Ecological Motivation

Predator-prey interaction can cause spatio-temporally cyclic population
dynamics. For instance for vole-weasel interaction in Fennoscandia
[Ranta, Kaitala 1997, Nature].
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Invasion: predator invades region dominated by prey.
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Chaotic wake and bandwidth

If the wave train in the wake is also unstable: invasion of ‘chaos'.
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Bandwidth: "extend of region with regular wave train oscillations.'

Measures degree of regularity despite instability: unstable wave train
can be prevalent in application, if domains size smaller than bandwidth.
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e plankton parameters:
8

5.2% increase in plankton birthrate
implies doubling of bandwidth

It is known that climate change affects
|, parameters.
Our results suggest significant impact
6 on spatio-temporal in/coherence.
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Complex Ginzburg-Landau equation

For simplicity we consider the A-o system

Ou = Oppu+ (1 —71%)u— (W —wir?)v

Ov = Opgv+ (1 —71%)v — (wg — wir?)u,
ro= Vu2 402




Complex Ginzburg-Landau equation

For simplicity we consider the A-o system

Ou = Opgu+ (1 —71%)u— (wy —wirdl
Ov = Ogav+ (1 —1r?)v — (wg — wir*)y,
ro= Vu?+ 02

Which is equivalent to CGL with real diffusion ( dispersionless')

O = Opgu + u — (14 Bi)|ul?u

It is the normal form for reaction-diffusion systems near a supercritical
Hopf-bifurcation of the reaction kinetics. Wave trains are explicitly:

u(z,t) = Rexpli(wt — kz)], w = —BR?, k* =1 — R?



Stability and spectrum

Linearising the PDE in a wave train yields "dispersion relation'
for temporal and spatial modes

d(\,v) =0, \,v €C

Analogous to characteristic equation, e.g., exp()\t =+ Vﬂ;‘) in

Ot = Oyt + COu+au — X =v2+cv+a



Stability and spectrum

Linearising the PDE in a wave train yields "dispersion relation'
for (complex!) temporal and spatial modes

d(\,v) =0, \,v €C

Analogous to characteristic equation, e.g., eXp()\t + V$) In
Ot = Oyt + COu+au — X =v2+cv+a
A
Spectrum for v = ik, kK € R T\
C \

(as in Fourier transform) /L//
d

Re()\(m)) > () exponential growth of perturbations.

—instability also of nonlinear PDE.



Absolute and convective instability

Instabilities in space-time.
growth in norm vs. pointwise growth

[Deissler; Brevdo, Bridges; van Saarloos; Sandstede, Scheel; R. .. ]
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Absolute and convective instability

Instabilities in space-time.
growth in norm vs. pointwise growth

[Deissler; Brevdo, Bridges; van Saarloos; Sandstede, Scheel; R. .. ]
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Co-moving frame y = x — V't: change convective <= absolute



Absolute instability and branch points

Theory: absolute instability if there

is unstable double root of the Im(v)
dispersion relation satisfying
xV]
d(A v V) = 0ud(A v V) =0 x Yy V=V,
Re(vj) = Re(v41)
Re(v)
7 = 1,...,3
Vo = Vs

Denote most unstable by Amax(V), Vmax(V)



Bandwidth coefficient
Bandwidth formula — log(F)/Re[A! ... (Vband)]

Here J critical size of perturbation for transition to chaos

Nonlinear effects all hidden in F

1
Re[Aax (V)]

‘bandwidth coefficient' -WV =

Can compute numerically by continuation method.



Bandwidth vs. -coefficient
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A-o system, varying o from 1.39 to 2.77. Regression coefficient 0.9992.
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Main reference:
- Sherratt, Smith, R., PNAS 106:
10890-10895 (2009)

Computation and structure of spectra:
- Smith, R., Sherratt, SIAM J. Appl. Dyn.
Sys. 8 (2009) 1136-1159

More on bandwidth:
- Smith, Sherratt, Phys. Rev. E 80
art. no. 046209 (2009)
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