Center for Mathematics and Computer Science rademach@cwi.nl - www.cwi.nl/~rademach

Existence, stability and interaction of some nonlinear waves

EURANDOM, NDNS+ workshop, April 2010 Jens Rademacher (CWI Amsterdam)

Deviation from Abstract

I will not talk about stability boundaries of wave trains, see Sjors van der Stelt's talk Thursday.

Topics

1. Riemann solvers and undercompressive shocks of convex FPU lattices
2. Bifurcations from heteroclinic networks with periodic orbits and tangencies
3. Transition to chaos in the wake of predator invasion
4. First and second order semi-strong interaction

Topic 1

Riemann solvers and undercompressive shocks of convex FPU chains

joint work with M. Herrmann (Oxford)

FPU-type chain

Caricature model for solids or crystals.

Atomic position $\quad x_{\alpha}(t)$
Particle index $\alpha=1, \ldots, N$ or $\alpha \in \mathbb{Z}$
Convex potential $\Phi \Rightarrow$ monotone force Φ^{\prime}
Newton equations for nearest neighbour interaction

$$
\ddot{x}_{\alpha}=\Phi^{\prime}\left(x_{\alpha+1}-x_{\alpha}\right)-\Phi^{\prime}\left(x_{\alpha}-x_{\alpha-1}\right)
$$

Distances

$$
r_{\alpha}=x_{\alpha+1}-x_{\alpha} \quad \Rightarrow \quad \dot{r}_{\alpha}=v_{\alpha+1}-v_{\alpha} .
$$

Velocities $\quad v_{\alpha}=\dot{x}_{\alpha} \quad \Rightarrow \quad \dot{v}_{\alpha}=\Phi^{\prime}\left(r_{\alpha}\right)-\Phi^{\prime}\left(r_{\alpha-1}\right)$.
Energy equation

$$
\partial_{\bar{t}}\left(\frac{1}{2} v_{\alpha}^{2}+\Phi(r)\right)=v_{\alpha+1} \Phi^{\prime}\left(r_{\alpha}\right)-v_{\alpha} \Phi^{\prime}\left(r_{\alpha-1}\right) .
$$

Macroscopic thermodynamic limit?

Consider $\varepsilon=1 / N \rightarrow 0$ with
hyperbolic space-time scaling $\bar{\alpha}=\varepsilon \alpha \quad, \quad \bar{t}=\varepsilon t$
Does not scale amplitude!
Naively: Assume limiting fields $r(\bar{t}, \bar{\alpha}), v(\bar{t}, \bar{\alpha})$

$$
\begin{aligned}
\varepsilon \dot{r}(\bar{t}, \bar{\alpha})=v(\bar{t}, \bar{\alpha}+\varepsilon)-v(\bar{t}, \bar{\alpha}) & \Rightarrow \partial_{\bar{t}} r
\end{aligned}=\partial_{\bar{\alpha} v}, ~=\partial_{\bar{t} v}=\partial_{\bar{\alpha}\left(\Phi^{\prime}(r)\right)}^{\ldots} \neq
$$

'p-system': mass and momentum conservation.

Macroscopic thermodynamic limit?

Consider $\varepsilon=1 / N \rightarrow 0$ with
hyperbolic space-time scaling $\bar{\alpha}=\varepsilon \alpha \quad, \quad \bar{t}=\varepsilon t$
Does not scale amplitude!
Naively: Assume limiting fields $r(\bar{t}, \bar{\alpha}), v(\bar{t}, \bar{\alpha})$

$$
\begin{aligned}
\varepsilon \dot{r}(\bar{t}, \bar{\alpha})=v(\bar{t}, \bar{\alpha}+\varepsilon)-v(\bar{t}, \bar{\alpha}) & \Rightarrow \partial_{\bar{t}} r
\end{aligned}=\partial_{\bar{\alpha} v}, ~=\partial_{\bar{t}} v=\partial_{\bar{\alpha}\left(\Phi^{\prime}(r)\right)}^{\ldots} \neq
$$

'p-system': mass and momentum conservation.
But in addition energy conservation:

$$
\partial_{\bar{t}}\left(\frac{1}{2} v^{2}+\Phi(r)\right)=\partial_{\bar{\alpha}}\left(v \Phi^{\prime}(r)\right) .
$$

Macroscopic thermodynamic limit?

Consider $\varepsilon=1 / N \rightarrow 0$ with
hyperbolic space-time scaling $\bar{\alpha}=\varepsilon \alpha \quad, \quad \bar{t}=\varepsilon t$
Does not scale amplitude!
Naively: Assume limiting fields $r(\bar{t}, \bar{\alpha}), v(\bar{t}, \bar{\alpha})$

$$
\begin{aligned}
\varepsilon \dot{r}(\bar{t}, \bar{\alpha})=v(\bar{t}, \bar{\alpha}+\varepsilon)-v(\bar{t}, \bar{\alpha}) & \Rightarrow \partial_{\bar{t}} r
\end{aligned}=\partial_{\bar{\alpha} v}, ~=\partial_{\bar{t}} v=\partial_{\bar{\alpha}\left(\Phi^{\prime}(r)\right)}^{\ldots} \neq
$$

'p-system': mass and momentum conservation.
But in addition energy conservation:

$$
\partial_{\bar{t}}\left(\frac{1}{2} v^{2}+\Phi(r)\right)=\partial_{\bar{\alpha}}\left(v \Phi^{\prime}(r)\right) .
$$

Conversely: FPU is dispersive discretisation of p-system.

FPU and p-system

How much about FPU can we understand through the p-system?

FPU and p-system

How much about FPU can we understand through the p-system?
p-system are hyperbolic conservation laws for $\Phi^{\prime \prime}>0$
\Rightarrow Riemann problems contain building blocks of solutions

FPU and p-system

How much about FPU can we understand through the p-system?
p-system are hyperbolic conservation laws for $\Phi^{\prime \prime}>0$
\Rightarrow Riemann problems contain building blocks of solutions

Does FPU also behave this way for small ε ?
\Rightarrow Solve discrete Riemann problems and identify building blocks.

FPU and p-system

How much about FPU can we understand through the p-system?
p-system are hyperbolic conservation laws for $\Phi^{\prime \prime}>0$
\Rightarrow Riemann problems contain building blocks of solutions

Does FPU also behave this way for small ε ?
\Rightarrow Solve discrete Riemann problems and identify building blocks.

In particular shocks: for p-system additional selection criterion required.

Shocks (= jump discontinuities)

Hyperbolic theory for p-system emposes 'kinetic relation' to select shocks from family of jump-discontinuities that generate a weak solution (Rankine-Hugeniot conditions).

Shocks (= jump discontinuities)

Hyperbolic theory for p -system emposes 'kinetic relation' to select shocks from family of jump-discontinuities that generate a weak solution (Rankine-Hugeniot conditions).

Interpretation for general particle system:
Such a condition compensates the loss of information from passing to macroscopic continuum description.

Shocks (= jump discontinuities)

Hyperbolic theory for p -system emposes 'kinetic relation' to select shocks from family of jump-discontinuities that generate a weak solution (Rankine-Hugeniot conditions).

Interpretation for general particle system:
Such a condition compensates the loss of information from passing to macroscopic continuum description.

Lax-theory: only 'compressive’ shocks are allowed, i.e., characteristics point into shock interface.

Shocks (= jump discontinuities)

Hyperbolic theory for p -system emposes 'kinetic relation' to select shocks from family of jump-discontinuities that generate a weak solution (Rankine-Hugeniot conditions).

Interpretation for general particle system:
Such a condition compensates the loss of information from passing to macroscopic continuum description.

Lax-theory: only 'compressive' shocks are allowed, i.e., characteristics point into shock interface.
Is 'equivalent' to microscopic energy dissipation (viscous shocks).

Shocks (= jump discontinuities)

Hyperbolic theory for p -system emposes 'kinetic relation' to select shocks from family of jump-discontinuities that generate a weak solution (Rankine-Hugeniot conditions).

Interpretation for general particle system:
Such a condition compensates the loss of information from passing to macroscopic continuum description.

Lax-theory: only 'compressive’ shocks are allowed, i.e., characteristics point into shock interface.
Is 'equivalent' to microscopic energy dissipation (viscous shocks).
Microscopic energy conservation \Rightarrow cannot expect Lax-shocks.

A typical Riemann problem

Approximately self-similar: all depends essentially on $c=x / t$.
Observe three types of building blocks ('elementary waves'):

- Rarefaction fan (leftmost)
- Highly oscillatory region (middle) - 'dispersive shock'
- Jump discontinuity (rightmost) - 'conservative shock'

Conservative shock

Conservative shock

Heteroclinic travelling wave of infinite FPU (looss '00) ?

Conservative shock

Heteroclinic travelling wave of infinite FPU (looss '00) ?
Theorem [Herrmann, R.]

1. Fronts satisfy jump relations of p-system including energy conservation: 'conservative shocks'.

Conservative shock

Heteroclinic travelling wave of infinite FPU (looss '00) ?
Theorem [Herrmann, R.]

1. Fronts satisfy jump relations of p-system including energy conservation: 'conservative shocks'.
2. Supersonic conservative p-system shocks that satisfy an area condition correspond to fronts. This requires a turning point of the flux.
Proof: Novel variational approach for deviation from p-system shock..

Riemann solver ?

Can we characterise a Riemann solver for FPU that predicts which types of waves and which intermediate states will be taken for given Riemann problem data?

Idea: Adapt/extend p-system Riemann solvers.
Problems:

1. Conservative shocks require turning point of flux \rightarrow cannot use classical Lax-theory. Instead 'kinetic relation' theory of LeFloch, Truskinovsky, ...
2. Only supersonic conservative shocks appear in FPU, not subsonic ones - need different solvers!

Shock curve

Outlook

Stability of fronts?
Bifurcation at transition to non-supersonic?
Rigorous Riemann solver for 'dispersive p-system'?

References (with M. Herrmann):

- Riemann solvers: Nonlinearity 23 (2010) 277-304.
- Existence of fronts: to appear in SIAM J. Math. An.

Topic 2

Bifurcations from heteroclinic networks with periodic orbits and tangencies

partly joint work with A. Champneys (Bristol), V. Kirk (Auckland),
E. Knobloch (Berkeley), B. Oldeman (Montreal)

ODE Setup

$$
\frac{\mathrm{d}}{\mathrm{~d} x} u(x)=f(u(x) ; \mu), \quad u(x) \in \mathbb{R}^{n},
$$

parameters $\mu \in \mathbb{R}^{d}$, sufficiently large d.

ODE Setup

$$
\frac{\mathrm{d}}{\mathrm{~d} x} u(x)=f(u(x) ; \mu), \quad u(x) \in \mathbb{R}^{n}
$$

parameters $\mu \in \mathbb{R}^{d}$, sufficiently large d.
Heteroclinic network: directed graph, vertices p_{i}^{*} equilibria or periodic orbits, edges q_{i}^{*} heteroclinic connections.

ODE Setup

$$
\frac{\mathrm{d}}{\mathrm{~d} x} u(x)=f(u(x) ; \mu), \quad u(x) \in \mathbb{R}^{n}
$$

parameters $\mu \in \mathbb{R}^{d}$, sufficiently large d.
Heteroclinic network: directed graph, vertices p_{i}^{*} equilibria or periodic orbits, edges q_{i}^{*} heteroclinic connections.

Starting point: an arbitrary path, possibly with repetitions
$\left(p_{j}\right)_{j \in J},\left(q_{j}\right)_{j \in J^{\circ}:=J \backslash \min J}, \quad q_{j}$ heteroclinic from p_{j-1} to p_{j}. (homoclinic if $p_{j-1}=p_{j}$) and J either \mathbb{N}, \mathbb{Z} or finite.

ODE Setup

$$
\frac{\mathrm{d}}{\mathrm{~d} x} u(x)=f(u(x) ; \mu), \quad u(x) \in \mathbb{R}^{n}
$$

parameters $\mu \in \mathbb{R}^{d}$, sufficiently large d.
Heteroclinic network: directed graph, vertices p_{i}^{*} equilibria or periodic orbits, edges q_{i}^{*} heteroclinic connections.

Starting point: an arbitrary path, possibly with repetitions $\left(p_{j}\right)_{j \in J},\left(q_{j}\right)_{j \in J^{\circ}:=J \backslash \min J}, \quad q_{j}$ heteroclinic from p_{j-1} to p_{j}. (homoclinic if $p_{j-1}=p_{j}$) and J either \mathbb{N}, \mathbb{Z} or finite.

Novelty: allow for periodic orbits in general and tangencies.

Practical example!

Practical example!

Practical example!

Schematics

Schematics

Schematics

Approach \approx Lyapunov-Schmidt reduction of matching pieces at Σ 's

Schematics

Approach \approx Lyapunov-Schmidt reduction of matching pieces at Σ 's
Result: algebraic equations that couple μ to 'geometric characteristics':

Tangency and assumptions

'parameter' v_{j} appears in case of tangency:

Tangency and assumptions

'parameter' v_{j} appears in case of tangency:

Also have v_{j} if set of heteroclinic point is higher than 1D.

Tangency and assumptions

'parameter' v_{j} appears in case of tangency:

Also have v_{j} if set of heteroclinic point is higher than 1D.

Assumptions:

- parameters unfold generically

Tangency and assumptions

'parameter' v_{j} appears in case of tangency:

Also have v_{j} if set of heteroclinic point is higher than 1D.

Assumptions:

- parameters unfold generically
- p_{j} are hyperbolic with leading un/stable Floquet exponents

$$
\nu_{j}^{\mathrm{u} / \mathrm{s}}= \pm \kappa_{j}^{\mathrm{u} / \mathrm{s}}+\mathrm{i} \sigma_{j}^{\mathrm{u} / \mathrm{s}}
$$

Rigorous matching: bifurcation equations

$$
\begin{aligned}
& \mu_{j}^{*}=\mathcal{T}_{j}\left(v_{j}\right)+\mathrm{e}^{-2 \kappa_{j}^{\mathrm{u}} L_{j}} \operatorname{Cos}\left(2 \sigma_{j}^{\mathrm{u}} L_{j}+\beta_{j}^{*}\left(v_{j+1}, L_{j+1}\right)\right) \zeta_{j}^{*}\left(v_{j+1}, L_{j+1}\right) \\
& +\mathrm{e}^{-2 \kappa_{j-1}^{\mathrm{s}} L_{j-1}} \operatorname{Cos}\left(2 \sigma_{j-1}^{\mathrm{s}} L_{j-1}+\gamma_{j}^{*}\left(v_{j-1}, L_{j-2}\right) \xi_{j}^{*}\left(v_{j-1}, L_{j-2}\right)+\mathcal{R}_{j} .\right.
\end{aligned}
$$

Solvability condition for repeatedly visited $q_{j}: \mu_{j}^{*}=\mu_{j^{\prime}}^{*}$ if $q_{j}=q_{j^{\prime}}$.
Can, e.g., reprove the well-known homoclinic bifurcation results, and that a homoclinic orbit to a periodic orbit implies 'chaos'.

EP1t-cycle

Connection from P to E is tangent, connection from E to P has linear codimension $1 \Rightarrow$ need two parameters for unfolding.

Sample bifurcation set: E-hom

Positive Floquet multipliers at P : E-hom occur on parabolas:

P-hom tangencies

Complex leading eigenvalues at E : P-hom tangencies occur on:

References:

- rigorous general reduction to bifurcation equations: R., to appear JDE
- partly formal for EP1t cycle: Champneys, Kirk, Knobloch, Oldeman, R., SIADS 8 (2009) 1261-1304

Topic 3

Transition to chaos in the wake of predator invasion

joint work with M. Smith (Cambridge), J. Sherratt (Edinburgh)

Topic 4

First and second order semi-strong interaction

partly joint work with J. Ehrt, M. Wolfrum (Berlin)

Weak interaction of pulses

Pulses at $x_{j}, j=1, \ldots, N$, initially with $x_{j}-x_{i} \geq L, L \gg 1$

Interaction through exponentially small superposition error in 'tails': relative motion is exponentially slow,

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(x_{1}-x_{2}\right)=\mathcal{O}(\exp (-\kappa L)), \quad \kappa>0 \text { from tail geometry }
$$

For N pulses, general rigorous theory [Zelik, Mielke '07, '09]:
Centre-manifold reduction to N-dimensional 'pulse manifold' and ODE for pulse motion.

Diffusion length

For $\varepsilon=1 / L, z=\varepsilon x$ obtain

$$
u_{t}=\varepsilon^{2} D u_{z z}+f(u ; \mu) .
$$

Weak interaction occurs when diffusion lengths of all components are of the same order in ε as $\varepsilon \rightarrow 0$.

Semi-strong interaction

Semi-strong interaction occurs if some diffusion lengths are order one:

$$
\begin{aligned}
\partial_{t} u & =D_{u} \partial_{x x} u+F(u, v) \\
\partial_{t} v & =\varepsilon^{2} D_{v} \partial_{x x} v+G(u, v)
\end{aligned}
$$

Semi-strong interaction

Semi-strong interaction occurs if some diffusion lengths are order one:

$$
\begin{aligned}
\partial_{t} u & =D_{u} \partial_{x x} u+F(u, v) \\
\partial_{t} v & =\varepsilon^{2} D_{v} \partial_{x x} v+G(u, v)
\end{aligned}
$$

Pulse: solution that is localised in v as $\varepsilon \rightarrow 0$.

Semi-strong interaction

Semi-strong interaction occurs if some diffusion lengths are order one:

$$
\begin{aligned}
\partial_{t} u & =D_{u} \partial_{x x} u+F(u, v) \\
\partial_{t} v & =\varepsilon^{2} D_{v} \partial_{x x} v+G(u, v)
\end{aligned}
$$

Pulse: solution that is localised in v as $\varepsilon \rightarrow 0$.

Reduction to pulse-manifold and interaction ODE so far only formal.
Nature of problem also depends on details of scaling:
first vs. second order cases.

1st and 2nd order semi-strong interaction

Example:

$$
\partial_{t} u=\partial_{x x} u+\alpha-u v^{2}
$$

Schnakenberg model

$$
\partial_{t} v=\varepsilon^{2} \partial_{x x} v+\beta-v+u v^{2} .
$$

1st order semi-strong:
velocity $c=\mathcal{O}(\varepsilon)$,
$\alpha=0.9, \beta=0.1$.

2nd order semi-strong:
velocity $c=\mathcal{O}\left(\varepsilon^{2}\right)$,
$\alpha=1.3 \sqrt{\varepsilon}, \beta=0.1$.

Rescaled equations

Original:

$$
\begin{aligned}
\partial_{t} u & =\partial_{x x} u+\alpha-u v^{2} \\
\partial_{t} v & =\varepsilon^{2} \partial_{x x} v+\beta-v+u v^{2} .
\end{aligned}
$$

1st order case: $\alpha=\hat{\alpha}, u=\hat{u}, v=\hat{v} / \varepsilon$

$$
\begin{aligned}
\partial_{t} \hat{u} & =\partial_{x x} \hat{u}+\hat{\alpha}-\frac{1}{\varepsilon^{2}} \hat{u} \hat{v}^{2} \\
\partial_{t} \hat{v} & =\varepsilon^{2} \partial_{x x} \hat{v}+\varepsilon \hat{\beta}-\hat{v}+\frac{1}{\varepsilon} \hat{u} \hat{v}^{2} .
\end{aligned}
$$

2nd order case: $\alpha=\sqrt{\varepsilon} \check{\alpha}, u=\sqrt{\varepsilon} \check{u}, v=\check{v} / \sqrt{\varepsilon}$

$$
\begin{aligned}
\partial_{t} \check{u} & =\partial_{x x} \check{u}+\check{\alpha}-\frac{1}{\varepsilon} \check{u} \check{v}^{2} \\
\partial_{t} \check{v} & =\varepsilon^{2} \partial_{x x} \check{v}+\sqrt{\varepsilon} \check{\beta}-\check{v}+\check{u} \check{v}^{2} .
\end{aligned}
$$

2nd order case

Reduction setup

Idea: expand $u=u_{0}+\mathcal{O}(\varepsilon), v=v_{0}+\mathcal{O}(\varepsilon)$ and derive equations for u_{0}, v_{0} assuming $\partial_{t} \check{v}_{0}=\partial_{t} \check{u}_{0} \equiv 0$.

$$
\begin{aligned}
\mathcal{O}(\varepsilon) & =\partial_{x x} \check{u}+\check{\alpha}-\frac{1}{\varepsilon} \check{u} \check{u}^{2} \\
\mathcal{O}(\varepsilon) & =\varepsilon^{2} \partial_{x x} \check{v}+\sqrt{\varepsilon} \check{\beta}-\check{v}+\check{u} \breve{v}^{2} .
\end{aligned}
$$

Reduction setup

Idea: expand $u=u_{0}+\mathcal{O}(\varepsilon), v=v_{0}+\mathcal{O}(\varepsilon)$ and derive equations for u_{0}, v_{0} assuming $\partial_{t} \check{v}_{0}=\partial_{t} \check{u}_{0} \equiv 0$.

$$
\begin{aligned}
\mathcal{O}(\varepsilon) & =\partial_{x x} \check{u}+\check{\alpha}-\frac{1}{\varepsilon} \check{u} \check{v}^{2} \\
\mathcal{O}(\varepsilon) & =\varepsilon^{2} \partial_{x x} \check{v}+\sqrt{\varepsilon} \check{\beta}-\check{v}+\check{u} \check{v}^{2} .
\end{aligned}
$$

Large scale: assume $\check{v}_{0} \equiv 0$ away from pulse locations, and set $\varepsilon=0$.

$$
0=\partial_{x x} \check{U}_{0}+\check{\alpha} \quad \Rightarrow \quad \check{U}_{0}=-\frac{\grave{\alpha}}{2} x^{2}+c x+d .
$$

Reduction setup

Idea: expand $u=u_{0}+\mathcal{O}(\varepsilon), v=v_{0}+\mathcal{O}(\varepsilon)$ and derive equations for u_{0}, v_{0} assuming $\partial_{t} \check{v}_{0}=\partial_{t} \check{u}_{0} \equiv 0$.

$$
\begin{aligned}
\mathcal{O}(\varepsilon) & =\partial_{x x} \check{u}+\check{\alpha}-\frac{1}{\varepsilon} \check{u} \check{u}^{2} \\
\mathcal{O}(\varepsilon) & =\varepsilon^{2} \partial_{x x} \check{v}+\sqrt{\varepsilon} \check{\beta}-\check{v}+\check{u} \check{v}^{2} .
\end{aligned}
$$

Large scale: assume $\check{v}_{0} \equiv 0$ away from pulse locations, and set $\varepsilon=0$.

$$
0=\partial_{x x} \check{U}_{0}+\check{\alpha} \quad \Rightarrow \quad \check{U}_{0}=-\frac{\check{\alpha}}{2} x^{2}+c x+d .
$$

Piecewise smooth solution composed of parabolas.

Small scale

Small scale: $\xi=\left(x-x_{j}\right) / \varepsilon$

Small scale

Small scale: $\xi=\left(x-x_{j}\right) / \varepsilon$ yields reduced equations:

$$
\begin{array}{ll}
\partial_{\xi} \check{u}_{0}=0 & \partial_{\xi \xi} \check{v}_{0}=\check{v}_{0}-\check{u}_{0} \check{v}_{0}^{2} \\
\partial_{\xi} \check{p}_{0}=\check{u}_{0} \check{v}_{0}^{2} \quad\left(\check{p}_{0}=\partial_{x} \check{u}_{0}\right) &
\end{array}
$$

Only one 2nd order ODE!

Small scale

Small scale: $\xi=\left(x-x_{j}\right) / \varepsilon$ yields reduced equations:

$$
\begin{aligned}
& \partial_{\xi} \check{u}_{0}=0 \\
& \partial_{\xi} \check{p}_{0}=\check{u}_{0} \check{v}_{0}^{2} \quad\left(\check{p}_{0}=\partial_{x} \check{u}_{0}\right)
\end{aligned}
$$

Only one 2nd order ODE! Explicit two-parameter solution family!

Small scale

Small scale: $\xi=\left(x-x_{j}\right) / \varepsilon$ yields reduced equations:

$$
\begin{array}{ll}
\partial_{\xi} \check{u}_{0}=0 & \partial_{\xi \xi} \check{v}_{0}=\check{v}_{0}-\check{u}_{0} \check{v}_{0}^{2} \\
\partial_{\xi} \check{p}_{0}=\check{u}_{0} \check{v}_{0}^{2} \quad\left(\check{p}_{0}=\partial_{x} \check{u}_{0}\right) &
\end{array}
$$

Only one 2nd order ODE! Explicit two-parameter solution family!

Now construct (leading order) solutions by matching large and small scale solutions: yields algebraic equations.

Small scale

Small scale: $\xi=\left(x-x_{j}\right) / \varepsilon$ yields reduced equations:

$$
\begin{array}{ll}
\partial_{\xi} \check{u}_{0}=0 & \partial_{\xi \xi} \check{v}_{0}=\check{v}_{0}-\check{u}_{0} \check{v}_{0}^{2} \\
\partial_{\xi} \check{p}_{0}=\check{u}_{0} \check{v}_{0}^{2} \quad\left(\check{p}_{0}=\partial_{x} \check{u}_{0}\right) &
\end{array}
$$

Only one 2nd order ODE! Explicit two-parameter solution family!

Now construct (leading order) solutions by matching large and small scale solutions: yields algebraic equations.
Substitution and projection gives the reduced dynamics

$$
\frac{\mathrm{d}}{\mathrm{~d} t} x_{j}(t)=2 \varepsilon^{2} \frac{b_{j}}{a_{j}}+\mathcal{O}\left(\varepsilon^{3}\right)
$$

in accordance with [Doelman, Kaper '03; Ward et al '05].

Transverse stability

General transverse stability of pulse manifold?

Leading order eigenvalue problem:

$$
\begin{gathered}
L\left(\check{u}_{0}, \check{v}_{0}\right):=\left(\begin{array}{cc}
\partial_{x x}-\frac{1}{\varepsilon} \check{v}_{0}^{2} & \frac{2}{\varepsilon} \check{u}_{0} \check{v}_{0} \\
\check{v}_{0}^{2} & \varepsilon^{2} \partial_{x x}-1+2 \check{u}_{0} \check{v}_{0}
\end{array}\right), \\
L\left(\check{u}_{0}, \check{v}_{0}\right)\binom{\Phi}{\Psi}=\lambda\binom{\Phi}{\Psi} .
\end{gathered}
$$

Large scale: set $\check{v}_{0}=0$ and then $\varepsilon=0$:

$$
\partial_{x x} \Phi=\lambda \Phi, \quad(1+\lambda) \Psi=0 .
$$

Small scale and matching

For 1-pulse and Neumann b.c. get inhomogeneous linear ODE

$$
\partial_{\xi \xi} \psi=\left(1-2 a_{1} \check{v}_{0}(\xi)-\lambda\right) \psi(\xi)-\Phi\left(x_{1}\right) \check{v}_{0}^{2}(\xi) .
$$

Constraint from matching:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} 3\left(1-\tanh ^{2}(\xi / 2)\right) \psi(\xi) d \xi= \\
& \Phi\left(x_{1}\right)\left(\sqrt{\lambda}\left(\tanh \sqrt{\lambda}\left(x_{1}-L\right)-\tanh \sqrt{\lambda} x_{1}\right)-\frac{6}{a_{1}^{2}}\right) .
\end{aligned}
$$

NLEP method [Doelman, Gardner, Kaper '01] would express solutions in terms of hypergeometric functions.

Instead, we use numerical continuation to compute stability boundary.

Stability boundary for Neumann 2-pulse

PDE numerics when crossing boundary: annihilation ('overcrowding')
Numerics delicate: delayed Hopf-bifurcation in PDE!

1st order case:
pulse motion of order ε

Reduction setup

Expand $u=u_{0}+\varepsilon u_{1}+\mathcal{O}\left(\varepsilon^{2}\right), v=v_{0}+\mathcal{O}(\varepsilon)$
[...]

Reduction setup

Expand $u=u_{0}+\varepsilon u_{1}+\mathcal{O}\left(\varepsilon^{2}\right), v=v_{0}+\mathcal{O}(\varepsilon)$
[...]
Large scale: $0=\partial_{x x} \hat{U}_{0}+\hat{\alpha} \quad \Rightarrow \quad \hat{U}_{0}=-\frac{\hat{\alpha}}{2} x^{2}+c x+d$.
Same as 2nd order case: piecewise smooth solution of parabolas.

Reduction setup

Expand $u=u_{0}+\varepsilon u_{1}+\mathcal{O}\left(\varepsilon^{2}\right), v=v_{0}+\mathcal{O}(\varepsilon)$
[...]
Large scale: $0=\partial_{x x} \hat{U}_{0}+\hat{\alpha} \quad \Rightarrow \quad \hat{U}_{0}=-\frac{\hat{\alpha}}{2} x^{2}+c x+d$.
Same as 2nd order case: piecewise smooth solution of parabolas.
Small scale problem $\left(\xi=\left(x-x_{j}\right) / \varepsilon\right)$:

$$
\begin{aligned}
\partial_{\xi \xi} \hat{u}_{1} & =\hat{u}_{1} \hat{v}_{0}^{2} \\
\partial_{\xi \xi} \hat{v}_{0} & =c \partial_{\xi} \hat{v}_{0}+\hat{v}_{0}-\hat{u}_{1} \hat{v}_{0}^{2}
\end{aligned}
$$

In contrast to first order case: two coupled 2nd order ODE!

Matching

Matching to large scale requires

$$
\begin{aligned}
\hat{U}_{0}\left(x_{j}\right) & =0(!) \\
\partial_{\xi} \hat{u}_{1}(\pm \infty) & =\partial_{x} \hat{U}_{0}\left(x_{j} \pm 0\right)
\end{aligned}
$$

Matching

Matching to large scale requires

$$
\begin{aligned}
\hat{U}_{0}\left(x_{j}\right) & =0(!) \\
\partial_{\xi} \hat{u}_{1}(\pm \infty) & =\partial_{x} \hat{U}_{0}\left(x_{j} \pm 0\right)
\end{aligned}
$$

Existence problem only local: nearest neighbor coupling
\Rightarrow parameters $p_{ \pm}:=\partial_{x} \hat{U}_{0}\left(x_{j} \pm 0\right)$

Transverse stability for 1st order

Large scale: $\partial_{x x} \Phi_{0}=\lambda \Phi_{0}, \quad(1+\lambda) \Psi_{0}=0$ (same as 2nd order).

Small scale:

$$
\partial_{\xi \xi} \phi_{0}-\hat{v}_{0}^{2} \phi_{0}+2 \hat{u}_{1} \hat{v}_{0} \hat{\psi}_{0}=0
$$

$(\hat{\psi}=\varepsilon \psi)$

$$
\begin{gathered}
\partial_{\xi \xi} \hat{\psi}_{0}+\hat{v}_{0}^{2} \phi_{0}-\hat{\psi}_{0}+2 \hat{u}_{1} \hat{v}_{0} \hat{\psi}_{0}=\lambda \hat{\psi}_{0}, \\
\phi_{0}(-\infty)=1, \hat{\psi}(\pm \infty)=0, \partial_{\xi} \phi_{0}(\pm \infty)=0 .
\end{gathered}
$$

Small and large scale problems decouple:
as existence, stability determined locally!

Universal existence and stability map

We solve this as a boundary value problem again by continuation:

PDE dynamics when crossing is pulse-splitting, again with delay effect.

Outlook

- Manuscript 1 submitted, manuscript 2 to be submitted...
- Rigorous reduction to pulse manifolds as in weak interaction?
[Approximate reduction: Promislow, Kaper, Doelman, van Heijster]
- Analysis of delayed bifurcations?

The end.

Coordinates for orbit segments that pass p_{j}

Here 'hat' for outflow from p_{j}, e.g., $\hat{q}_{j}=q_{j+1}$.
Decompose neighbourhood of $q_{j} \cup \hat{q}_{j}$ by un/stable directions inherited from $p_{k}, k=j-1, j, j+1$ via exponential trichotomies.

\Rightarrow orbits parametrised by un/stable coordinates at $\hat{q}_{j}(0) / q_{j}(0): \hat{\omega}_{j}^{\mathrm{u}} / \omega_{j}^{\mathrm{s}}$.
Proof: Contraction for var-o-const operator in suitable function space.

