMB
(1994), Edelstein-Keshet (1998), Bertozzi-Topaz (2000-), Mogilner
JMB (2003), Yates PNAS (2009).



university-logo

Some Swarming Models Qualitative Properties Conclusions

Particle models.

Literature

Equations of motion (coupled ODEs): Aoki (1982), Huth-Wissel JTB
(1992), Parrish-Edelstein-Keshet Science (1999), Levine PRE (2000),
Birnir JSP (2007), Barbaro (fishes) (2009), Parisi (birds) (2009),
Hemelrijk (starlings-fishes) (2009).

Discrete particle models: Viczek PRL (1995), Gregoire-Chate PRL
(2004), Couzin Nature (2005), Franks JTB (2001).

Swarm Intelligence models: Ant Colony Optimization (search for
optimal paths - Dorigo 1992), particle swarm optimization (optimizing
fitness function on interacting particles - Kennedy 1995).

Continuum Fields (PDE-s): Toner PRL (1995), Grunbaum JMB
(1994), Edelstein-Keshet (1998), Bertozzi-Topaz (2000-), Mogilner
JMB (2003), Yates PNAS (2009).



university-logo

Some Swarming Models Qualitative Properties Conclusions

Particle models.

Literature

Equations of motion (coupled ODEs): Aoki (1982), Huth-Wissel JTB
(1992), Parrish-Edelstein-Keshet Science (1999), Levine PRE (2000),
Birnir JSP (2007), Barbaro (fishes) (2009), Parisi (birds) (2009),
Hemelrijk (starlings-fishes) (2009).

Discrete particle models: Viczek PRL (1995), Gregoire-Chate PRL
(2004), Couzin Nature (2005), Franks JTB (2001).

Swarm Intelligence models: Ant Colony Optimization (search for
optimal paths - Dorigo 1992), particle swarm optimization (optimizing
fitness function on interacting particles - Kennedy 1995).

Continuum Fields (PDE-s): Toner PRL (1995), Grunbaum JMB
(1994), Edelstein-Keshet (1998), Bertozzi-Topaz (2000-), Mogilner
JMB (2003), Yates PNAS (2009).



university-logo

Some Swarming Models Qualitative Properties Conclusions

Particle models.

Literature

Equations of motion (coupled ODEs): Aoki (1982), Huth-Wissel JTB
(1992), Parrish-Edelstein-Keshet Science (1999), Levine PRE (2000),
Birnir JSP (2007), Barbaro (fishes) (2009), Parisi (birds) (2009),
Hemelrijk (starlings-fishes) (2009).

Discrete particle models: Viczek PRL (1995), Gregoire-Chate PRL
(2004), Couzin Nature (2005), Franks JTB (2001).

Swarm Intelligence models: Ant Colony Optimization (search for
optimal paths - Dorigo 1992), particle swarm optimization (optimizing
fitness function on interacting particles - Kennedy 1995).

Continuum Fields (PDE-s): Toner PRL (1995), Grunbaum JMB
(1994), Edelstein-Keshet (1998), Bertozzi-Topaz (2000-), Mogilner
JMB (2003), Yates PNAS (2009).



university-logo

Some Swarming Models Qualitative Properties Conclusions

Particle models.

Model with an asymptotic velocity

D’Orsogna, Bertozzi et al. model (PRL 2006):
dxi

dt
= vi,

dvi

dt
= (α− β |vi|2)vi −

∑
j6=i

∇U(|xi − xj|).

Model assumptions:

Self-propulsion and friction terms
determines an asymptotic speed of√
α/β.

Attraction/Repulsion modeled by an
effective pairwise potential U(x).

U(r) = −CAe−r/`A + CRe−r/`R .

C = CR/CA > 1, ` = `R/`A < 1
and C`2 < 1:
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Particle models.

Model with an asymptotic velocity

Typical patterns: milling, double milling or flocking.

Double milling patterns: Carrillo, D’Orsogna, Panferov (2009).
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Particle models.

Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):
dxi

dt
= vi,

dvi

dt
=

N∑
j=1

aij (vj − vi) ,

with the communication rate, γ ≥ 0:

aij = a(|xi − xj|) =
1

(1 + |xi − xj|2)
γ .

Unconditional flocking: γ ≤ 1/2; Ha-Tadmor, Ha-Liu,
Carrillo-Fornasier-Toscani-Rosado.
Conditional flocking: γ > 1/2.
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Kinetic Models and measure solutions.

Mesoscopic models

Model with asymptotic velocity + Attraction/Repulsion:

∂f
∂t

+ v · ∇xf + divv[(α− β|v|2)v f ]− divv [(∇xU ? ρ)f ] = 0.

Velocity consensus Model:

∂f
∂t

+ v · ∇xf = ∇v ·
[(∫

R2d

v− w
(1 + |x− y|2)

γ f (y,w, t) dy dw
)

︸ ︷︷ ︸
:=ξ(f )(x,v,t)

f (x, v, t)
]

Orientation, Attraction and Repulsion:

∂f
∂t

+ v · ∇xf − divv [(∇xU ? ρ)f ] = ∇v · [ξ(f )(x, v, t)f (x, v, t)] .
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Kinetic Models and measure solutions.

Definition of the distance1

Transporting measures:

Given T : Rd −→ Rd mesurable, we say that ν = T#µ, if
ν[K] := µ[T−1(K)] for all mesurable sets K ⊂ Rd, equivalently∫

Rd
ϕ dν =

∫
Rd

(ϕ ◦ T) dµ

for all ϕ ∈ Co(Rd).

Random variables:
Say that X is a random variable with law given by µ, is to say
X : (Ω,A,P) −→ (Rd,Bd) is a mesurable map such that X#P = µ, i.e.,∫

Rd
ϕ(x) dµ =

∫
Ω

(ϕ ◦ X) dP = E [ϕ(X)] .

1
C. Villani, AMS Graduate Texts (2003).
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Kinetic Models and measure solutions.

Definition of the distance

Kantorovich-Rubinstein-Wasserstein Distance:

W1(µ, ν)= infπ

{∫∫
Rd×Rd

|x− y| dπ(x, y)

}
= inf(X,Y) {E [|X − Y|]}

where the transference plan π runs over the set of joint probability measures
on Rd × Rd with marginals f and g ∈ P1(Rd) and (X,Y) are all possible
couples of random variables with µ and ν as respective laws.
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Kinetic Models and measure solutions.

Definition of the distance

Monge’s optimal mass transport problem:

Find

I := infT

{∫
Rd
|x− T(x)| dµ(x); ν = T#µ

}
.

Take γT = (1Rd × T)#µ as transference plan π.
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Kinetic Models and measure solutions.

1-Wasserstein Distance

Basic Properties

1 Distance to a Dirac: f ∈ P1(Rd) and a ∈ Rd, then

W1(f , δa) =

∫
Rd
|x− a|df (x).

2 Translation: f ∈ P1(Rd) and a ∈ Rd, let fa denotes the translated f
with vector a, then

W1(fa, f ) = |a|.

3 Convergence of measures: W1(fn, f )→ 0 is equivalent to fn ⇀ f
weakly-* as measures and convergence of first moments.

4 Completeness: The space P1(Rd) endowed with the distance W1 is a
complete metric space.
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Kinetic Models and measure solutions.

Well-posedness in probability measures2

Existence, uniqueness and stability

Take a potential U ∈ C2
b(Rd), and f0 a measure on Rd × Rd with compact

support. There exists a solution f ∈ C([0,+∞);P1(Rd)) in the sense of
solving the equation through the characteristics: ft := Pt#f0 with Pt the flow
map associated to the equation.

Moreover, the solutions remains compactly supported for all time with a
possibly growing in time support.

Moreover, given any two solutions f and g with initial data f0 and g0, there is
an increasing function depending on the size of the support of the solutions
and the parameters, such that

W1(ft, gt) ≤ α(t) W1(f0, g0)

2
Dobrushin-Hepp-Neunzert, 1977-79 for the Vlasov.
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Kinetic Models and measure solutions.

Convergence of the particle method
Empirical measures: if xi, vi : [0,T)→ Rd, for i = 1, . . . ,N, is a
solution to the ODE system,

dxi

dt
= vi,

dvi

dt
=

propulsion-friction︷ ︸︸ ︷
(α− β |vi|2)vi −

attraction-repulsion︷ ︸︸ ︷∑
j6=i

mj∇U(|xi − xj|) +

orientation︷ ︸︸ ︷
N∑

j=1

mjaij (vj − vi) .

then the f : [0,T)→ P1(Rd) given by

fN(t) :=

N∑
i=1

miδ(xi(t),vi(t))

is the solution corresponding to initial atomic measures.

Convergence of approximations of measures by particles due to the
stability at any given time T as an alternative derivation of the kinetic
models.
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Model with asymptotic velocity

Macroscopic equations
Monokinetic Solutions
Assuming that there is a deterministic velocity for each position and time,
f (x, v, t) = ρ(x, t) δ(v− u(x, t)) is a distributional solution if and only if,

∂ρ

∂t
+ divx(ρu) = 0,

ρ
∂u
∂t

+ ρ (u·∇x)u = ρ (α− β|u|2)u− ρ (∇xU ? ρ).

Superposition of Monokinetic Solutions

f (x, v, t) = ρ1(x, t) δ(v− u1(x, t)) + ρ2(x, t) δ(v− u2(x, t)) is a distributional
solution if and only if

∂(ρ1 + ρ2)

∂t
+ divx(ρ1u1 + ρ2u2) = 0.

2∑
i=1

ρi

[
∂ui

∂t
+ (ui · ∇x)ui − (α− β|ui|2)ui

]
= −(∇xU ? ρ) ρ.
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Model with asymptotic velocity

Particular solutions

Let us look for stationary solutions with an asymptotic speed value
β|u(x, t)|2 = α.

Flocking

Traveling wave case, u = const such that β|u(x, t)|2 = α, then
ρ(x, t) = ρ̃(x− ut), and the density is determined by

ρ̃ (∇xU ? ρ̃) = 0,

from which
U ? ρ̃ = C, ρ̃ 6= 0,

in the support of ρ̃ if the support has not empty interior.

Complete set of solutions depending on regularity of the potential and
stability are open problems.
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Model with asymptotic velocity

Particular solutions
Let us look for stationary solutions with an asymptotic speed value
β|u(x, t)|2 = α.

Milling

we set u in a rotatory state,

u = ±
√
α

β

x⊥

|x|
,

where x = (x1, x2), x⊥ = (−x2, x1), and look for ρ = ρ(|x|) radial, then

U ? ρ = D +
α

β
ln |x|, whenever ρ 6= 0.

A special family of singular solutions are given by ρ(r) = c δ(r − r0).

Complete set of solutions depending on regularity of the potential and
stability are open problems.
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Cucker-Smale Kinetic model

Asymptotic Flocking

Let us consider the Np-particle system:
dxi

dt
= vi , xi(0) = x0

i

dvi

dt
=

Np∑
j=1

mja(|xi − xj|) (vj − vi) , vi(0) = v0
i ,

.

Due to translation invariancy, w.l.o.g. the mean velocity is zero and thus the
center of mass is preserved along the evolution, i.e.,

Np∑
i=1

mivi(t) = 0 and
Np∑

i=1

mixi(t) = xc

for all t ≥ 0 and xc ∈ Rd.
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Cucker-Smale Kinetic model

Asymptotic Flocking

Let us fix any Rx
0 > 0 and Rv

0 > 0, such that all the initial velocities lie inside
the ball B(0,Rv

0) and all positions inside B(xc,Rx
0).

Let us define the function Rv(t) to be

Rv(t) := max {|vi(t)| , i = 1, . . . ,Np} .

Choosing the label i to be the one achieving the maximum, we get

d
dt

Rv(t)2 =
d
dt
|vi|2 = −2

∑
j 6=i

mj [(vi − vj) · vi] a(|xi − xj|) .

Because of the choice of the label i, we have that (vi − vj) · vi ≥ 0 for all
j 6= i that together with a ≥ 0 imply Rv(t) ≤ Rv

0 for all t ≥ 0.
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Cucker-Smale Kinetic model

Asymptotic Flocking
Coming back to the equation for the positions,

|xi(t)− x0
i | ≤ Rv

0t for all t ≥ 0 and all i = 1, . . . ,Np.

a(|xi − xj|) ≥
1

[1 + 4R2
0(1 + t)2]γ

for all t ≥ 0 and all i, j = 1, . . . ,Np,

with R0 = min(Rx
0,R

v
0).

Coming back to the equation for the maximal velocity

d
dt

Rv(t)2 = − 2
∑
j 6=i

mj [(vi − vj) · vi] a(|xi − xj|)

≤ − 2
[1 + 4R2

0(1 + t)2]γ

∑
j6=i

mj [(vi − vj) · vi]

= − 2
[1 + 4R2

0(1 + t)2]γ
Rv(t)2 := −f (t) Rv(t)2,
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Cucker-Smale Kinetic model

Asymptotic Flocking

Gronwall’s lemma:

Rv(t) ≤ Rv
0 exp

{
−1

2

∫ t

0
f (s) ds

}
.

For γ ≤ 1/2, the function f (t) is not integrable at∞ and therefore

limt→∞

∫ t

0
f (s) ds = +∞

and Rv(t)→ 0 as t→∞ giving the convergence to a single point, its mean
velocity, of the support for the velocity.
Again for the position variables, we get

∫ t

0
|vi(s)| ds ≤ C1

∫ t

0
(1 + s)−1−ε ds γ < 1/2∫ t

0
|vi(s)| ds ≤ C

∫ t

0

1
1 + s

ds = C ln(1 + t) γ = 1/2,
.
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Cucker-Smale Kinetic model

Asymptotic Flocking

There exists Rx
1 > 0 such that

|xi(t)− x0
i | ≤ Rx

1

Now, a(|xi(t)− xj(t)|) ≥ a(2R̄x),

d
dt

Rv(t)2 = − 2
∑
j 6=i

mj [(vi − vj) · vi] a(|xi − xj|)

≤ − 2a(2R̄x)
∑
j6=i

mj [(vi − vj) · vi] = −2a(2R̄x)Rv(t)2

from which we finally deduce the exponential decay to zero of Rv(t).
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Cucker-Smale Kinetic model

Asymptotic Flocking

Unconditional Non-universal Flocking Result for Particles

The unique measure-valued solution for the CS kinetic model with γ ≤ 1/2,
with a finite number of particles given by

µ̃(t) =

Np∑
i=1

mi δ(x− xi(t)) δ(v− vi(t)),

satisfies that
limt→∞W1 (µ̃(t), µ̃∞) = 0

with

µ̃∞ =

Np∑
i=1

mi δ(x− x∞i − mt) δ(v− m)

with m the initial mean velocity of the particles.
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Cucker-Smale Kinetic model

Asymptotic Flocking
Unconditional Non-universal Flocking Result for general measures

Given µ0 ∈M(R2d) compactly supported, then the unique measure-valued
solution to the CS kinetic model with γ ≤ 1/2, satisfies the following
bounds on their supports:

supp µ(t) ⊂ B(xc(0) + mt,Rx(t))× B(m,Rv(t))

for all t ≥ 0, with Rx(t) ≤ R̄ and Rv(t) ≤ R0 e−λt with R̄x depending only on
the initial support radius.
Moreover,

limt→∞W1(µmt
x (t),L∞(µ0)) = 0,

where the measure L∞(µ0) is defined as∫
Rd
ζ(x) dL∞(µ0)(x) =

∫
R2d
ζ

(
x +

∫ ∞
0

[V(s; x, v)− m] ds
)

dµ0(x, v),

for all ζ ∈ C0
b(Rd).
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Variations

Leadership, Geometrical Constraints, and Cone of Influence
Cucker-Smale with local influence regions:

dxi

dt
= vi ,

dvi

dt
=
∑

j∈Σi(t)

a(|xi − xj|)(vj − vi) ,

where Σi(t) ⊂ {1, . . . ,N} is the set of dependence, given by

Σi(t) :=

{
1 ≤ ` ≤ N :

(x` − xi) · vi

|x` − xi||vi|
≥ α

}
.

Cone of Vision:
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Variations

Roosting Forces
Adding a roosting area to the model:

dxi

dt
= vi,

dvi

dt
= (α− β |vi|2)vi −

∑
j6=i

∇U(|xi − xj|)− v⊥i ∇xi

[
φ(xi) · v⊥i

]
.

with the roosting potential φ given by φ(x) :=
b
4

(
|x|

RRoost

)4

.

Roosting effect: milling flocks N = 400,Rroost = 20.

to appear in M3AS, in collaboration with A. Klar, S. Martin, S. Tiwari.
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Variations

Adding Noise
Self-Propelling/Friction/Interaction with Noise Particle Model:

ẋi = vi,

dvi =

(α− β |vi|2)vi −∇xi

∑
j 6=i

U(|xi − xj|)

 dt +
√

2σ dΓi(t) ,

where Γi(t) are N independent copies of standard Wiener processes with
values in Rd and σ > 0 is the noise strength.
The Cucker–Smale Particle Model with Noise:
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√√√√2σ
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a(|xj − xi|) dΓi(t) .
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Adding Noise
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ẋi = vi,

dvi =

(α− β |vi|2)vi −∇xi

∑
j 6=i

U(|xi − xj|)

 dt +
√

2σ dΓi(t) ,

where Γi(t) are N independent copies of standard Wiener processes with
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Conclusions

Simple modelling of the three main phenomena: attraction, repulsion,
and orientation; lead to complicated patterns which are observed in
nature and not completely understood.

Stability of these patterns will certainly be quite useful to understand
more complicated situations.

The results are also interested from the point of view of the control of
electronic robots.

More information from particular species should be included to make
more realistic models: visual sectors for birds, more adapted
interactions, pheromone trails for ants, ...
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